Calculus

Problem 3701

Find the derivative of f(x)=2x4+5x3+4x6e3f(x)=2x^{4}+\frac{5}{x^{3}}+4\sqrt{x}-6e^{3}.

See Solution

Problem 3702

A car's velocity is v(t)=t3v(t)=t^{3}. Find average acceleration over [2,3][2,3], [3,4][3,4], [t,t+1][t,t+1], [2,2+h][2,2+h], and at t=2t=2.

See Solution

Problem 3703

Evaluate the integral: (lnx)12xdx\int \frac{(\ln x)^{12}}{x} d x

See Solution

Problem 3704

Find the derivative of f(t)=(t1)f(t)=(t-1)^{\prime} at t=5t=5 and round to the nearest integer.

See Solution

Problem 3705

Find the derivative of f(x)=6e5x+8ln(x6+8x5(x2)2+6x+42)f(x)=6 e^{5 x}+8 \ln(x^{6}+8 x^{5}(x-2)^{2}+\frac{6}{x}+42) and express it as dfdx(x)=aebx+clnx+dx7+ex6+gx5+hx4+jx+kx1+lx2+mx6+n\frac{d f}{d x}(x)=a \cdot e^{b \cdot x}+c \cdot \ln x+d \cdot x^{7}+e \cdot x^{6}+g \cdot x^{5}+h \cdot x^{4}+j \cdot x+k \cdot x^{-1}+l \cdot x^{-2}+m \cdot x^{-6}+n. Find coefficients aa, bb, cc, dd, ee, gg, hh, jj, kk, ll, mm, and nn.

See Solution

Problem 3706

Find the derivative of f(t)=(t1)tf(t)=(t-1)^{t} at t=5t=5 and round to the nearest integer.

See Solution

Problem 3707

Define f(2)f(2) to make f(x)=x38x24f(x)=\frac{x^{3}-8}{x^{2}-4} continuous at 2. How do you remove the discontinuity?

See Solution

Problem 3708

Find the derivative of the function f(t)=(t1)tf(t)=(t-1)^{t} at t=5t=5 and round to the nearest integer.

See Solution

Problem 3709

Find the derivative of f(x)=6x4+5x3+25x1/5+6x4+4x+37f(x)=6x^4+5x^3+25x^{1/5}+6x^{-4}+4x+37 and determine coefficients aa through kk.

See Solution

Problem 3712

Find the derivative of f(r)=(r2)rf(r)=(r-2)^{r} at r=5r=5 and round to the nearest integer.

See Solution

Problem 3713

Find the elasticity Elg(1)E_l g(1) and slope of g(y)=3y+22g(y)=3y+22 at y=1y=1. Round answers to two digits.

See Solution

Problem 3714

Find the elasticity of the function t(z)=32e2z3t(z) = 32 e^{2 z^{3}} and express it as Elzt(z)=azb+ce2z3+dzee2z3E l_{z} t(z)=a \cdot z^{b}+c \cdot e^{2 z^{3}}+d \cdot z^{e} \cdot e^{2 z^{3}}. Determine coefficients aa, bb, cc, dd, and ee. Round answers to two digits.

See Solution

Problem 3715

Find the elasticity of the function t(z)=30e5z2t(z) = 30 e^{5 z^{2}} and express it as Elzt(z)=2z30+0+0z1e5z2E l_{z} t(z) = 2 \cdot z^{30} + 0 + 0 \cdot z^{1} \cdot e^{5 z^{2}}. Round to two digits.

See Solution

Problem 3716

Find the elasticity of the function t(z)=30e5z2t(z) = 30 e^{5 z^{2}}. Express it as Elzt(z)=azb+ce5z2+dzee5z2E l_{z} t(z) = a \cdot z^{b} + c \cdot e^{5 z^{2}} + d \cdot z^{e} \cdot e^{5 z^{2}}. Round answers to two digits.

See Solution

Problem 3717

Find the elasticity of the function t(z)=31z2lnzt(z) = 31 z^{2} \ln z and determine coefficients aa, bb, cc, dd, ee, ff, and gg.

See Solution

Problem 3718

Find the elasticity of the function t(z)=34e3z2t(z) = 34 e^{3 z^{2}} and express it as Elzt(z)=azb+ce3z2+dzee3z2E l_{z} t(z)=a \cdot z^{b}+c \cdot e^{3 z^{2}}+d \cdot z^{e} \cdot e^{3 z^{2}}. Determine coefficients aa, bb, cc, dd, and ee.

See Solution

Problem 3719

Find the elasticity of the function t(z)=33(z4+1)1/4t(z) = 33(z^{4}+1)^{1/4} and express it as Elzt(z)=azb(zc+d)eE l_{z} t(z) = a \cdot z^{b} \cdot (z^{c}+d)^{e}.

See Solution

Problem 3720

Find the elasticity and slope of the function g(y)=7y+25g(y) = 7y + 25 at y0=1y_0 = 1. Round answers to two digits.

See Solution

Problem 3721

Find the derivative of w(x)=ln(x2+3x)tan(4x)w(x)=\ln(x^{2}+3x) \tan(4x).

See Solution

Problem 3722

An object is thrown upwards at 20 m/s20 \mathrm{~m} / \mathrm{s}. Find: a) speed upon hitting ground, b) total time in air, c) max height.

See Solution

Problem 3723

Find z(1)z(1), z(1)z'(1), z(1)z''(1), and x(8)x'(8) for the function defined by x9z4=4096x^{-9} \cdot z^{4}=4096.

See Solution

Problem 3724

Find the derivative of the function defined by 4x3+5xy8y4=2234 x^{3}+5 x y-8 y^{4}=223 and identify coefficients in the expression for ddxy\frac{d}{d x} y.

See Solution

Problem 3725

Find the elasticity of the function t(z)=26e2z3t(z) = 26 e^{2 z^{3}} and express it as Elzt(z)=azb+ce2z3+dzee2z3E l_{z} t(z) = a \cdot z^{b} + c \cdot e^{2 z^{3}} + d \cdot z^{e} \cdot e^{2 z^{3}}. Determine coefficients aa, bb, cc, dd, and ee. Round answers to two digits.

See Solution

Problem 3726

Evaluate the integral x2lnxdx\int x^{2} \ln x \, dx using integration by parts with u=lnxu=\ln x and dv=x2dxdv=x^{2} \, dx.

See Solution

Problem 3727

Evaluate the function f(x)=3x1x1f(x)=\frac{3|x-1|}{x-1} and determine which statements are true: I, II, III about limits, continuity, and differentiability at x=1x=1.

See Solution

Problem 3728

Find the derivative of the function defined by g5+y5=Zg^{5}+y^{5}=Z as ddyg=A(yg)a+B(yg)b+C\frac{d}{d y} g=A\left(\frac{y}{g}\right)^{a}+B(y \cdot g)^{b}+C and identify coefficients AA, aa, BB, bb, and CC.

See Solution

Problem 3729

Find z(1)z(1), z(1)z'(1), z(1)z''(1), and x(7)x'(7) from the equation x8z3=343x^{-8} z^3 = 343, rounding to two digits.

See Solution

Problem 3730

Integrate θcosθ\theta \cos \theta using integration by parts with u=θu=\theta, dv=cosθdθdv=\cos \theta d\theta.

See Solution

Problem 3731

Find the derivative of yy in the equation 4x3+4xy3y4=2254 x^{3}+4 x y-3 y^{4}=225 and determine the coefficients in the expression.

See Solution

Problem 3732

Find z(1)z(1), z(1)z'(1), z(1)z''(1), and x(7)x'(7) for the equation x8z3=343x^{-8} \cdot z^{3}=343. Round to two digits.

See Solution

Problem 3733

Find the derivative dduv\frac{d}{du} v from u6+v6=Tu^{6}+v^{6}=T and express it as A(uv)a+B(uv)b+CA\left(\frac{u}{v}\right)^{a}+B(u \cdot v)^{b}+C. What are the coefficients AA, aa, BB, bb, and CC?

See Solution

Problem 3734

Determine which statements about f(x)=3x1x1f(x)=\frac{3|x-1|}{x-1} are true: I. limx1f(x)\lim _{x \rightarrow 1} f(x) exists. II. ff is continuous at x=1x=1. III. ff is differentiable at x=1x=1.

See Solution

Problem 3735

Evaluate the function f(x)=2x1x1f(x)=\frac{2|x-1|}{x-1} and determine which statements about limits, continuity, and differentiability at x=1x=-1 are true.

See Solution

Problem 3736

Find z(1)z(1), z(1)z'(1), z(1)z''(1), and x(5)x'(5) from x6z3=125x^{-6} \cdot z^{3}=125. Round answers to two digits.

See Solution

Problem 3737

Find the derivative of the function defined by 3x4+8xy3y3=1893 x^{4}+8 x y-3 y^{3}=189 and identify coefficients a,b,c,d,e,f,g,h,j,k,l,ma, b, c, d, e, f, g, h, j, k, l, m.

See Solution

Problem 3738

Find the derivative of y=ecosxcsc(x)y = e^{\cos x} \csc(x).

See Solution

Problem 3739

Analyze the function f(x)=3x2x2f(x)=\frac{3|x-2|}{x-2} and determine which statements are true: I, II, III.

See Solution

Problem 3740

Given f(x)=3x2x2f(x)=\frac{3|x-2|}{x-2}, which statements are true: I. limx2f(x)\lim_{x \to 2} f(x) exists, II. ff is continuous at x=2x=2, III. ff is differentiable at x=2x=2?

See Solution

Problem 3741

Find the derivative ddyg\frac{d}{dy} g from g3+y3=Zg^3 + y^3 = Z and express it as A(yg)a+B(yg)b+CA\left(\frac{y}{g}\right)^{a} + B(y \cdot g)^{b} + C. Determine coefficients AA, aa, BB, bb, and CC.

See Solution

Problem 3742

Find the first-order approximation of f(x)=9x4f(x)=9x^4 around x0=2x_0=2. Determine coefficients aa and bb for f(x)a+b(x2)f(x) \approx a+b(x-2).

See Solution

Problem 3743

Find first-order approximation of f(x)=9x4f(x)=9x^{4} around x0=2x_{0}=2. Express as f(x)a+b(x2)f(x) \approx a+b\cdot(x-2). Find aa and bb.

See Solution

Problem 3744

Find the derivative of 67x10+6x36 \sqrt{7 x^{10}+6 x^{3}} using the chain rule.

See Solution

Problem 3745

Find linear and quadratic approximations of f(x)=9x4f(x)=9x^4 at x0=2x_0=2, then estimate f(2.1)f(2.1) using both.

See Solution

Problem 3746

Evaluate the function f(x)=3x+2x+2f(x)=\frac{3|x+2|}{x+2} and determine which statements about limits, continuity, and differentiability at x=2x=-2 are true.

See Solution

Problem 3747

Evaluate the function f(x)=2x+1x+1f(x)=\frac{2|x+1|}{x+1} for the following: Which statements are true about x=1x=-1?

See Solution

Problem 3748

Determine which statements are true for the function f(x)=xxf(x)=\frac{|x|}{x}: I. limx0f(x)\lim _{x \rightarrow 0} f(x) exists. II. ff is continuous at x=0x=0. III. ff is differentiable at x=0x=0.

See Solution

Problem 3749

Evaluate the function f(x)=xxf(x)=\frac{|x|}{x} and determine which statements are true: I. limx0f(x)\lim _{x \rightarrow 0} f(x) exists. II. ff is continuous at x=0x=0. III. ff is differentiable at x=0x=0.

See Solution

Problem 3750

Given x3z4=81x^{-3} \cdot z^{4}=81, find: (a) z(1)z(1), (b) z(1)z'(1), (c) z(1)z''(1), and (d) x(3)x'(3).

See Solution

Problem 3751

Find the second-order approximation of f(x)=9x4f(x) = 9x^4 around x0=2x_0 = 2. Determine a,b,ca, b, c for both forms:
1. f(x)a+b(x2)+12c(x2)2f(x) \approx a+b \cdot(x-2)+\frac{1}{2} \cdot c \cdot(x-2)^{2}
2. f(x)a+bx+cx2f(x) \approx a+b x+c x^{2}

See Solution

Problem 3752

Find the limit LL as tt approaches 1 for the piecewise function defined by h(t)h(t).

See Solution

Problem 3753

Find the derivative of yy from 2x3+4xy7y2=2532x^{3}+4xy-7y^{2}=253 and express it as ddxy=axb+cxy+dye+fgxh+jxy+ky+m\frac{d}{dx} y=-\frac{a \cdot x^{b}+c \cdot x y+d \cdot y^{e}+f}{g \cdot x^{h}+j \cdot x y+k \cdot y^{\prime}+m}.

See Solution

Problem 3754

Find ddsr\frac{d}{d s} r for r5+s5=Qr^{5}+s^{5}=Q in the form A(sr)a+B(sr)b+CA\left(\frac{s}{r}\right)^{a}+B(s \cdot r)^{b}+C. Determine AA, aa, BB, bb, and CC.

See Solution

Problem 3755

Find if f(x)f(x) goes to \infty or -\infty as xx approaches 4 from the left and right for f(x)=1x4f(x)=\frac{1}{x-4}.

See Solution

Problem 3756

Show that the function f(x)=6x37f(x)=6 x^{3}-7 has a zero in the interval [1,2][1,2] using the Intermediate Value Theorem.

See Solution

Problem 3757

Find the derivative of f(x)=6x4+3x3+20x1/4+7x5+4x+21f(x)=6 x^{4}+3 x^{3}+20 x^{1/4}+7 x^{-5}+4 x+21 and determine coefficients aa through kk.

See Solution

Problem 3758

Approximate the integral 0πx2sin(x)dx\int_{0}^{\pi} x^{2} \sin (x) d x using the Midpoint Rule with n=6n=6. Round to six decimal places.

See Solution

Problem 3759

Approximate the integral 0πx2sin(x)dx\int_{0}^{\pi} x^{2} \sin (x) d x using the Midpoint Rule with n=6n=6. Round to six decimal places. M6=M_{6}=

See Solution

Problem 3760

Find the derivative of g(f(x))g(f(x)) at x=12x=12 where f(x)=4(x8)260f(x)=4(x-8)^{2}-60 and g(y)=3y4+3yg(y)=3y^{4}+3y.

See Solution

Problem 3761

Differentiate ln(x2+3x(x44x3)5)\ln \left(\frac{\sqrt{x^{2}+3 x}}{(x^{4}-4 x^{3})^{5}}\right) with respect to xx.

See Solution

Problem 3762

Find the derivative of the function f(x)=7e5x+3ln(x5+3x4(x2)2+4x+30)f(x)=7 e^{5 x}+3 \ln (x^{5}+3 x^{4}(x-2)^{2}+\frac{4}{x}+30) and identify coefficients aa to nn.

See Solution

Problem 3765

Find the limit: limx127xx+6\lim _{x \rightarrow 1} \frac{2-7 x}{x+6}.

See Solution

Problem 3766

Find the limit: limh02h+h2h\lim _{h \rightarrow 0} \frac{2 h+h^{2}}{h}.

See Solution

Problem 3767

Füllvorgang eines Beckens:
a) Beschreibe die Zuflussgeschwindigkeit v(t)=5tt2v(t)=5t-t^2 und bestimme den Zeitpunkt der maximalen Geschwindigkeit. b) Berechne die gesamte Wassermenge und die Menge zwischen Stunde 2 und 4. c) Bei Abflussrate von 3m3 h3 \frac{\mathrm{m}^{3}}{\mathrm{~h}}, wann ist das Becken leer? d) Skizziere die Wasserstandsfunktion und nenne die Funktionsgleichung.

See Solution

Problem 3768

Find the change in marginal revenue from selling 20 to 30 units for R(s)=s22s100R(s)=s^{2}-2s-100.

See Solution

Problem 3769

Find the derivative of the function lnxcos2x\frac{\ln x}{\cos 2x}.

See Solution

Problem 3770

Find the derivative of the function f(x)=e1/x2f(x)=e^{-1 / x^{2}}.

See Solution

Problem 3771

Find the derivative of lnxcos2x\frac{\ln x}{\cos 2 x}. Choose from the options provided.

See Solution

Problem 3772

Calculate the average rate of change of f(x)=3x2+4f(x)=-3 x^{2}+4 for these intervals: (a) 2 to 4, (b) 3 to 5, (c) 0 to 3.

See Solution

Problem 3773

Find the limit: limt9t9t3\lim _{t \rightarrow 9} \frac{t-9}{\sqrt{t}-3}.

See Solution

Problem 3774

A drug with a half-life of 48 hours is given as a 15 mg dose. How much is left at noon the next day?

See Solution

Problem 3775

Find the limit as xx approaches -8 from the left for the expression x+2x+8\frac{x+2}{x+8}.

See Solution

Problem 3776

Find the limit as xx approaches 4 for x2f(x)16f(4)x4\frac{x^{2} f(x)-16 f(4)}{x-4} in terms of ff and ff'.

See Solution

Problem 3777

Ordne jeder Funktion f eine Stammfunktion F zu: I 8x338 x^{3}-3, II 2x42 x-4, III (x+2)2(x+2)^{2}, IV 3(x22x3)3(x^{2}-2 x^{3}), V 2x1x22 x-\frac{1}{x^{2}}, VI x29x3\frac{x^{2}-9}{x-3}. F: A x332x42x^{3}-\frac{3}{2} x^{4}-2, B 12x2+3x\frac{1}{2} x^{2}+3 x, D (x2)2(x-2)^{2}, E 2x2+4x+13x3+C2 x^{2}+4 x+\frac{1}{3} x^{3}+C.

See Solution

Problem 3778

Zeichne die Graphen der Funktionen und finde den x\mathrm{x}-Wert für Min/Max. Beschreibe das Steigungsverhalten. a) y=0,6x24,8x+3,6y=0,6 x^{2}-4,8 x+3,6 b) y=1,2x27,2x3,8y=-1,2 x^{2}-7,2 x-3,8 c) y=1,2x28,4x+14,7y=1,2 x^{2}-8,4 x+14,7

See Solution

Problem 3779

Zeigen Sie, dass alle Tangenten im Wendepunkt der Funktion f+(x)=14x4+tx3+x2f_{+}(x)=\frac{1}{4} x^{4}+t x^{3}+x^{2} auf der yy-Achse schneiden.

See Solution

Problem 3782

Untersuche die Funktion f(x)=x4kx2f(x)=x^{4}-k x^{2} auf Extrem- und Wendepunkte und bestimme die Ortskurve der Wendepunkte.

See Solution

Problem 3783

Find the derivative of the function g(x)=2+x2f(x)xg(x)=\frac{2+x^{2} f(x)}{\sqrt{x}} where ff is differentiable.

See Solution

Problem 3784

Find the derivative of the function f(x)=3x13xf(x)=\sqrt{3 x}-\frac{1}{\sqrt{3 x}}.

See Solution

Problem 3785

Find the derivative of F(x)=f(x)3xf(x)+3xF(x)=\frac{f(x)-3x}{f(x)+3x} where ff is differentiable.

See Solution

Problem 3786

Find the value of bb so that the function f(x)={2x2+6,x2mx+b,x>2f(x)=\begin{cases} 2x^2+6, & x \leq 2 \\ mx+b, & x > 2 \end{cases} is differentiable for all xx.

See Solution

Problem 3787

Bestimme die Ableitung der Funktion f(x)=(4x4)e2xf(x)=(4 x-4) e^{-2 x}.

See Solution

Problem 3788

1. Finde alle x[0;3π]x \in [0 ; 3 \pi] mit cos(x)=0,6\cos (x)=0,6.
2. Berechne die Ableitung von f(x)=(4x4)e2xf(x)=(4 x-4) e^{-2 x}.

See Solution

Problem 3789

1. (a) For the hyperbola y=2x2x3y=\frac{2 x-2}{x-3}, find: (i) general form, (ii) yy at x=2x=2, (iii) xx at y=3y=3, (iv) derivative dydx\frac{d y}{d x}, (v) tangent equation at x=2x=2.

See Solution

Problem 3790

Find the second derivative of fu(x)=8ux(1+ux2)2f^{\prime} u(x)=\frac{-8 u x}{(1+u x^{2})^{2}}.

See Solution

Problem 3791

Die Füllmenge eines Wasserbehälters wird durch F(t)=0,0625t4+0,57t31,875t2+2,4t+19,5F(t)=-0,0625 t^{4}+0,57 t^{3}-1,875 t^{2}+2,4 t+19,5 beschrieben.
a) Wann ist F(t)>20 m3F(t) > 20 \mathrm{~m}^{3}? b) Bestimme den Zeitpunkt und Wert des höchsten Füllstands. c) Berechne die mittlere Änderungsrate zwischen Tag 2 und 5. d) Wann ändert sich der Füllstand am stärksten? Gib die momentane Änderungsrate an.
Für die Funktionenschar fa(x)=14x42ax2+af_{a}(x)=\frac{1}{4} x^{4}-2 a x^{2}+a: a) Finde die Terme für a=1a=1 und a=2a=-2. b) Bestimme xx für y=ay=a. c) Zeige die Extremstellen bei ±2a\pm 2 \sqrt{a} und den Wertebereich für aa. d) Zeige die Koordinaten eines Extrempunkts. e) Finde aa für Extrempunkte auf der X-Achse. f) Bestimme die Ortskurve der Extrempunkte. g) Berechne die Tangentensteigung bei x=1x=1 und für welches aa sie -7 ist.
Für die Funktion f(x)=13x33x2+8xf(x)=\frac{1}{3} x^{3}-3 x^{2}+8 x: a) Berechne die Nullstellen. b) Zeige, dass der Wendepunkt bei W(36)W(3 \mid 6) liegt. c) Berechne die Wendetangente.

See Solution

Problem 3792

Untersuche die Funktion F(t)=0,0625t4+0,57t31,875t2+2,4t+19,5F(t)=-0,0625 t^{4}+0,57 t^{3}-1,875 t^{2}+2,4 t+19,5 für 0t70 \leq t \leq 7 und beantworte a)-d).

See Solution

Problem 3793

Find the derivative of g(f(x))g(f(x)) at x=8x=8 where f(x)=5(x3)2121f(x)=5(x-3)^{2}-121 and g(y)=5y2+4yg(y)=5y^{2}+4y.

See Solution

Problem 3794

Find the derivative of g(f(x))g(f(x)) at x=8x=8, where f(x)=5(x3)2121f(x)=5(x-3)^{2}-121 and g(y)=5y2+4yg(y)=5y^{2}+4y. Use the chain rule.

See Solution

Problem 3795

Find the derivative of f(x)=7e6x+4ln(x5+3x4(x2)2+3x+41)f(x)=7 e^{6 x}+4 \ln(x^{5}+3 x^{4}(x-2)^{2}+\frac{3}{x}+41) and determine coefficients aa to nn.

See Solution

Problem 3796

Ordnen Sie jeder Funktion eine Stammfunktion zu: I) 8x338x^{3}-3, II) 2x42x-4, III) (x+2)2(x+2)^{2}, IV) 3(x22x3)3(x^{2}-2x^{3}).

See Solution

Problem 3797

Gegeben ist die Funktion f(x)=13x33x2+8xf(x)=\frac{1}{3} x^{3}-3 x^{2}+8 x. Finde die Nullstellen, den Wendepunkt W(36)W(3 \mid 6) und die Wendetangente.

See Solution

Problem 3798

Find the derivative of h(x)=(22x)2(3x+1)2h(x)=(2-2x)^{2}(3x+1)^{2}.

See Solution

Problem 3799

Find dydx\frac{d y}{d x} using the chain rule for y=4u4+2y=4 u^{4}+2 and u=3xu=3 \sqrt{x}.

See Solution

Problem 3800

Find the derivative of f(x)=12xf(x)=\frac{1}{2 x} using first principles.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord