Calculus

Problem 10701

Find the derivatives of these functions: (a) f(x)=sinx+cosxtanx1f(x)=\frac{\sin x+\cos x}{\tan x-1} (b) f(x)=exxee2ln(x2)f(x)=e^{x} x^{e}-e^{2} \ln (x^{2}) (c) f(x)=(1+x2)x3+xf(x)=(1+x^{2})^{x^{3}+x} (use logarithmic differentiation) (d) f(x)=cos(sin3x+x4cosx)f(x)=\cos (\sin^{3} x+x^{4} \cos x)

See Solution

Problem 10702

Find the second derivative of f(x)=x2e2x(x2+e2x)f(x)=x^{2} e^{2 x}(x^{-2}+e^{-2 x}) and calculate f(1)f^{\prime \prime}(1). Simplify ff first.

See Solution

Problem 10703

Bestimmen Sie die Ableitung der Funktion g(x)=ax2+cg(x)=a \cdot x^{2}+c an der Stelle x0x_0.

See Solution

Problem 10704

A toy rocket is launched from a 94 ft building with an initial velocity of 250 ft/s. Find the height function, max height/time, when above 575 ft, and time to hit the ground.

See Solution

Problem 10705

Bacteria growth is given by n(t)=985e0.25tn(t)=985 e^{0.25 t}. Find the growth rate, initial population, and n(5)n(5).

See Solution

Problem 10706

Bestimmen Sie die Ableitung von g(x)=2axg(x) = 2 a x an x0=2x_{0}=2 direkt und mit der Definition. Vervollständigen Sie die Berechnung.

See Solution

Problem 10707

A toy rocket is launched from a 99 ft building at 202 ft/s. Find the height function, max height/time, and when it hits the ground.

See Solution

Problem 10708

A toy rocket launches from a 58 ft building at 150 ft/s. Find: a) height function h(t)h(t), b) max height & time, c) time above 273 ft, d) time to hit ground.

See Solution

Problem 10709

A toy rocket is launched from a 58 ft tall building with an initial velocity of 150 ft/s. Find the height function, max height/time, time above 273 ft, and time to hit the ground.

See Solution

Problem 10710

A toy rocket is launched from a 139 ft building at 203 ft/s. Find the height function, max height/time, time > 395 ft, and ground hit time.

See Solution

Problem 10711

Find 02f(x)dx\int_{0}^{2} f(x) \mathrm{d} x given: 301f(x)dx+212f(x)dx=73\int_{0}^{1} f(x) \mathrm{d} x + 2\int_{1}^{2} f(x) \mathrm{d} x = 7 and 02f(x)dx+12f(x)dx=1\int_{0}^{2} f(x) \mathrm{d} x + \int_{1}^{2} f(x) \mathrm{d} x = 1. Options: (a) -1 (b) 0 (c) 12\frac{1}{2} (d) 2.

See Solution

Problem 10712

Evaluate the limits: (a) limx3xx+3x2+x6\lim _{x \rightarrow-3} \frac{x|x+3|}{x^{2}+x-6} and (b) limxπ/2sin(cos2x)2cos(x)\lim _{x \rightarrow \pi / 2} \frac{\sin \left(\cos ^{2} x\right)}{2 \cos (x)}.

See Solution

Problem 10713

Find h+kh+k if limx1x22xhkx+2=2\lim _{x \rightarrow-1} \frac{x^{2}-2 x-h}{k x+2}=-2.

See Solution

Problem 10714

Untersuchen Sie die Funktion f(x)=x515x330f(x)=x^{5}-15 x^{3}-30 auf Extrem- und Wendepunkte.

See Solution

Problem 10715

Untersuchen Sie die Extrem- und Sattelstellen der Funktion f(x)=x515x330f(x)=x^{5}-15 x^{3}-30.

See Solution

Problem 10716

Find the limit: limx+(x3+3x3x2+x1)\lim _{x \rightarrow+\infty}\left(\sqrt[3]{x^{3}+3 x}-\sqrt{x^{2}+x-1}\right).

See Solution

Problem 10717

Untersuchen Sie die Extrem- und Sattelstellen der Funktionen: a) f(x)=x24f(x)=x^{2}-4 b) f(x)=13x32x2+4xf(x)=\frac{1}{3} x^{3}-2 x^{2}+4 x c) f(x)=x3+3x2+1f(x)=x^{3}+3 x^{2}+1 d) f(x)=19x3x2+3xf(x)=\frac{1}{9} x^{3}-x^{2}+3 x e) f(t)=t42t2f(t)=t^{4}-2 t^{2} f) f(a)=a3+2,5a2+3,5f(a)=-a^{3}+2,5 a^{2}+3,5 g) f(x)=x515x330f(x)=x^{5}-15 x^{3}-30 h) f(x)=3x4+4x3+8f(x)=-3 x^{4}+4 x^{3}+8

See Solution

Problem 10718

Determine the horizontal asymptote of f(x)=4x38x89x39x+8f(x)=\frac{4 x^{3}-8 x-8}{9 x^{3}-9 x+8}.

See Solution

Problem 10719

Bestimme die Ableitung der Funktionen: a) f(x)=e7xf(x)=e^{7 x}, b) f(x)=e0,2xf(x)=e^{-0,2 x}, c) f(x)=3e2xf(x)=3 \cdot e^{2 x}, d) f(x)=0,5e4xf(x)=0,5 \cdot e^{-4 x}, e) f(x)=ex2f(x)=e^{x^{2}}, f) f(x)=4e2x3f(x)=4 \cdot e^{2 x-3}, g) f(x)=1exf(x)=\frac{1}{e^{x}}, h) f(x)=e23x3f(x)=e^{-\frac{2}{3} x^{3}}, i) f(x)=0,2e15xf(x)=0,2 \cdot e^{1-5 x}, j) f(x)=110e5x+1f(x)=-\frac{1}{10 \cdot e^{5 x+1}}, k) f(x)=e4x+2x2f(x)=e^{-4 x+2 x^{2}}, l) f(x)=5e3xx3f(x)=\frac{5}{e^{3 x-x^{3}}}.

See Solution

Problem 10720

Approximate 01et2dt\int_{0}^{1} e^{t^{2}} dt using the degree 3 Taylor polynomial of f(x)=0xet2dtf(x)=\int_{0}^{x} e^{t^{2}} dt.

See Solution

Problem 10721

Find the difference quotient for f(x)=x3f(x) = x^{3} using f(x+Δx)f(x)Δx\frac{f(x+\Delta x)-f(x)}{\Delta x}.

See Solution

Problem 10722

If a function is a power series, is its Taylor polynomial identical to the series?

See Solution

Problem 10723

Find the limit: limx0e8x18xx2\lim _{x \rightarrow 0} \frac{e^{8 x}-1-8 x}{x^{2}}. Choose A (exact answer) or B (limit does not exist).

See Solution

Problem 10724

Evaluate the integral f(x,y,z)dV\iiint_{\square} f(x, y, z) d V where f(x,y,z)=xz2f(x, y, z)=x z^{2} and =[0,2]×[3,10]×[4,9]\square = [0,2] \times[3,10] \times[4,9].

See Solution

Problem 10725

Bestimmen Sie die Wendepunkte der Funktion ft(x)=x33tx2f_{t}(x)=x^{3}-3 t x^{2} für t>0t>0.

See Solution

Problem 10726

Find the slope of the tangent line to the curve x2xy+y2=19x^{2}-x y+y^{2}=19 at the point (2,5)(2,5).

See Solution

Problem 10727

Find the slope of the relation y2(4x)=x2y^{2}(4-x)=x^{2} at the point where x=3x=3 and y=3y=-3.

See Solution

Problem 10728

Find the rate of change of siny+x=72\sin y + x = \frac{7}{2} at the point (3,π6)\left(3, \frac{\pi}{6}\right).

See Solution

Problem 10729

Find the derivative dydx\frac{d y}{d x} for the equation 3x312y43=93 \sqrt[3]{x}-12 \sqrt[3]{y^{4}}=9.

See Solution

Problem 10730

Find the derivative dydx\frac{d y}{d x} for the equation tan(xy)=x+y\tan (x y) = x + y.

See Solution

Problem 10731

Find dxdt\frac{d x}{d t} for the circle x2+y2=16x^{2}+y^{2}=16 at (2,y)(2,y) when dydt=3\frac{d y}{d t}=-3.

See Solution

Problem 10732

The function f(t)=108,0001+5000etf(t)=\frac{108,000}{1+5000 e^{-t}} models flu cases. Find: a) initial cases, b) cases after 4 weeks, c) max cases.

See Solution

Problem 10733

Zeige, dass F(x)=(x+2)exF(x)=(x+2) \cdot e^{x} eine Stammfunktion von f(x)=(x+3)exf(x)=(x+3) \cdot e^{x} ist.

See Solution

Problem 10734

Zeige, dass F(x)=3x3exF(x)=-3 x^{3} \cdot e^{x} eine Stammfunktion von f(x)=(9x23x3)exf(x)=\left(-9 x^{2}-3 x^{3}\right) \cdot e^{x} ist.

See Solution

Problem 10735

Differentiate sin(x6+4)\sin(x^{6}+4) with respect to xx.

See Solution

Problem 10736

Find the derivative of y=sin6xy=\sin^{6} x. What is dydx=?\frac{dy}{dx}=?

See Solution

Problem 10737

Find the derivative of y=sin6xy=\sin^{6} x. What is dydx\frac{d y}{d x}?

See Solution

Problem 10738

Find the derivative of y=3cosx98cosxy=\frac{3 \cos x}{9-8 \cos x}. What is dydx\frac{d y}{d x}?

See Solution

Problem 10739

Evaluate the integral: ex2dx\int e^{-x^{2}} d x

See Solution

Problem 10740

Find the derivative of y=(4x44x2+3)4y=(4x^4-4x^2+3)^4. What is dydx\frac{dy}{dx}?

See Solution

Problem 10741

Find the critical numbers of the function g(x)=x1/7x6/7g(x) = x^{1/7} - x^{-6/7}.

See Solution

Problem 10742

Find the absolute extrema of f(x)=x34f(x)=x^{3}-4 on [5,7][-5,7]. Provide your answer as an ordered pair (x,f(x))(x, f(x)).

See Solution

Problem 10743

Find the derivative of y=2(7x2+3)6y=-2(7x^{2}+3)^{-6}. What is dydx\frac{dy}{dx}?

See Solution

Problem 10744

Find the absolute extrema of f(x)=6x3+9x2+36xf(x)=-6 x^{3}+9 x^{2}+36 x on [3,4][-3,4]. Provide (x,f(x))(x, f(x)) as an ordered pair.

See Solution

Problem 10745

Find the derivative of y=4e2x+2y=4 e^{2x+2}. What is dydx=?\frac{dy}{dx}=?

See Solution

Problem 10746

Find the absolute extrema of f(x)=4x312x2+288xf(x)=-4 x^{3}-12 x^{2}+288 x on [8,6][-8,6]. Provide (x,f(x))(x, f(x)) as the answer.

See Solution

Problem 10747

Find the derivative of the function f(x)=87x2+3f(x)=8 \sqrt{7 x^{2}+3}. What is f(x)f^{\prime}(x)?

See Solution

Problem 10748

Find the derivative of the function r(t)=(7t4)74t2+9r(t)=\frac{(7 t-4)^{7}}{4 t^{2}+9}. What is r(t)r^{\prime}(t)?

See Solution

Problem 10749

Find the derivative of the function y=x10exy=x^{10} e^{x}. What is y=?y^{\prime}=?

See Solution

Problem 10750

Differentiate the function f(x)=4e3xf(x)=-4 e^{3 x}. What is ddx(4e3x)\frac{d}{d x}\left(-4 e^{3 x}\right)?

See Solution

Problem 10751

Find the tangent line equation for f(x)=x2+11f(x)=\sqrt{x^{2}+11} at x=5x=5: y=y=\square (use xx).

See Solution

Problem 10752

Find the area between y=cos2xy=\cos ^{2} x and y=8x2π2y=\frac{8 x^{2}}{\pi^{2}} from x=π2x=-\frac{\pi}{2} to π2\frac{\pi}{2}.

See Solution

Problem 10753

Find the area between the curves y=cos2xy=\cos^{2} x and y=8x2π2y=\frac{8 x^{2}}{\pi^{2}} using their intersection points.

See Solution

Problem 10754

Calculate the integral 44(t23)dt\int_{-4}^{4}\left(t^{2}-3\right) dt.

See Solution

Problem 10755

Find the derivative of yy where y=(4x28x+8)e6xy=(4x^{2}-8x+8)e^{-6x}. What is yy'?

See Solution

Problem 10756

Find coordinates of point PP where the tangent to f(x)=x2exf(x)=x^{2} e^{-x} is horizontal.

See Solution

Problem 10757

Find the derivative of the function y=ex9x+1y=e^{x \sqrt{9 x+1}}. What is dydx=?\frac{d y}{d x}=?

See Solution

Problem 10758

Evaluate the integral 02(2t)tdt\int_{0}^{2}(2-t) \sqrt{t} \, dt.

See Solution

Problem 10759

Find all values of cc in [3,6][3,6] for f(x)=x1xf(x)=x-\frac{1}{x} that satisfy the Mean-Value Theorem.

See Solution

Problem 10760

Find all values of cc in [3,6][3,6] for f(x)=x1xf(x)=x-\frac{1}{x} that satisfy the Mean-Value Theorem.

See Solution

Problem 10761

A book of mass 1.68 kg slides down a table at an angle of 39.7° with kinetic friction μk=0.360\mu_{k}=0.360. Find its speed at the bottom of a 1.26 m table.

See Solution

Problem 10762

Exercice 2(8 pt) : Soit h(x)=Arctan(x1+x2+1)h(x)=\operatorname{Arctan}\left(\frac{x}{\sqrt{1+x^{2}}+1}\right) 1) Montrer que hh est impaire, et calculer limx+h(x)\lim _{x \rightarrow+\infty} h(x) et limx0h(x)x\lim _{x \rightarrow 0} \frac{h(x)}{x} 2) Montrer que xx2+1+1=tan(θ2)\frac{x}{\sqrt{x^{2}+1}+1}=\tan \left(\frac{\theta}{2}\right) avec θ=Arctan(x)\theta=\operatorname{Arctan}(x).

See Solution

Problem 10763

Find the limit as xx approaches 1 from the left of arcsin(x)\arcsin^{\prime}(x). What does this indicate about the graph of y=arcsinxy=\arcsin x?

See Solution

Problem 10764

Set up an integral using the Disk or Washer Method to find the volume of the solid formed by rotating the region bounded by y=x2+1y=x^{2}+1, y=19x2y=19-x^{2}, and x=0x=0 about the xx-axis. Do not evaluate the integral.

See Solution

Problem 10765

Soit h(x)=Arctan(x1+x2+1)h(x)=\operatorname{Arctan}\left(\frac{x}{\sqrt{1+x^{2}}+1}\right). Montrez que hh est impaire et calculez les limites.

See Solution

Problem 10766

Find the tangent line equation for f(x)=11+x2f(x)=\frac{1}{1+x^{2}} at x=3x=3 with slope 350-\frac{3}{50}.

See Solution

Problem 10767

Find the first-order partial derivatives of these functions: (a) f(x,y)=cos(2x)sin(2x)f(x, y)=\cos (2 x) \sin (2 x) (b) f(x,y)=ln(2x+y2+xy)f(x, y)=\ln (2 x+y^{2}+x y) (c) f(x,y)=xyx+yf(x, y)=\frac{x y}{x+y}

See Solution

Problem 10768

Find the 3×33 \times 3 Hessian matrix for f(x,y,z)=x2y3z3xy2z3+x2zf(x, y, z)=x^{2} y^{3} z-3 x y^{2} z^{3}+x^{2} z.

See Solution

Problem 10769

Find the tangent line equation for f(x)=13+x2f(x)=\frac{1}{3+x^{2}} at x=3x=3 with slope 124-\frac{1}{24}.

See Solution

Problem 10770

Find the tangent line equation for f(x)=17+x2f(x)=\frac{1}{7+x^{2}} at x=3x=3 with slope 3128-\frac{3}{128}.

See Solution

Problem 10771

Das Profil eines Vulkans wird durch f(x)=25x2f(x)=\frac{25}{x^{2}} beschrieben. Wie hoch ist der Vulkan bei x=2x=2 und x=6x=6?

See Solution

Problem 10772

How long for insulin to reduce to half if it breaks down by 5%5\% each minute from a 10-unit dose?

See Solution

Problem 10773

Verify that A(y)=π(2+0.5y)2A(y)=\pi(2+0.5y)^{2} matches the table values, then find the most accurate volume using A(y)A(y).

See Solution

Problem 10774

Use Newton's method to find a root of f(x)=3x2x3f(x)=3 x^{2}-\sqrt{x}-3 starting from x0=1x_{0}=1. Create a table of approximations.

See Solution

Problem 10775

Approximate a root of the function f(x)=7x2x2f(x)=7 x^{2}-\sqrt{x}-2 using Newton's method with x0=1x_{0}=1. Show your work in a table.

See Solution

Problem 10776

Find the critical numbers of the function h(t)=t3/46t1/4h(t)=t^{3/4}-6t^{1/4}.

See Solution

Problem 10777

Estimate the volume of water in cubic inches when the depth is 6 inches using the area function A(y)=π(2+0.5y)2A(y)=\pi(2+0.5 y)^{2}.

See Solution

Problem 10778

Calculate the relative rate of change of f(x)=6x2lnxf(x)=6 x^{2}-\ln x at x=3x=3. Round your answer to three decimal places.

See Solution

Problem 10779

Bestimmen Sie die marginal-benefit-Funktion aus der Total-Benefit-Funktion TB(Q)=108QT B(Q)=108 \cdot \sqrt{Q}.

See Solution

Problem 10780

Find the limit: limh0sin2(3x+3h)sin2(3x)h\lim _{h \rightarrow 0} \frac{\sin ^{2}(3 x+3 h)-\sin ^{2}(3 x)}{h}.

See Solution

Problem 10781

Evaluate the integral 02(x324x2+144x)dx\int_{0}^{2}(x^{3}-24 x^{2}+144 x) d x.

See Solution

Problem 10782

Finde die Funktion ff für die Zuflussgeschwindigkeit nach einem Gewitter und beantworte Fragen zu Zunahme, Höchstwert und Zeitraum.

See Solution

Problem 10783

Find the derivative of the function xx2+9\frac{x}{\sqrt{x^{2}+9}}.

See Solution

Problem 10784

Bestimmen Sie die Funktion ff für die Zuflussgeschwindigkeit nach einem Gewitter und beantworten Sie Fragen zu Zunahme und Zeitintervallen.

See Solution

Problem 10785

Fruit fly growth model: N(t)=4001+19e0.2tN(t)=\frac{400}{1+19 e^{-0.2 t}}. Answer: A. Initial count? B. Limiting count? C. Max growth time? D. Growth rate after 2 days?

See Solution

Problem 10786

Find the 3×33 \times 3 Hessian matrix for the function f(x,y,z)=x2y3z3xy2z3+x2zf(x, y, z)=x^{2} y^{3} z-3 x y^{2} z^{3}+x^{2} z.

See Solution

Problem 10787

Find the critical numbers of the function g(x)=x1/9x8/9g(x)=x^{1/9}-x^{-8/9}.

See Solution

Problem 10788

Determine the rates of change for f(x)=x318x2+33x10f(x) = x^3 - 18x^2 + 33x - 10 at x=0.7x=0.7 and x=2x=2.

See Solution

Problem 10789

Find the rate of change of the volume of a cone with height 10 cm10 \mathrm{~cm} and radius 20 cm20 \mathrm{~cm}, given rates of 3 cm/min3 \mathrm{~cm/min} and 2 cm/min2 \mathrm{~cm/min}.

See Solution

Problem 10790

Estimate the fox population in 2008 given a continuous growth rate of 8% and a 2000 population of 14900. Use P(t)=P0ertP(t) = P_0 e^{rt}.

See Solution

Problem 10791

Find zx\frac{\partial z}{\partial x} and zy\frac{\partial z}{\partial y} for z=yz2+xlnyz = y z^{2} + x \ln y using implicit differentiation.

See Solution

Problem 10792

Evaluate the integral 131(x2)2dx\int_{1}^{3} \frac{1}{(x-2)^{2}} dx by splitting at the singularity x=2x=2. Fill in the missing expressions.

See Solution

Problem 10793

A company's revenue is R(q)=q3+280q2R(q)=-q^{3}+280 q^{2} and cost is C(q)=330+16qC(q)=330+16 q.
A) Find the marginal profit function MP(q)=M P(q)=. B) Determine the quantity (in hundreds) for maximum profit (round to two decimal places).
Answer: hundred units must be sold.

See Solution

Problem 10794

Find the tangent line equation for f(x)=2x34f(x)=\frac{2}{\sqrt[4]{x^{3}}} at point (1,2)(1,2).

See Solution

Problem 10795

Evaluate the integral 131(x2)2dx\int_{1}^{3} \frac{1}{(x-2)^{2}} d x using limits as s2s \rightarrow 2 and t2t \rightarrow 2.

See Solution

Problem 10796

Find the production level xx that minimizes the marginal cost C(x)=x2160x+7200C(x)=x^{2}-160x+7200 and its minimum value.

See Solution

Problem 10797

Find f(x)dx\int f(x) dx for f(x)=3x+1x+2f(x)=\frac{3x+1}{x+2}. Also, find the derivative of y=x2(4x+3)y=x^2(4x+3) at x=2x=2.

See Solution

Problem 10798

Find the maximum height of a 1 kg ball launched at 40 m/s as k0k \to 0 in M(k)=40k9.8ln(200k49+1)k2M(k)=\frac{40 k-9.8 \ln \left(\frac{200 k}{49}+1\right)}{k^{2}}. (2 decimal places)

See Solution

Problem 10799

Given the profit function P(q)=0.03q2+4q31P(q)=-0.03 q^{2}+4 q-31, find the marginal profit MP(q)M P(q), the quantity qq for max profit, and max profit value.

See Solution

Problem 10800

Evaluate limx1nf(x)\lim_{x \rightarrow 1} n f(x) for f(x)=x1x1f(x)=\frac{\sqrt{x}-1}{x-1}. Options: a. 7x17x-1, b. 32.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord