Calculus

Problem 12801

Find the marginal cost function for the total-cost function c=7q2q2+2+5000c=\frac{7 q^{2}}{\sqrt{q^{2}+2}}+5000.

See Solution

Problem 12802

Differentiate the function y=5x29x+73x+8y=\frac{5 x^{2}-9 x+7}{3 x+8}. Find dydx\frac{d y}{d x}.

See Solution

Problem 12803

Differentiate the function y=(9x26)(3x25x+3)y=(9 x^{2}-6)(3 x^{2}-5 x+3). What is dydx\frac{d y}{d x}?

See Solution

Problem 12804

Find the derivative of the function f(x)=x3+4.5x212x3f(x)=x^{3}+4.5 x^{2}-12 x-3.

See Solution

Problem 12805

Given that f(x)f(x) is positive and concave up on interval II, answer these:
a.) f(x)>f^{\prime \prime}(x)>\square on II. b.) g(x)=2(A2+Bf(x))g^{\prime \prime}(x)=2\left(A^{2}+B f^{\prime \prime}(x)\right), where A=A=\square and B=B= c.) g(x)>g^{\prime \prime}(x)>\square on II. d.) g(x)g(x) is \square on II.

See Solution

Problem 12806

Hopfenwachstum: Analysiere w(t)=13000t31803000t2+81003000tw(t)=\frac{1}{3000} t^{3}-\frac{180}{3000} t^{2}+\frac{8100}{3000} t für 0t900 \leq t \leq 90. Aufgaben a) bis j).

See Solution

Problem 12807

Untersuchen Sie die Funktion f(x)=15(x48x3+18x2)f(x) = \frac{1}{5}(x^{4}-8x^{3}+18x^{2}) auf Symmetrie und Nullstellen, und bestimmen Sie die Wendepunkte.

See Solution

Problem 12808

Find the sum of the series: k=0(2x3)k42k\sum_{k=0}^{\infty} \frac{(2 x-3)^{k}}{4^{2 k}}

See Solution

Problem 12809

Gegeben ist f(x)=13x332x2f(x)=\frac{1}{3} x^{3}-\frac{3}{2} x^{2}. Finde waagerechte Tangenten, parallele zu g(x)=2x+5g(x)=-2x+5 und den Berührpunkt der Tangente durch P(0,98)P(0,\frac{9}{8}) und N(12,0)N(\frac{1}{2},0).

See Solution

Problem 12810

Find the min and max of f(x)=xe9xf(x)=x e^{-9 x} for 0x20 \leq x \leq 2. Use the derivative to find local extrema and check boundaries.

See Solution

Problem 12811

Indicate T or F for these statements about continuous and differentiable functions on given intervals:
1. Continuous on (1,0](-1,0] has a max.
2. Continuous on [1,3][1,3] has max and min.
3. Differentiable on (2,1)(-2,1) has max and min.
4. Differentiable on (4,3](-4,-3] has a min.

See Solution

Problem 12812

Gegeben ist die Funktion ft(x)=x(xt)2f_{t}(x)=x \cdot(x-t)^{2}. Bestimme 0tft(x)dx\int_{0}^{t} f_{t}(x) d x und finde tt für 0tft(x)dx=108\int_{0}^{t} f_{t}(x) d x=108.

See Solution

Problem 12813

Wachstum einer Hopfenpflanze: Analysiere w(t)=13000t31803000t2+81003000tw(t)=\frac{1}{3000} t^{3}-\frac{180}{3000} t^{2}+\frac{8100}{3000} t für 0t900 \leq t \leq 90. Aufgaben: a) Verlauf beschreiben, b) w(20)w(20) berechnen, c) Nullstellen finden, d) max. Wachstumsrate bestimmen, e) stärkste Änderung, f) Höhe nach 60 Tagen, g) Höhe h(t)=112000t4150t3+2720t2h(t)=\frac{1}{12000} t^{4}-\frac{1}{50} t^{3}+\frac{27}{20} t^{2} zeigen, h) Höhe beim max. Wachstum, i) Zeit für 7m Höhe, j) durchschnittliches Wachstum.

See Solution

Problem 12814

Find the first and second derivatives of the function f(x)=2x2+1f(x)=\frac{2}{x^{2}+1}.

See Solution

Problem 12815

Berechnen Sie das Integral 11exdx\int_{-1}^{1} e^{x} \, dx

See Solution

Problem 12816

Calculate the integral 23(3x5)dx\int_{-2}^{3}(3 x-5) d x.

See Solution

Problem 12817

Show that if y=(x+1+x2)12y=\left(x+\sqrt{1+x^{2}}\right)^{\frac{1}{2}}, then (1+x2)(dydx)2=14y2\left(1+x^{2}\right)\left(\frac{d y}{d x}\right)^{2}=\frac{1}{4} y^{2} and (1+x2)(d2ydx2)+xdydx14y=0\left(1+x^{2}\right)\left(\frac{d^{2} y}{d x^{2}}\right)+x \frac{d y}{d x}-\frac{1}{4} y=0.

See Solution

Problem 12818

Verpackung eines Halbzylinders:
a) Bestimme Zielgröße, Nebenbedingung und Zielfunktion für V=400 cm3V = 400 \mathrm{~cm}^{3}. Finde rr und hh für minimalen Materialverbrauch.
b) Vergleiche rr und Materialverbrauch für h=2rh = 2r mit optimaler Lösung aus a).
c) Interpretiere den Schnittpunkt der Funktionen Mr(V)=πr2+2(π+2)πrVM_{r}(V)=\pi \cdot r^{2}+\frac{2(\pi+2)}{\pi \cdot r} V.

See Solution

Problem 12819

Find the third derivative f(x)f'''(x) of f(x)f(x): f(x)=(0.5x0.875)(0.125e0.125x)+(0.5)e0.125xf'''(x)=(-0.5x-0.875)(-0.125 e^{-0.125x})+(-0.5)e^{-0.125x}. Define uu, vv, uu', and vv'.

See Solution

Problem 12820

Calculate the integral from -2 to 3 of the function 4x23x+54 x^{2}-3 x+5.

See Solution

Problem 12821

Bestimme die Tangentengleichung von f(x)=x34xf(x)=x^{3}-4x bei x0=1x_{0}=1.

See Solution

Problem 12822

Bestimmen Sie die Tangentengleichung f(x)=mx+bf(x) = mx + b für f(x)=3x2f(x) = 3x^2 am Punkt A(0,f(0))A(0, f(0)).

See Solution

Problem 12823

Schreibe die Funktion um, um einen konstanten Faktor zu erhalten, und leite dann ab. a) f(x)=x42f(x)=\frac{x^{4}}{2} b) f(x)=7xf(x)=\frac{7}{x} c) f(x)=3x2f(x)=-\frac{3}{x^{2}} d) f(x)=53x3f(x)=\frac{5}{3 x^{3}} e) f(x)=(3x)3f(x)=(3 x)^{3} f) f(x)=9xf(x)=\sqrt{9 x}

See Solution

Problem 12824

Calculate the integral 153xdx\int_{1}^{5} \frac{3}{x} d x.

See Solution

Problem 12825

Calculate the integral 04(2x6)dx\int_{0}^{4}(2 x-6) d x.

See Solution

Problem 12826

Calculate the integral: 0925xdx\int_{0}^{9} \frac{2}{5} \sqrt{x} \, dx

See Solution

Problem 12827

Berechnen Sie die folgenden Integrale: a) 02(2+x)3dx\int_{0}^{2}(2+x)^{3} d x b) 23(1+1x2)dx\int_{2}^{3}\left(1+\frac{1}{x^{2}}\right) d x c) 021(x+1)2dx\int_{0}^{2} \frac{1}{(x+1)^{2}} d x d) 0.50e2x+1dx\int_{-0.5}^{0} e^{2 x+1} d x e) 0πsin(3xπ)dx\int_{0}^{\pi} \sin (3 x-\pi) d x f) 1115e12xdx\int_{-1}^{1} \frac{1}{5} e^{\frac{1}{2} x} d x

See Solution

Problem 12828

Use the intermediate value theorem to check if f(x)=x44x25f(x)=x^{4}-4x^{2}-5 has a zero between a=4a=4 and b=5b=5.

See Solution

Problem 12829

Estimate the area under the curve for points (5,6)(-5,6) to (1,1)(1,1) using the left-endpoint method with 6 rectangles.

See Solution

Problem 12830

Find ydx\int y \, dx for: (i) y=x5+x6x4y=\frac{x^{5}+x^{6}}{x^{4}}, (ii) y=(x2+4x)2xy=\frac{(x^{2}+4x)^{2}}{x}, (iii) y=8x59x32x2y=\frac{8x^{5}-9x^{3}}{2x^{2}}, (iv) y=(x2+x)(x3x)xy=\frac{(x^{2}+x)(x^{3}-x)}{x}.

See Solution

Problem 12831

Approximate the area under f(x)=32x2+18x+8f(x)=-\frac{3}{2} x^{2}+18 x+8 from [4,5][4,5] using a right Riemann sum with n=8n=8. Is it an underestimate or overestimate?

See Solution

Problem 12832

Approximate the area under f(x)=12x2+6x+2f(x)=-\frac{1}{2} x^{2}+6 x+2 on [4,5][4,5] using a right Riemann sum with n=3n=3. Is it an underestimate or overestimate?

See Solution

Problem 12833

For the function y=x2+1xy=\frac{x^{2}+1}{x}, find where it increases/decreases and identify local maxima/minima.

See Solution

Problem 12834

Find the slope of the tangent line to cos(πx)=x7y2\cos (\pi x)=x^{7} y^{2} at the point (1,1)(-1,1).

See Solution

Problem 12835

Find the slope of the tangent line to cos(πx)=x7y2cos(\pi x) = x^{7} y^{2} at the point (1,1)(-1, 1).

See Solution

Problem 12836

Find the indefinite integrals: (i) (5t+3)2t3dt\int(5 t+3)^{2} t^{3} d t (ii) (y+1)3dy\int(y+1)^{3} d y (iii) (2x3)(x+1)2dx\int(2 x-3)(x+1)^{2} d x (iv) x21x+1dx\int \frac{x^{2}-1}{x+1} d x

See Solution

Problem 12837

Approximate the area under f(x)=x210+1f(x)=\frac{x^{2}}{10}+1 from 6-6 to 00 using n=3n=3 rectangles.
Area \approx \square unit2^{2}

See Solution

Problem 12838

Find the second derivative d2ydx2\frac{d^{2} y}{d x^{2}} for the equation of the circle x2+y2=25x^{2}+y^{2}=25.

See Solution

Problem 12839

Find the derivative of y=xsinxy = x \sin x.

See Solution

Problem 12840

Approximate the area under f(x)=x210+1f(x)=\frac{x^{2}}{10}+1 from x=7x=-7 to x=1x=1 using n=4n=4 rectangles (left-endpoint).

See Solution

Problem 12841

Use a left Riemann sum with n=7n=7 for f(x)=32x2+9x+2f(x)=-\frac{3}{2} x^{2}+9 x+2 on [4,5][4,5]. Is it an underestimate or overestimate?

See Solution

Problem 12842

Gravel is dumped at 18 m3/t18 \mathrm{~m}^{3} / \mathrm{t}. Find the height increase rate (in m/h\mathrm{m} / \mathrm{h}) when height is 9 m9 \mathrm{~m}.

See Solution

Problem 12843

Find if the left Riemann sum with n=5n=5 for f(x)=3x2+24x+4f(x)=-3 x^{2}+24 x+4 on [2,3][2,3] is an underestimate or overestimate.

See Solution

Problem 12844

Find the limit: limxx2x+32x3+1\lim _{x \rightarrow \infty} \frac{x^{2}-x+3}{2 x^{3}+1}.

See Solution

Problem 12845

Berechne die Fläche zwischen dem Graphen von ff und der xx-Achse für die Intervalle: a) f(x)=2x2+1f(x)=2 x^{2}+1, I=[1;2]I=[1 ; 2]; b) f(x)=x3+x+1f(x)=x^{3}+x+1, I=[2;3]I=[2 ; 3]; c) f(x)=(2x)2f(x)=(2-x)^{2}, I=[1;3]I=[1 ; 3].

See Solution

Problem 12846

Find the simplest form of f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} for the function f(x)=3x4x2f(x)=3x-4x^{2}.

See Solution

Problem 12847

Bestimmen Sie die Fläche unter f(x)=x3f(x)=\sqrt[3]{x} im Intervall [0;2][0 ; 2] mit der Umkehrfunktion von ff.

See Solution

Problem 12848

Gegeben sind die Funktionen f(x)=18x4+94x2414f(x)=\frac{1}{8} x^{4}+\frac{9}{4} x^{2}-\frac{41}{4} und g(x)=94x2478g(x)=-\frac{9}{4} x^{2}-\frac{47}{8}.
Untersuchen Sie Nullstellen, Symmetrie, Extrema, Wendepunkte, und zeichnen Sie die Graphen für 3,5<x<3,5-3,5 < x < 3,5. Bestimmen Sie Schnittpunkte und Parallelität der Graphen.

See Solution

Problem 12849

Eine Landefähre hat die Höhe h(t)=0,01t3+1,1t230t+250h(t)=-0,01 t^{3}+1,1 t^{2}-30 t+250 für 0t500 \leq t \leq 50.
a) Skizzieren Sie h(t)h(t) für t=0t=0 bis 5050 mit Schrittweite 10. b) Finden Sie v(t)v(t), die vertikale Geschwindigkeit. c) Bestimmen Sie die Anfangsgeschwindigkeit und deren Bedeutung. d) Höhe und Geschwindigkeit bei t=25 st=25 \mathrm{~s}? Fällt oder steigt sie? e) Wann ist der minimale Abstand zur Oberfläche und wie groß ist er?

See Solution

Problem 12850

A car decelerates at 1.5 m/s21.5 \mathrm{~m/s}^2 to a final velocity of 18 m/s18 \mathrm{~m/s} at 1111 seconds. Find tt.

See Solution

Problem 12851

Berechne die Fläche, die der Graph von ff mit der xx-Achse einschließt für: a) f(x)=0,5x23xf(x)=0,5 x^{2}-3 x, b) f(x)=(x1)21f(x)=(x-1)^{2}-1, c) f(x)=x44x2f(x)=x^{4}-4 x^{2}.

See Solution

Problem 12852

Evaluate the integral 11cosx1+e1/xdx\int_{-1}^{1} \frac{\cos x}{1+e^{1 / x}} d x.

See Solution

Problem 12853

Bestimme die Ableitungsfunktion für die Funktionen a) f(x)=13xf(x)=\frac{1}{3} \cdot x, b) f(x)=2x3f(x)=2 x-3, c) f(x)=3x2f(x)=3 x^{2}, d) f(x)=2x3f(x)=2 x^{3} und die Ableitung an der Stelle x0x_{0}.

See Solution

Problem 12854

Bestimme die Ableitungsfunktion als Grenzwert des Differenzenquotienten für: a) f(x)=13xf(x)=\frac{1}{3} \cdot x, b) f(x)=2x3f(x)=2 x-3, c) f(x)=3x2f(x)=3 x^{2}, d) f(x)=2x3f(x)=2 x^{3}.

See Solution

Problem 12855

Calculate the area between the curve y=8xy=\frac{8}{x} and the x-axis on the interval [1,5][1,5].

See Solution

Problem 12856

Berechnen Sie die Fläche zwischen den Funktionen ff und gg für die Intervalle a) [1,1][-1, 1] und b) [0,1][0, 1].

See Solution

Problem 12857

Bestimme die Ableitung der Funktionen an den angegebenen Stellen: a) f(x)=3x2f(x)=3 x^{2}, x0=2x_{0}=2 b) f(x)=x22xf(x)=x^{2}-2 x, x0=1x_{0}=1 c) f(x)=5x1f(x)=5 x-1, x0=6x_{0}=6 d) f(x)=x35x2+7xf(x)=x^{3}-5 x^{2}+7 x, x0=0x_{0}=0 e) f(x)=5f(x)=5, x0=27x_{0}=27 f) f(x)=4x25x+2f(x)=4 x^{2}-5 x+2, x0=2x_{0}=-2

See Solution

Problem 12858

Find the area between the curve f(x)=x245f(x)=x^{2}-45 and the xx-axis over the interval [2,1][-2,1].

See Solution

Problem 12859

Find the water rising rate in a cone (56 ft deep, 28 ft wide) filled at 15 ft³/min when water is 1 ft deep.

See Solution

Problem 12860

Identify the hypotheses and conclusions for Rolle's Theorem and the Mean Value Theorem based on the given lines.

See Solution

Problem 12861

Bestimme die Steigung von f(x)=(2x1)3f(x)=(2x-1)^{3} bei P(1,f(1))P(1, f(1)), finde aa mit g(a)=2g'(a)=-2 für g(x)=1(x1)2g(x)=\frac{1}{(x-1)^{2}} und prüfe, ob h(x)=3x+5h(x)=\sqrt{3x+5} waagerechte Tangenten hat.

See Solution

Problem 12862

Check if these functions meet the Mean Value Theorem conditions: a) f(x)=e3xf(x)=e^{3 x} on [1,2][-1,2] b) f(x)=x2f(x)=|x-2| on [0,3][0,3] c) f(x)=11+xf(x)=\frac{1}{1+x} on [2,3][-2,3] d) f(x)=11+xf(x)=\frac{1}{1+x} on [0,1][0,1]

See Solution

Problem 12863

Find how dVdt\frac{d V}{d t} relates to drdt\frac{d r}{d t}, dhdt\frac{d h}{d t} for a cylinder with V=πr2hV=\pi r^{2} h.

See Solution

Problem 12864

Find the rate of change of the distance from the particle at (2,16)(2,16) to the origin as xx increases at 5 units/sec on y=45x+6y=4\sqrt{5x+6}.

See Solution

Problem 12865

A particle moves on the curve y=45x+6y=4 \sqrt{5 x+6}. At (2,16)(2,16), if xx increases at 5 units/sec, find the distance rate to the origin.

See Solution

Problem 12866

Bestimmen Sie die Ableitungen der Funktionen: a) f(x)=(x25)2f(x)=(x^{2}-5)^{2}, b) g(x)=(x2+5x+1)2g(x)=(x^{2}+5x+1)^{2}, c) h(x)=x(x23x)h(x)=\sqrt{x}(x^{2}-3x), d) k(x)=(x25)(x2+5)k(x)=(x^{2}-5)(x^{2}+5).

See Solution

Problem 12867

Find dud u for the substitution u=5xu=5 x in the integral cos(5x)dx\int \cos(5 x) d x. Rewrite and evaluate the integral.

See Solution

Problem 12868

Find the difference quotient for f(x)=4xf(x)=\frac{4}{x}: f(x+h)f(x)h=\frac{f(x+h)-f(x)}{h} =

See Solution

Problem 12869

Berechne das Integral: 254x2+2xdx\int_{2}^{5} 4 x^{2}+2 x \, dx

See Solution

Problem 12870

Given g(x)=f(x2x)g(x) = f(x^2 - x), find g(3)g'(3) using values from the table for f(x)f(x) and f(x)f'(x).

See Solution

Problem 12871

Evaluate the integral using the substitution u=z8u=z-8: zz8dz\int z \sqrt{z-8} d z. Use CC for the constant of integration.

See Solution

Problem 12872

Find the drug concentration C=50(t9+t2)C=50\cdot\left(\frac{t}{9+t^{2}}\right) after 2 hours and when it drops to 0.5%0.5\%. What is the end behavior as tt \rightarrow \infty?

See Solution

Problem 12873

Show that dydx=3y2x8y3x\frac{d y}{d x}=\frac{3 y-2 x}{8 y-3 x} for the equation x2+4y2=7+3xyx^{2}+4 y^{2}=7+3 x y.

See Solution

Problem 12874

Find dud u for the integral x4x57dx\int \frac{x^{4}}{x^{5}-7} d x with u=x57u=x^{5}-7. Rewrite and evaluate the integral.

See Solution

Problem 12875

Given the drug concentration formula C=5(t3+t2)C=5 \cdot\left(\frac{t}{3+t^{2}}\right), find: a. CC after 3 hours (2 decimal places). b. Time until CC drops to 0.6%0.6\% (2 decimal places). c. End behavior as tt \rightarrow \infty.

See Solution

Problem 12876

Evaluate the triple integral in cylindrical coordinates: 2204x20x2+y2zdzdydx\int_{-2}^{2} \int_{0}^{\sqrt{4-x^{2}}} \int_{0}^{x^{2}+y^{2}} z \, dz \, dy \, dx. Provide a numerical answer.

See Solution

Problem 12877

The drug concentration C=50(t30+t2)C=50 \cdot\left(\frac{t}{30+t^{2}}\right). Find CC after 1 hour, time until C=0.7%C=0.7\%, and end behavior as tt \to \infty.

See Solution

Problem 12878

Rewrite the integral t7et8dt\int t^{7} e^{-t^{8}} d t using substitution to express it as 18eudu-\frac{1}{8} e^{u} d u. Find uu and dud u. Then evaluate the integral with constant CC.

See Solution

Problem 12879

Rewrite the integral t7et8dt\int t^{7} e^{-t^{8}} d t using substitution to express it as 18eudu-\frac{1}{8} e^{u} d u and evaluate.

See Solution

Problem 12880

Leiten Sie folgende Funktionen mit der Produktregel ab: a) f(x)=xexf(x)=x \cdot e^{x}, b) f(x)=3xexf(x)=3 x \cdot e^{x}, c) f(x)=x2exf(x)=x^{2} \cdot e^{x}, d) f(x)=(3x3+x2)exf(x)=(3 x^{3}+x^{2}) \cdot e^{x}, e) f(x)=x4exf(x)=-x^{4} \cdot e^{x}, f) f(x)=(x2+x+1)(x3+1)f(x)=(x^{2}+x+1) \cdot (x^{3}+1), g) f(x)=2xexf(x)=\frac{2}{x} \cdot e^{x}, h) f(x)=xexf(x)=\sqrt{x} \cdot e^{x}, i) f(x)=(3x+2)xf(x)=(3 x+2) \cdot \sqrt{x}, j) f(x)=(2x+3)exf(x)=(2 \sqrt{x}+3) \cdot e^{x}, k) f(x)=x1xf(x)=\sqrt{x} \cdot \frac{1}{x}, l) f(x)=ex(1x3+x)f(x)=e^{x} \cdot \left(\frac{1}{x^{3}}+x\right).

See Solution

Problem 12881

Find the differential dud \underline{u} in terms of dxd \underline{x} using the Jacobian of the transformation F(x,y,z)F(x,y,z).

See Solution

Problem 12882

Evaluate the integral: sec2(9θ)dθ\int \sec^{2}(9 \theta) d \theta. Use CC for the constant of integration.

See Solution

Problem 12883

Evaluate the integral: dx2x+5\int \frac{d x}{2 x+5}, using absolute values and CC for the constant of integration.

See Solution

Problem 12884

Evaluate the integral: (ln(x))42xdx\int \frac{(\ln (x))^{42}}{x} d x (Use CC for the constant of integration.)

See Solution

Problem 12885

Find the indefinite integral: sec2(θ)tan8(θ)dθ\int \sec ^{2}(\theta) \tan ^{8}(\theta) d \theta (use CC for the constant).

See Solution

Problem 12886

Evaluate the integral: π/32π/3csc2(12t)dt\int_{\pi / 3}^{2 \pi / 3} \csc ^{2}\left(\frac{1}{2} t\right) d t.

See Solution

Problem 12887

If u=(u,v,w)=(xy+3,xz,yxz)\underline{u} = (u, v, w) = (xy + 3, x - z, y - xz), find dud\underline{u} in terms of dxd\underline{x}.

See Solution

Problem 12888

Find the function f(x)f(x) if f(x)=lnxf^{\prime \prime \prime \prime}(x) = \ln x. Integrate four times to find f(x)f(x).

See Solution

Problem 12889

How long does it take for an object to fall from 100 meters? Round to the nearest tenth of a second.

See Solution

Problem 12890

Berechne das Integral: 244e2xdx\int_{2}^{4} 4 e^{2 x} d x

See Solution

Problem 12891

Analyze the curve on the xyxy plane and determine where it is increasing, decreasing, and concave up/down.
(a) Increasing: (1,3)(4,6)(1,3) \cup(4,6) (b) Decreasing: (0,1)(3,4)(0,1) \cup(3,4) (c) Concave up: (1,3)(4,6)(1,3) \cup(4,6) (d) Concave down: (0,1)(3,4)(0,1) \cup(3,4) (e) Inflection points: (1,2),(3,4),(4,1)(1,2), (3,4), (4,1)

See Solution

Problem 12892

Find the derivative of the function f(x)=x2+13xf(x)=\frac{x^{2}+1}{3 x}.

See Solution

Problem 12893

Find the derivative of f(x)=x2+13xf(x)=\frac{x^{2}+1}{3 x} using the power rule.

See Solution

Problem 12894

Berechne das Integral: 55(2x4)3dx\int_{-5}^{5}(2 x-4)^{3} d x

See Solution

Problem 12895

Evaluate the integral t7et8dt\int t^{7} e^{-t^{8}} d t using the substitution u=t8u=-t^{8} and find the constant of integration C\mathrm{C}.

See Solution

Problem 12896

Which integral calculates the moment of inertia for a unit-density spherical shell of radius RR about the zz-axis?

See Solution

Problem 12897

Find the derivative of f(x)=xx2+4f(x)=\sqrt{\frac{x}{x^{2}+4}}.

See Solution

Problem 12898

Evaluate the integral eu(8eu)2du\int \frac{e^{u}}{(8-e^{u})^{2}} du using substitution to express it as 1x2dx-\frac{1}{x^{2}} dx. Find xx and dxdx.

See Solution

Problem 12899

Find the derivative of yy with respect to xx for y=lnx4+5lnxy=\frac{\ln x}{4+5 \ln x}.

See Solution

Problem 12900

Find the derivative of f(x)=(x+3)2/35f(x)=(x+3)^{2/3}-5.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord