Calculus

Problem 15501

Find the derivative of f(x)=exsinxf(x)=e^{x} \sin x.

See Solution

Problem 15502

Evaluate the integral: (17x+1ex+14x8)dx\int \left( \frac{1}{7 x} + \frac{1}{e^{-x}} + \frac{1}{4 x^{8}} \right) d x

See Solution

Problem 15503

Find the tangent equations to y=2x33x211x+8y=2x^{3}-3x^{2}-11x+8 at points where y=2y=2. Verify with a graphing calculator.

See Solution

Problem 15504

Explain the indeterminate form 00\frac{0}{0} with examples for limits of functions as xx approaches a.

See Solution

Problem 15505

Find the area of region RR bounded by y=sinhxy=\sinh x, the xx-axis, and line ABAB where AB=43AB=\frac{4}{3}. Show OB=ln3OB=\ln 3 and cosh(lnk)=k2+12k\cosh(\ln k)=\frac{k^{2}+1}{2k}.

See Solution

Problem 15506

Estimate the sum of the series (1)n1x2+3\sum (-1)^n \frac{1}{x^{2}+3} using the alternating series theorem with error < 0.0001.

See Solution

Problem 15507

Explain how to use l'Hôpital's Rule for limits like 00\frac{0}{0}. Choose the correct answer: A, E, E, or 2.

See Solution

Problem 15508

Convert the limit 00 \cdot \infty to 0/00 / 0 or /\infty / \infty. Which statement is correct?

See Solution

Problem 15509

Evaluate the series: n=1(1)n+11n+4\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n+4}.

See Solution

Problem 15510

Convert the limit limx1(x1)tan(πx2)\lim _{x \rightarrow 1-}(x-1) \tan \left(\frac{\pi x}{2}\right) from 00 \cdot \infty to 00\frac{0}{0} and evaluate it.

See Solution

Problem 15511

Evaluate the limit: limx7x2+8x+7632x+x2\lim _{x \rightarrow-7} \frac{x^{2}+8 x+7}{-63-2 x+x^{2}} using I'Hôpital's Rule if needed.

See Solution

Problem 15512

Find OB=ln3O B=\ln 3 if AB=43A B=\frac{4}{3}. Show cosh(lnk)=k2+12k\cosh (\ln k)=\frac{k^{2}+1}{2 k} and area =23= \frac{2}{3}.

See Solution

Problem 15513

Given f(x)=x3ln(x)x3f(x)=x^{3} \ln (x)-x^{3}, find f(x)f^{\prime}(x) and evaluate f(e)f^{\prime}(e) to five decimal places.

See Solution

Problem 15514

Find the derivative of yy with respect to xx for y=sec1(4x+35)y=\sec ^{-1}\left(\frac{4 x+3}{5}\right). Show your work.

See Solution

Problem 15515

2. L'azote (N)(\mathrm{N}) et l'hydrogène (H)(\mathrm{H}) forment l'ammoniac avec Q(t)=100100010+tQ(t)=100-\frac{1000}{10+t}.
a) Trouvez Q(0)Q(0) et Q(20)Q(20). b) Calculez la variation de QQ sur [10 s,20 s][10 \mathrm{~s}, 20 \mathrm{~s}]. c) Taux de variation moyen sur : (i) [10s,20s][10 s, 20 s] (ii) [20s,30s][20 s, 30 s] d) Évaluez limh0+Q(h+0)Q(0)h\lim _{h \rightarrow 0^{+}} \frac{Q(h+0)-Q(0)}{h} et interprétez. e) Trouvez la fonction du rythme de variation de QQ. f) Évaluez : (i) dQdtt=10s\left.\frac{d Q}{d t}\right|_{t=10 s} (ii) dQdtt=1min\left.\frac{d Q}{d t}\right|_{t=1 \min }

See Solution

Problem 15516

Evaluate the limit: limuπ47tanu7cotu2uπ2\lim _{u \rightarrow \frac{\pi}{4}} \frac{7 \tan u-7 \cot u}{2 u-\frac{\pi}{2}} using l'Hôpital's Rule.

See Solution

Problem 15517

Compute (f+g)(3)(f+g)^{\prime}(3) using provided values for ff, gg, ff', and gg'. Enter DNE if not defined.

See Solution

Problem 15518

Find the derivative of yy with respect to xx for y=tan1(5x)y=\tan^{-1}(\sqrt{5x}). Show your work.

See Solution

Problem 15519

Find a function where limx0[f(x)]2\lim _{x \rightarrow 0}[f(x)]^{2} exists but limx0f(x)\lim _{x \rightarrow 0} f(x) does not.

See Solution

Problem 15520

Find the derivative of f(x)=2sinxcos(x)2xf(x) = \frac{2 \sin \sqrt{x}}{\cos (\sqrt{x})^{2} \cdot \sqrt{x}}.

See Solution

Problem 15521

AGNs convert energy into radiation via efficiency η\eta.
a) Derive luminosity LL for mass MbhM_{bh} and rate M˙\dot{M}. b) Does LL depend on MbhM_{bh}? c) Explain need for massive black holes in galaxies. d) If η=0.1\eta=0.1 and L=1012LL=10^{12} L_{\odot}, estimate M˙\dot{M} in (M⊙/yr).

See Solution

Problem 15522

Evaluate the limit:
limxπ2tanx112xπ \lim _{x \rightarrow \frac{\pi}{2}^{-}} \frac{\tan x}{\frac{11}{2 x-\pi}}
Use l'Hôpital's Rule and find the exact answer.

See Solution

Problem 15523

Evaluate the limit using l'Hôpital's Rule:
limxπ2tanx112xπ \lim _{x \rightarrow \frac{\pi}{2}^{-}} \frac{\tan x}{\frac{11}{2x-\pi}}
Find the exact answer.

See Solution

Problem 15524

Prove that for the equation x2+25y2=100x^{2}+25 y^{2}=100, it follows that d2ydx2=425y3\frac{d^{2} y}{d x^{2}}=-\frac{4}{25 y^{3}}.

See Solution

Problem 15525

Find the linearization L(x)L(x) of f(x)=4x+9f(x)=\sqrt{4x+9} at x=0x=0. Show your work.

See Solution

Problem 15526

Find the xx-coordinates where the tangent to y=11xy=\frac{1}{1-x} is parallel to 4x9y=134x-9y=13. Is there a positive xx-coordinate?

See Solution

Problem 15527

Evaluate the limit: limx12x33x212x73x4+3x34x25x1\lim _{x \rightarrow-1} \frac{2 x^{3}-3 x^{2}-12 x-7}{3 x^{4}+3 x^{3}-4 x^{2}-5 x-1} using l'Hôpital's Rule.

See Solution

Problem 15528

Find a linear approximation of f(x)=xf(x)=\sqrt{x} near the integer b=9b=9. Show your work.

See Solution

Problem 15529

Differentiate the function x218x(x9)2\frac{x^{2}-18 x}{(x-9)^{2}} with respect to xx.

See Solution

Problem 15530

Find the xx-intercepts of the curve with slope dydx=6x2+4x60\frac{d y}{d x}=6 x^{2}+4 x-60 that passes through the origin.

See Solution

Problem 15531

Find the distance covered by a car with velocity v(t)=4+19t5t2v(t)=4+19t-5t^{2} after 2 hours of driving.

See Solution

Problem 15532

Find the integral I=abmg(x)dxI=\int_{a}^{b} m g(x) dx where g(x)g(x) is continuous on [a,b][a, b] and mm is a constant.

See Solution

Problem 15533

Find and interpret the marginal revenue for the demand equation p=21xp=21-x at x=5x=5, x=15x=15, and x=11x=11. What is R(x)R^{\prime}(x)?

See Solution

Problem 15534

Find the differential dyd y for the function y=x5x+4y=x \sqrt{5 x+4}. Show your work.

See Solution

Problem 15535

Find the differential dyd y for the function y=x5x+4y=x \sqrt{5 x+4}. Show your work.

See Solution

Problem 15536

Find the expression for f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} if f(x)=12x2f(x)=1-2 x^{2}. Options: A. 4x+2h4 x+2 h B. 9 C. 2x+h2 x+h

See Solution

Problem 15537

Find the differential dyd y for y=sin(2x2)y=\sin(2x^2). Show your work.

See Solution

Problem 15538

Find the intervals where the function f(x)=x35x2+10x+1f(x)=x^{3}-5 x^{2}+10 x+1 is increasing, decreasing, concave up, and concave down.

See Solution

Problem 15539

Find transition points for f(x)=6xex2f(x)=6 x e^{-x^{2}}: local max, min, inflection, increase/decrease/concavity intervals, and horizontal asymptotes.

See Solution

Problem 15540

Find transition points for x[0,2π13]x \in [0, \frac{2 \pi}{13}] in y=13x+sin(13x)y=13x+\sin(13x). Identify local minima, maxima, and inflection points.

See Solution

Problem 15541

Find the critical points of the function f(x)=45x33x5f(x)=45 x^{3}-3 x^{5} using calculus methods. Show your work.

See Solution

Problem 15542

Find the absolute max and min of f(x)=x3f(x)=\sqrt[3]{x} on [3,8][-3, 8] using the Closed Interval Method. Show your work.

See Solution

Problem 15543

Estimate the age of cave paintings with 14%14\% carbon-14 using A=A0e0.000121tA=A_{0} e^{-0.000121 t}. Find tt in years.

See Solution

Problem 15544

Calculate the average rate of change of f(x)=3xf(x)=3x from x=2x=-2 to x=1x=1.

See Solution

Problem 15545

Find the first and second derivatives of the logistic function P(x)=M1+AekxP(x)=\frac{M}{1+A e^{-k x}}. Determine horizontal asymptotes, intervals of increase/decrease, and inflection points.

See Solution

Problem 15546

Calculate the average rate of change of f(x)=3x2f(x)=3 x^{2} from x=2x=-2 to x=1x=1.

See Solution

Problem 15547

Graph H(x)=1(x+3)2H(x)=\frac{1}{(x+3)^{2}} to determine where the function is increasing or decreasing.

See Solution

Problem 15548

Given the logistic function P(x)=M1+AekxP(x)=\frac{M}{1+A e^{-k x}}, find P(x)P'(x), P(x)P''(x), horizontal asymptotes, intervals of increase/decrease, and inflection points.

See Solution

Problem 15549

Evaluate the integral I=03f(x)dxI=\int_{0}^{3} f^{\prime}(x) d x for a linear function ff with slope mm and intercept bb.

See Solution

Problem 15550

Analyze the function f(x)=x3+8xf(x)=\frac{x^{3}+8}{x}. Find intervals for increasing, decreasing, concave up, and concave down. Identify asymptotes.

See Solution

Problem 15551

Find the integral I=abmg(x)dxI=\int_{a}^{b} m g(x) d x for a continuous function g(x)g(x) on [a,b][a, b] and constant mm.

See Solution

Problem 15552

Find when the drug concentration C(t)=4t0.5+t2C(t)=\frac{4t}{0.5+t^{2}} is maximized. Round to two decimal places: t=t= h.

See Solution

Problem 15553

Find the limit: limx0S(x)3x3\lim _{x \rightarrow 0} \frac{S(x)}{3 x^{3}} where S(x)=0xsin(3πt2)dtS(x)=\int_{0}^{x} \sin(3 \pi t^{2}) dt.

See Solution

Problem 15554

A box has a square base xx and height hh.
(a) Find x,hx, h for volume 11 and minimum surface area.
(b) Find x,hx, h for surface area 13 and maximum volume.

See Solution

Problem 15555

Find y(4)y(4) if dydx=32x1/25x1/2\frac{d y}{d x}=\frac{3}{2} x^{1/2}-5 x^{-1/2} and y(1)=7y(1)=-7.

See Solution

Problem 15556

Find the point (x0,y0)(x_0, y_0) on the graph of y=x3+6x2+4x3y=x^3+6x^2+4x-3 where the tangent slope is minimized. Answer as (,)(*, *).

See Solution

Problem 15557

Find the xx-intercepts of a curve with slope dydx=3x2+2x30\frac{d y}{d x}=3 x^{2}+2 x-30 that passes through the origin.

See Solution

Problem 15558

Find the yy-intercept of the curve that passes through (1,5)(1,5) with slope dydx=8x3\frac{d y}{d x}=8 x-3.

See Solution

Problem 15559

Find the value of F(1)F(1) where F(x)=ddx(0x45t3dt)F(x)=\frac{d}{d x}\left(\int_{0}^{x^{4}} 5 t^{3} d t\right).

See Solution

Problem 15560

A cylinder's radius grows at 5 ft/min with a constant volume of 77 ft³. When the radius is 4 ft, find the height's rate of change. Use V=πr2hV=\pi r^{2} h and round to three decimal places.

See Solution

Problem 15561

Find the resistance R=0.234r2R=\frac{0.234}{r^{2}} for r=3.48 mmr=3.48 \mathrm{~mm} and its error bound. What is the max uncertainty in rr for RR < 1.2%?

See Solution

Problem 15562

Tim threw a ball to point BB, 10 m from shore at point CC, 15 m from point AA. Find distance xx where Elvis entered water to minimize time.

See Solution

Problem 15563

Find the second-order partial derivatives of the function f(x,y)=ln(2+x2y2)f(x, y)=\ln(2+x^{2}y^{2}).

See Solution

Problem 15564

Find the first partial derivatives of the function f(x,y)=x2+xy+y2+2xyf(x, y) = x^{2} + xy + y^{2} + 2x - y at the point (5,4)(-5, 4).

See Solution

Problem 15565

Find the second-order partial derivatives of f(x,y)=7xy+7yxf(x, y)=7 x \sqrt{y}+7 y \sqrt{x}. Show fxy=fyxf_{xy} = f_{yx}.

See Solution

Problem 15566

Maximize 2xy22xy^2 for a rectangle in a circle of radius rr. Find dimensions xx and yy in terms of rr. x= x= y= y=

See Solution

Problem 15567

Estimate the average fuel consumption (mpg) from 1974 to 1987 using the Trapezoidal Rule on the points (74,13.2)(74, 13.2) to (87,26.6)(87, 26.6). Round to two decimal places.

See Solution

Problem 15568

Find the critical point of f(x,y)=99x26y2f(x, y)=9-9 x^{2}-6 y^{2} and classify it using the second derivative test.

See Solution

Problem 15569

Find the rate of change of resistance RR with respect to radius rr when r=3.48 mmr=3.48 \mathrm{~mm}. Then, find expected RR and error bound for r=(3.48±0.28)mmr=(3.48 \pm 0.28) \mathrm{mm}. Lastly, determine max uncertainty in rr to keep uncertainty in RR below 1.2%1.2\%.

See Solution

Problem 15570

Find the critical point of f(x,y)=x2+2xy+2y26x+10y+8f(x, y) = x^2 + 2xy + 2y^2 - 6x + 10y + 8 and classify it using the second derivative test.

See Solution

Problem 15571

Find the volume VV of water in a hemispherical container with radius 28 cm28 \mathrm{~cm} and water level 21 cm21 \mathrm{~cm}. Then estimate uncertainties in VV with given uncertainties in rr and hh, and find the change in water depth for 4000 cm34000 \mathrm{~cm}^{3} removed.

See Solution

Problem 15572

When f(x)f(x) is concave down on (3,12)(3,12), what can we say about its rates of change in that interval? Choose the best answer: a) Increasing on (,3)(12,)(-\infty, 3) \cup (12, \infty) b) Decreasing on (,3)(12,)(-\infty, 3) \cup (12, \infty) c) Increasing on (3,12)(3,12) d) Decreasing on (3,12)(3,12)

See Solution

Problem 15573

Find the limit of the sequence an=(1+3)n+(51)nna_{n}=\sqrt[n]{(1+\sqrt{3})^{n}+(\sqrt{5}-1)^{n}} as nn \to \infty.

See Solution

Problem 15574

Find the limit of an=n3n2+nn33n+1a_{n}=\sqrt{n^{3}-n^{2}+n}-\sqrt{n^{3}-3 n+1} as nn approaches infinity.

See Solution

Problem 15575

A cup of coffee cools from 205F205^{\circ} \mathrm{F} to 195F195^{\circ} \mathrm{F} in 10 min. When will it reach 180F180^{\circ} \mathrm{F}? A. 15 min B. 45 min C. 27 min D. 1 hour

See Solution

Problem 15576

Find the decay constant kk for plutonium-240 with a half-life of 6,300 years using Q(t)=Q0ektQ(t)=Q_{0} e^{-k t}.

See Solution

Problem 15577

Earth's population model is P(t)=641+11e0.08tP(t)=\frac{64}{1+11 e^{-0.08 t}}. Which statements are true? A. Exponential growth B. 64 billion capacity C. 1990: 5.33 billion D. 8% annual increase.

See Solution

Problem 15578

Calculate the limit: limn(1+π2n+1)2n\lim _{n \rightarrow \infty}\left(1+\frac{\pi}{2^{n+1}}\right)^{2^{n}}.

See Solution

Problem 15579

Evaluate the limit as (x, y) approaches (4, 12): lim(x,y)(4,12)x+y4x+y16\lim _{(x, y) \rightarrow(4,12)} \frac{\sqrt{x+y}-4}{x+y-16}

See Solution

Problem 15580

Klimaanlage ausgefallen: T(t)=2004+60,1t+1T(t)=\frac{200}{4+\frac{6}{0,1 t+1}}. a) Temperatur zu Beginn? b) Nach 60 Minuten? c) Grenztemperatur?

See Solution

Problem 15581

Evaluate the integral: 4sin6(x)cos(x)dx=\int 4 \sin^{6}(x) \cos(x) \, dx =

See Solution

Problem 15582

Find the limit: limx+x2ex\lim _{x \rightarrow+\infty} x^{2} \cdot e^{x}.

See Solution

Problem 15583

Evaluate the integral sec(u)tan(u)du2\int \sec (u) \tan (u) \frac{du}{2}, where u=2xu=2x.

See Solution

Problem 15584

Find the integral xx265dx\int x \cdot \sqrt[5]{x^{2}-6} dx using u-substitution: u=u=\square, du=dxdu=\square dx. Rewrite as du\int \square du.

See Solution

Problem 15585

Find the limits:
1) limx5x225x5\lim_{x \rightarrow 5} \frac{x^{2}-25}{x-5}
2) limx33x227x3\lim_{x \rightarrow 3} \frac{3x^{2}-27}{x-3}
3) limx4x216x4\lim_{x \rightarrow 4} \frac{x^{2}-16}{x-4}
4) limx1x3xx+1\lim_{x \rightarrow -1} \frac{x^{3}-x}{x+1}

See Solution

Problem 15586

Check if Rolle's Theorem applies to g(x)=x3+2x215x36g(x)=x^{3}+2 x^{2}-15 x-36 on [3,4][-3,4] and find any guaranteed points.

See Solution

Problem 15587

Find the time tt when the drug concentration C(t)=0.9tt2+18C(t)=\frac{0.9 t}{t^{2}+18} is maximum, accurate to 2 decimal places. Also, find the max concentration in μgml\frac{\mu g}{m l}.

See Solution

Problem 15588

Find the time tt when the drug concentration C(t)=0.2tt2+29C(t)=\frac{0.2 t}{t^{2}+29} is maximum and the max concentration in μgml\frac{\mu g}{m l}.

See Solution

Problem 15589

Untersuchen Sie die Funktionen auf Extremalpunkte und skizzieren Sie deren Graphen: a) f(x)=2x2+3x5f(x)=2 x^{2}+3 x-5 b) f(x)=13x3+12x23xf(x)=\frac{1}{3} x^{3}+\frac{1}{2} x^{2}-3 x c) f(x)=14x32f(x)=\frac{1}{4} x^{3}-2

See Solution

Problem 15590

Calculate the integral 0362sinxdx\int_{0}^{362} \sin x \, dx.

See Solution

Problem 15591

Check if the Mean Value Theorem applies to f(x)=x5f(x)=|x-5| on [5,11][-5,11] and find the guaranteed point(s).

See Solution

Problem 15592

Find the volume change rate when the radius is 2.4 inches, expanding at 0.2 in/s. Round to the nearest hundredth.

See Solution

Problem 15593

A snowball's radius decreases at 0.3 cm/min0.3 \mathrm{~cm/min}. Find the volume decrease rate when the radius is 15 cm15 \mathrm{~cm}. cm3 min\frac{\mathrm{cm}^{3}}{\mathrm{~min}}

See Solution

Problem 15594

A snowball's radius decreases at 0.2 cm/min0.2 \mathrm{~cm/min}. Find the volume decrease rate when the radius is 11 cm11 \mathrm{~cm}. cm3min\frac{\mathrm{cm}^{3}}{\min }

See Solution

Problem 15595

Check if the Mean Value Theorem applies to f(x)=3x2f(x)=-3-x^{2} on [2,1][-2,1] and find the guaranteed point(s).

See Solution

Problem 15596

Find dxdt\frac{d x}{d t} when 103=3xy+y2+x4103=3xy+y^{2}+x^{4}, dydt=3\frac{d y}{d t}=3, x=3x=-3, y=2y=-2.

See Solution

Problem 15597

Gegeben ist die Funktion ff mit f(x)=3x2+xf(x)=3 x^{2}+x. Beantworte die Fragen: a) Ableitung von ff bei 3-3. b) Finde x0x_{0} für f(x0)=2f\left(x_{0}\right)=-2. c) Wo hat ff die Steigung 13? d) Wo ist die Tangente parallel zu y=5x+3y=-5 x+3?

See Solution

Problem 15598

a. Find dimensions of a rectangular pen with 400 m of fencing to maximize area against a barn. b. Determine dimensions of four adjacent pens (each 100 m²) to minimize fencing against a barn.

See Solution

Problem 15599

Evaluate the integral x3(x44)4dx\int \frac{x^{3}}{\left(x^{4}-4\right)^{4}} d x using the substitution u=u=\square and du=dxd u=\square d x.

See Solution

Problem 15600

Find dxdt\frac{d x}{d t} given the equation 4xy+x4+y3=97-4xy + x^4 + y^3 = 97, with x=3x=3, y=2y=-2, and dydt=4\frac{d y}{d t}=-4.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord