Calculus

Problem 9501

Find the absolute extrema of f(x)=x3f(x)=\sqrt{x}-3 on the interval [0,9][0,9]. Give minimum and maximum points (x,y)(x, y).

See Solution

Problem 9502

Find the relationship between B(p)B(p), E(p)E(p), C(k)C(k), and T(p)T(p). Which expression estimates extra cookies sold with one more employee?

See Solution

Problem 9503

Check if Rolle's Theorem applies to f(x)=x348x6f(x)=x^{3}-48 x-6 on [4,8][-4,8]. Select all that apply. c=c=

See Solution

Problem 9504

Find the limit as xx approaches 0 for g(x)g(x), given 10x2+7x+8<g(x)<7x23x+810 x^{2}+7 x+8<g(x)<7 x^{2}-3 x+8.

See Solution

Problem 9505

Find the average rate of change of f(x)=4x28f(x)=4x^{2}-8 on [3,a][3, a]. Express your answer in terms of aa.

See Solution

Problem 9506

Find the limit as xx approaches 0 for g(x)g(x), given 9x2+5x+6<g(x)<9x28x+69 x^{2}+5 x+6<g(x)<9 x^{2}-8 x+6.

See Solution

Problem 9507

Find the tangent line of y=sinxy=\sin x at x=0x=0. Is it a good approximation for the curve near the origin? Approximate sin(0.2)\sin(0.2).

See Solution

Problem 9508

Find the linear approximation of f(x)=16+xf(x)=\frac{1}{\sqrt{6+x}} at x=0x=0.

See Solution

Problem 9509

Find the derivative of the function y=(5x32x2+8x6)ex3y=\left(5 x^{3}-2 x^{2}+8 x-6\right) e^{x^{3}}.

See Solution

Problem 9510

Estimate 4.7\sqrt{4.7} using linear approximation at a=4a=4.

See Solution

Problem 9511

Find the differential, dyd y, of the function y=f(x)=tan(4x2)y=f(x)=\tan(4x^{2}).

See Solution

Problem 9512

Find the derivative dydx\frac{dy}{dx} for the equation sinx+2cos(2y)=1\sin x + 2 \cos(2y) = 1.

See Solution

Problem 9513

Find the average rate of change of f(x)=2x23f(x)=2x^{2}-3 from x=1x=1 to x=ax=a. Express your answer in terms of aa.

See Solution

Problem 9514

Find dydx\frac{d y}{d x} if dydx[(4x)y2]=x3\frac{d y}{d x}[(4-x) \cdot y^{2}] = x^{3}.

See Solution

Problem 9515

Find the average value favef_{\text{ave}} of f(x,y)f(x, y) over region DD given Df(x,y)dA=1289\iint_{D} f(x, y) dA = \frac{128}{9} and area D=2πD = 2\pi.

See Solution

Problem 9516

Find the linear function for g(x)=secxg(x)=\sec x at x=π3x=\frac{\pi}{3}, approximate g(π30.01)g\left(\frac{\pi}{3}-0.01\right), and calculate the percent error.

See Solution

Problem 9517

Estimate 181/418^{1/4} using linear approximation, knowing (16)1/4=2(16)^{1/4}=2.

See Solution

Problem 9518

Find the differential dyd y for the function y=1+sinx4sinxy=\frac{1+\sin x}{4-\sin x}.

See Solution

Problem 9519

Find the derivative dy/dxd y / d x from the equation dydx[xey10x+3y]=0\frac{d y}{d x}\left[x e^{y}-10 x+3 y\right]=0.

See Solution

Problem 9520

Find the limit as xx approaches infinity for 9x4+1x23x+5\frac{\sqrt{9 x^{4}+1}}{x^{2}-3 x+5}.

See Solution

Problem 9521

What is the temperature of hot chocolate after 2 minutes in a freezer at 0°F if it starts at 190°F? Use k=0.12k=0.12.

See Solution

Problem 9522

Estimate paint needed for a sphere (diameter 12cms12 \mathrm{cms}) with a coat thickness of 1/6cms1 / 6 \mathrm{cms}.

See Solution

Problem 9523

Determine if these integrals converge or diverge: (a) edxx2lnx\int_{e}^{\infty} \frac{d x}{x^{2} \ln x}, (b) elnxxdx\int_{e}^{\infty} \frac{\ln x}{\sqrt{x}} d x.

See Solution

Problem 9524

Given the cost function C(x)=19600+500x+x2C(x)=19600+500 x+x^{2}, find:
a) Cost at x=1750x=1750 b) Average cost at x=1750x=1750 c) Marginal cost at x=1750x=1750 d) Production level minimizing average cost e) Minimal average cost

See Solution

Problem 9525

Find the linearization of f(x)=2cosxf(x) = 2 \cos x at x=π4x = -\frac{\pi}{4}.

See Solution

Problem 9526

Estimate the increase in hamburgers sold when advertising spending goes from \14to$14.70,using14 to \$14.70, using N=1200+210x-5x^2$.

See Solution

Problem 9527

Find the linear approximation of f(x)=2cosxf(x)=2 \cos x at x=π/4x=-\pi / 4.

See Solution

Problem 9528

Find critical points of f(x)=x(2x)4f(x)=x(2-x)^{4}.

See Solution

Problem 9529

Find the instantaneous rate of change of f(x)=x2f(x)=\sqrt{x-2} at x=2x=2 using the limit as hh approaches 00.

See Solution

Problem 9530

Find the derivative of the function f(x)=x3f(x)=x^{3} using the limit definition of a derivative. No need to simplify.

See Solution

Problem 9531

Find the critical points of the function f(x)=x(2x)3/5f(x)=x(2-x)^{3/5}.

See Solution

Problem 9532

Find the derivative of f(x)=5x5f(x)=5 x^{5} using the limit: limh0\lim _{h \rightarrow 0}. No need to simplify.

See Solution

Problem 9533

Find the limit: limx0x2+π2πx2\lim _{x \rightarrow 0} \frac{\sqrt{x^{2}+\pi^{2}}-\pi}{x^{2}}. Options: 0, 1π\frac{1}{\pi}, does not exist, 12π\frac{1}{2 \pi}.

See Solution

Problem 9534

Find the derivative of f(x)=3cosxf(x)=3 \cos x at x=πx=\pi using the limit definition: f(x)=limh0f(x+h)f(x)hf'(x) = \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}.

See Solution

Problem 9535

Find values of aa and bb so that limx2(ax2)(x+b)x2x2\lim _{x \rightarrow 2} \frac{(a x-2)(x+b)}{x^{2}-x-2} exists.

See Solution

Problem 9536

Approximate the zero of ff using the tangent line at x=2x=-2 given f(2)=1f(-2)=1 and f1(2)=5f^{-1}(-2)=5. Choices: A) -0.3 B) -2.6 C) -2.2 D) -2.4

See Solution

Problem 9537

Find the limit: limx(2x5)3(3x1)2(2x1)2(3x5)3\lim _{x \rightarrow \infty} \frac{(2 x-5)^{3}(3 x-1)^{2}}{(2 x-1)^{2}(3 x-5)^{3}}. Options: A) 1, E) 35\frac{3}{5}, I) 23\frac{2}{3}, U) does not exist.

See Solution

Problem 9538

Find the limit: limx2x+cosxx2+sinx\lim _{x \rightarrow-\infty} \frac{2^{x}+\cos x}{x^{2}+\sin x}. What is the value?

See Solution

Problem 9539

Find the critical points of f(x)=sin2x+3cosxf(x)=\sin ^{2} x+\sqrt{3} \cos x in the interval (π/2,π/2)(-\pi / 2, \pi / 2).

See Solution

Problem 9540

Find the dimensions of a box with volume 62500 cm362500 \mathrm{~cm}^{3} that minimizes surface area.
1. Surface area formula: A(x)=...A(x)=...
2. Derivative: A(x)=...A^{\prime}(x)=...
3. Set A(x)=0A^{\prime}(x)=0: x=...x=...
4. Second derivative: A(x)=...A^{\prime \prime}(x)=...
5. Evaluate A(x)A^{\prime \prime}(x) at the xx from step 3.

See Solution

Problem 9541

Find the derivative of the function f(x)=x1x23f(x)=x \sqrt{1-x^{2}}-3 on the interval [1,1][-1,1].

See Solution

Problem 9542

Sketch a function ff with these properties:
1. f>0f' > 0, f<0f'' < 0 for x<6x < -6
2. f>0f' > 0, f>0f'' > 0 for 6<x<4-6 < x < -4
3. f>0f' > 0, f<0f'' < 0 for 4<x<2-4 < x < 2
4. f<0f' < 0, f<0f'' < 0 for 2<x<42 < x < 4
5. f<0f' < 0, f>0f'' > 0 for x>4x > 4

See Solution

Problem 9543

Find the derivative of the function h(x)=8x2xh(x)=8^{x^{2}-x}. What is h(x)=?h^{\prime}(x)=?

See Solution

Problem 9544

Find the dimensions of a box with volume 237276 cm3237276 \mathrm{~cm}^{3} that minimizes surface area.
1. Surface area formula: A(x)=...A(x)=...
2. Derivative: A(x)=...A^{\prime}(x)=...
3. Solve A(x)=0A^{\prime}(x)=0 for x=...x=...
4. Second derivative: A(x)=...A^{\prime \prime}(x)=... and evaluate at found xx.

See Solution

Problem 9545

Find the absolute maximum of f(x)=6+2xx2+16f(x)=\frac{6+2x}{x^{2}+16} on the interval [2,4][-2,4].

See Solution

Problem 9546

Find dimensions of an open-top box with volume 219488 cm3219488 \mathrm{~cm}^{3} that minimizes surface area.
1. Surface area formula: A(x)=x2+4219488xA(x)=x^{2}+4 \cdot \frac{219488}{x}.
2. Derivative: A(x)=2x4219488x2A^{\prime}(x)=2 \cdot x-4 \cdot \frac{219488}{x^{2}}.
3. Solve A(x)=0A^{\prime}(x)=0 for xx.
4. Find A(x)A^{\prime \prime}(x) for the second derivative test.

See Solution

Problem 9547

Find the maximum product y=x(50x)y = x(50 - x) for positive xx such that x+(50x)=50x + (50 - x) = 50.

See Solution

Problem 9548

Find the average price p(8)p(8) and rate of change p(8)p'(8) of a two-bedroom apartment from 1994 to 2004 using p(t)=0.16e0.10tp(t)=0.16 e^{0.10 t}.

See Solution

Problem 9549

Find the day tt (1 ≤ tt ≤ 50) when the maximum growth rate of car sales N(t)=2000+54t2t3N(t) = 2000 + 54t^2 - t^3 happens.

See Solution

Problem 9550

Given the profit function P(x)=1.5x2+1075x7500P(x)=-1.5 x^{2}+1075 x-7500, find:
a) Profit for 80 units. b) Average profit per unit for 80 units. c) Rate of profit change at 80 units. d) Average profit change from 80 to 160 units. e) Units sold when profit stops increasing.

See Solution

Problem 9551

Find the cylinder dimensions for a 550 cm³ soup cup that minimize costs: sides at 0.04¢/cm², top at 0.06¢/cm².

See Solution

Problem 9552

Find the maximum value of f(x)=5+4sin(x)cos(x)f(x)=5+4 \sin (x) \cos (x) on the interval [0,π][0, \pi].

See Solution

Problem 9553

Check if Rolle's Theorem applies to f(x)=x23x18x3f(x)=\frac{x^{2}-3 x-18}{x-3} on [3,6][-3,6] and find all cc that satisfy it.

See Solution

Problem 9554

Check if f(x)=x12xf(x)=x \sqrt{12-x} meets Rolle's Theorem on [0,12][0,12] and find all cc that satisfy its conclusion.

See Solution

Problem 9555

Cut squares of side length xx from a 32 in x 32 in cardboard to make an open-top box. Find V(x)V(x) and max volume.

See Solution

Problem 9556

What is the maximum speed limit Fred can set to catch Natalie speeding on her 30-mile trip to Wal-Mart in under 42 minutes? Use the MVT.

See Solution

Problem 9557

Bestimmen Sie mit der zweiten Ableitung die Intervalle für Links- und Rechtskurven der Funktionen: a) f(x)=320x52x3+xf(x)=\frac{3}{20} x^{5}-2 x^{3}+x b) f(x)=14x4+3x32f(x)=\frac{1}{4} x^{4}+3 x^{3}-2 c) f(x)=x42x3f(x)=x^{4}-2 x^{3} Analysieren Sie den Graphen von ff^{\prime}.

See Solution

Problem 9558

Maximize the area of a rectangular corral with 200 ft of fencing for 2 equal pens. Use 2l+3w=2002l + 3w = 200.

See Solution

Problem 9559

Find the derivative of f(x)=sin2(x)cos(x)f(x)=\sin ^{2}(x)-\cos (x) on [0,2π][0,2 \pi] and all critical points in (0,2π)(0,2 \pi).

See Solution

Problem 9560

Gegeben sind f(x)=0,5x2+2f(x)=0,5 x^{2}+2 und g(x)=x22x+2g(x)=x^{2}-2 x+2. Finde Extremwerte der Summe und Differenz in x[0;4]x \in [0; 4].

See Solution

Problem 9561

Gegeben sind f(x)=0,5x2+2f(x)=0,5 x^{2}+2 und g(x)=x22x+2g(x)=x^{2}-2 x+2. Finde x[0;4]x \in [0; 4] für max/min der Summe und Differenz von ff und gg.

See Solution

Problem 9562

Untersuche die Funktion f1(x)=(x+1)exf_{1}(x)=(x+1) \cdot e^{-x} auf Nullstellen, Extrempunkte und Wendepunkte. Finde die Gleichung für Wendepunkte der Funktionenschar.

See Solution

Problem 9563

Find a variable change to transform the Ricker model dNdt=rNeβN\frac{d N}{d t}=r N e^{-\beta N} into dndτ=nen\frac{d n}{d \tau}=n e^{-n}.

See Solution

Problem 9564

Gegeben ist die Funktion y=f1(x)=(x+1t)etxy=f_{1}(x)=\left(x+\frac{1}{t}\right) \cdot e^{-t x}.
a) Untersuchen Sie Nullstellen, Extrempunkte und Wendepunkte. b) Finden Sie die Gleichung für Wendepunkte. c) Zeichnen Sie f1f_{-1} und f0,5f_{0,5}. d) Berechnen Sie die Fläche A(k)A(k) für k>0k>0 und limkA(k)\lim_{k \rightarrow \infty} A(k).

See Solution

Problem 9565

Gegeben sind f(x)=0,5x2+2f(x)=0,5 x^{2}+2 und g(x)=x22x+2g(x)=x^{2}-2 x+2. Finde Maxima/Minima der Summe und Differenz in x[0;4]x \in[0; 4].

See Solution

Problem 9566

If 10000 zlotych is invested at an 8%8\% continuous interest rate, what is the average annual income for 5 and 20 years?

See Solution

Problem 9567

Berechne die Fläche A(k) zwischen der Funktion f0,5f_{0,5}, den Achsen und der Linie x=kx=k. Bestimme limkA(k)\lim_{k \rightarrow \infty} A(k).

See Solution

Problem 9568

Explain how to use l'Hôpital's Rule for limits of the form 00\frac{0}{0}. Choose the correct method: A, B, C, or D.

See Solution

Problem 9569

How to change a limit 00 \cdot \infty to 0/00 / 0 or /\infty / \infty? Choose the correct option from A, B, C, D.

See Solution

Problem 9570

Find the derivative of y=5x(x31)4y=5x(x^{3}-1)^{4}.

See Solution

Problem 9571

Evaluate the limit: limxπ2tanx(42xπ)\lim _{x \rightarrow \frac{\pi}{2}^{-}} \frac{\tan x}{\left(\frac{4}{2 x-\pi}\right)} using l'Hôpital's Rule.

See Solution

Problem 9572

Solve the integral 1k(x2)dx=32\int_{1}^{k}(x-2) d x=\frac{3}{2} for the variable kk.

See Solution

Problem 9573

Convert the limit limx1(x1)tan(πx2)\lim _{x \rightarrow 1-}(x-1) \tan \left(\frac{\pi x}{2}\right) from 00 \cdot \infty to 00\frac{0}{0} and evaluate it.

See Solution

Problem 9574

Find a+ba + b for the function f(x)={ax3+2,x<12;bx2+1,x12}f(x) = \{ a x^3 + 2, x < \frac{1}{2}; b x^2 + 1, x \geq \frac{1}{2} \} if it's differentiable at x=12x = \frac{1}{2}.

See Solution

Problem 9575

Find the derivative of y=3x2ln(3x+1)y = 3x^{2} \ln(3x+1).

See Solution

Problem 9576

Leiten Sie die Funktion ff ab: a) f(x)=xsin(x)f(x)=x \cdot \sin (x) b) f(x)=3xcos(x)f(x)=3 x \cdot \cos (x) c) f(x)=(3x+2)xf(x)=(3 x+2) \cdot \sqrt{x}

See Solution

Problem 9577

Convert a limit of the form 00 \cdot \infty to 0/00 / 0 or /\infty / \infty. Choose the correct option below.

See Solution

Problem 9578

Gegeben ist f(x)=x2+2axf(x)=-x^{2}+2 a x mit Nullstellen 0 und 2a2 a. a) Flächeninhalt ist 43a3\frac{4}{3} a^{3}. b) Bestimme aa für Quadratfläche gleich Flächeninhalt.

See Solution

Problem 9579

Find the derivative of y=3x22x+1y=3 x^{2}-2 x+1. What is dydx\frac{d y}{d x}?

See Solution

Problem 9580

Find the derivative of y=12x3+3x+xy=\frac{1}{2} x^{3}+3 x+\sqrt{x}.

See Solution

Problem 9581

Find the derivative of y=4x72x+3y=-4 x^{-7}-2 x+\sqrt{3}. What is dydx\frac{d y}{d x}?

See Solution

Problem 9582

Determine the horizontal asymptotes for these functions:
1. y=x103x2+x+1y=\frac{x-10}{3 x^{2}+x+1}
2. y=x2103x2+x+1y=\frac{x^{2}-10}{3 x^{2}+x+1}

See Solution

Problem 9583

Find the marginal cost function C(z)C'(z) for the total cost C(z)=2z2+25z100C(z)=2 z^{2}+25 z-100. Choose the correct option.

See Solution

Problem 9584

Find the marginal cost function C(z)C'(z) for the total cost C(z)=2z2+25z100C(z)=2z^2+25z-100. Choose the correct option.

See Solution

Problem 9585

Calculate the limit: =14(12limxπ2(sec2(x)(2xπ)2))=\frac{1}{4}\left(-\frac{1}{2} \cdot \lim _{x \rightarrow \frac{\pi}{2}-}\left(\sec ^{2}(x)(2 x-\pi)^{2}\right)\right)

See Solution

Problem 9586

Calculate the limit: =14(12limxπ2(sec2(x)(2xπ)2))=\frac{1}{4}\left(-\frac{1}{2} \cdot \lim _{x \rightarrow \frac{\pi}{2}-}\left(\sec ^{2}(x)(2 x-\pi)^{2}\right)\right).

See Solution

Problem 9587

Differentiate f(x)=2xf(x)=2^{x} using logarithmic differentiation. Find f(x)f^{\prime}(x) from ln(f(x))=xln2\ln(f(x))=x \ln 2.

See Solution

Problem 9588

Evaluate the expression: =14(12limxπ2(sec2(x)(2xπ)2))=\frac{1}{4}\left(-\frac{1}{2} \cdot \lim _{x \rightarrow \frac{\pi}{2}}\left(\sec ^{2}(x)(2 x-\pi)^{2}\right)\right).

See Solution

Problem 9589

Differentiate the function f(x)=xxf(x) = x^x using logarithmic differentiation.

See Solution

Problem 9590

Find the derivative of g(t)=csc(t)sin(t)+tan(t)g(t)=\csc(t)-\sin(t)+\tan(t).

See Solution

Problem 9591

A particle is launched at 12 ms112 \mathrm{~ms}^{-1} on an incline with 5 ms25 \mathrm{~ms}^{-2} down. Find time for displacement > 8 m.

See Solution

Problem 9592

Find the derivative of the function y=2exsin(x)y=2e^x\sin(x).

See Solution

Problem 9593

Bestimme die Tangente an die Wendepunkte der Funktion f(x)=16x334x2+2f(x)=\frac{1}{6} x^{3}-\frac{3}{4} x^{2}+2.

See Solution

Problem 9594

Bestimme den Grenzwert limx42x232x4\lim _{x \rightarrow 4} \frac{2 x^{2}-32}{x-4} durch Umformung oder die h-Methode.

See Solution

Problem 9595

Find critical points of f(x)=xex2f(x)=x \mathrm{e}^{-x^{2}} and analyze their nature using the first and second derivatives.

See Solution

Problem 9596

Find a formula for the nthn^{\text{th}} derivative of f(x)=x2exf(x)=\frac{x}{2 e^{x}} and compute f(12345)(0)f^{(12345)}(0).

See Solution

Problem 9597

Find the velocity of a particle at t=4t=4 seconds given s(t)=9t2+3s(t)=9 t^{2}+3. What is v(4)v(4) in feet per second?

See Solution

Problem 9598

Analyze the function f(x)=xnf(x) = x^n as xx approaches \infty or -\infty for even and odd nn. Explain the behavior.

See Solution

Problem 9599

Find the velocity of a particle at t=6t=6 seconds given s(t)=3t2+41ts(t)=3 t^{2}+41 t.

See Solution

Problem 9600

Design a rectangular container with a square base and volume 2673ft32673 \mathrm{ft}^{3}. Minimize cost given material prices: top \$8/ft², sides \$3/ft², bottom \$14/ft². Find dimensions.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord