Calculus
Problem 15503
Find the tangent equations to at points where . Verify with a graphing calculator.
See SolutionProblem 15504
Explain the indeterminate form with examples for limits of functions as approaches a.
See SolutionProblem 15505
Find the area of region bounded by , the -axis, and line where . Show and .
See SolutionProblem 15506
Estimate the sum of the series using the alternating series theorem with error < 0.0001.
See SolutionProblem 15507
Explain how to use l'Hôpital's Rule for limits like . Choose the correct answer: A, E, E, or 2.
See SolutionProblem 15515
2. L'azote et l'hydrogène forment l'ammoniac avec .
a) Trouvez et .
b) Calculez la variation de sur .
c) Taux de variation moyen sur :
(i)
(ii)
d) Évaluez et interprétez.
e) Trouvez la fonction du rythme de variation de .
f) Évaluez :
(i)
(ii)
See SolutionProblem 15521
AGNs convert energy into radiation via efficiency .
a) Derive luminosity for mass and rate .
b) Does depend on ?
c) Explain need for massive black holes in galaxies.
d) If and , estimate in (M⊙/yr).
See SolutionProblem 15526
Find the -coordinates where the tangent to is parallel to . Is there a positive -coordinate?
See SolutionProblem 15530
Find the -intercepts of the curve with slope that passes through the origin.
See SolutionProblem 15533
Find and interpret the marginal revenue for the demand equation at , , and . What is ?
See SolutionProblem 15538
Find the intervals where the function is increasing, decreasing, concave up, and concave down.
See SolutionProblem 15539
Find transition points for : local max, min, inflection, increase/decrease/concavity intervals, and horizontal asymptotes.
See SolutionProblem 15540
Find transition points for in . Identify local minima, maxima, and inflection points.
See SolutionProblem 15541
Find the critical points of the function using calculus methods. Show your work.
See SolutionProblem 15542
Find the absolute max and min of on using the Closed Interval Method. Show your work.
See SolutionProblem 15545
Find the first and second derivatives of the logistic function . Determine horizontal asymptotes, intervals of increase/decrease, and inflection points.
See SolutionProblem 15548
Given the logistic function , find , , horizontal asymptotes, intervals of increase/decrease, and inflection points.
See SolutionProblem 15550
Analyze the function . Find intervals for increasing, decreasing, concave up, and concave down. Identify asymptotes.
See SolutionProblem 15552
Find when the drug concentration is maximized. Round to two decimal places: h.
See SolutionProblem 15554
A box has a square base and height .
(a) Find for volume 11 and minimum surface area.
(b) Find for surface area 13 and maximum volume.
See SolutionProblem 15556
Find the point on the graph of where the tangent slope is minimized. Answer as .
See SolutionProblem 15560
A cylinder's radius grows at 5 ft/min with a constant volume of 77 ft³. When the radius is 4 ft, find the height's rate of change. Use and round to three decimal places.
See SolutionProblem 15561
Find the resistance for and its error bound. What is the max uncertainty in for < 1.2%?
See SolutionProblem 15562
Tim threw a ball to point , 10 m from shore at point , 15 m from point . Find distance where Elvis entered water to minimize time.
See SolutionProblem 15566
Maximize for a rectangle in a circle of radius . Find dimensions and in terms of .
See SolutionProblem 15567
Estimate the average fuel consumption (mpg) from 1974 to 1987 using the Trapezoidal Rule on the points to . Round to two decimal places.
See SolutionProblem 15568
Find the critical point of and classify it using the second derivative test.
See SolutionProblem 15569
Find the rate of change of resistance with respect to radius when . Then, find expected and error bound for . Lastly, determine max uncertainty in to keep uncertainty in below .
See SolutionProblem 15570
Find the critical point of and classify it using the second derivative test.
See SolutionProblem 15571
Find the volume of water in a hemispherical container with radius and water level . Then estimate uncertainties in with given uncertainties in and , and find the change in water depth for removed.
See SolutionProblem 15572
When is concave down on , what can we say about its rates of change in that interval? Choose the best answer: a) Increasing on b) Decreasing on c) Increasing on d) Decreasing on
See SolutionProblem 15575
A cup of coffee cools from to in 10 min. When will it reach ? A. 15 min B. 45 min C. 27 min D. 1 hour
See SolutionProblem 15576
Find the decay constant for plutonium-240 with a half-life of 6,300 years using .
See SolutionProblem 15577
Earth's population model is . Which statements are true? A. Exponential growth B. 64 billion capacity C. 1990: 5.33 billion D. 8% annual increase.
See SolutionProblem 15580
Klimaanlage ausgefallen: . a) Temperatur zu Beginn? b) Nach 60 Minuten? c) Grenztemperatur?
See SolutionProblem 15587
Find the time when the drug concentration is maximum, accurate to 2 decimal places. Also, find the max concentration in .
See SolutionProblem 15588
Find the time when the drug concentration is maximum and the max concentration in .
See SolutionProblem 15589
Untersuchen Sie die Funktionen auf Extremalpunkte und skizzieren Sie deren Graphen: a) b) c)
See SolutionProblem 15591
Check if the Mean Value Theorem applies to on and find the guaranteed point(s).
See SolutionProblem 15592
Find the volume change rate when the radius is 2.4 inches, expanding at 0.2 in/s. Round to the nearest hundredth.
See SolutionProblem 15593
A snowball's radius decreases at . Find the volume decrease rate when the radius is .
See SolutionProblem 15594
A snowball's radius decreases at . Find the volume decrease rate when the radius is .
See SolutionProblem 15595
Check if the Mean Value Theorem applies to on and find the guaranteed point(s).
See SolutionProblem 15597
Gegeben ist die Funktion mit . Beantworte die Fragen: a) Ableitung von bei . b) Finde für . c) Wo hat die Steigung 13? d) Wo ist die Tangente parallel zu ?
See SolutionProblem 15598
a. Find dimensions of a rectangular pen with 400 m of fencing to maximize area against a barn. b. Determine dimensions of four adjacent pens (each 100 m²) to minimize fencing against a barn.
See Solution123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337