Calculus

Problem 7301

Find the max and min of g(θ)=5θ7sin(θ)g(\theta)=5 \theta-7 \sin (\theta) on [0,π][0, \pi]. Min value =, Max value =.

See Solution

Problem 7302

A 6-ft person walks from a 10-ft lamppost at 3 ft/sec. Find the shadow's tip speed when the person is 10 ft away.

See Solution

Problem 7303

Differentiate d(r2v)=Cd(r^{2}v) = C using the product rule, where rr is radius, vv is velocity, and CC is constant.

See Solution

Problem 7304

Find local extrema of f(x)=2x330x2+126x+3f(x)=2x^3-30x^2+126x+3. Identify xx values for min/max and their corresponding f(x)f(x) values.

See Solution

Problem 7305

Bestimmen Sie die Ableitung der Funktion f(x)=13x6+x4xf(x) = \frac{1}{3} x^{6} + x^{4} - x.

See Solution

Problem 7306

Bestimmen Sie die Ableitung von f(x)=3(2x+5)3f(x) = 3(-2x+5)^{3}.

See Solution

Problem 7307

Find the velocity of a ball dropped from 210 m210 \mathrm{~m} when it hits the ground using g=9.8 m/s2g=9.8 \mathrm{~m/s}^2. Round to three decimal places. v v \approx

See Solution

Problem 7308

Bestimme die erste Ableitung der Funktion f(x)=9x2f(x)=\frac{9}{x^{2}}.

See Solution

Problem 7309

Bestimmen Sie die Ableitung von f(x)=4x+2f(x)=\sqrt{-4 x+2}.

See Solution

Problem 7310

Find the critical number AA for the function f(x)=3x2+2x8f(x)=-3x^2+2x-8. Is it a local min, max, or neither? Answer: LMIN, LMAX, or NEITHER.

See Solution

Problem 7311

Find θ(t)\theta^{\prime}(t), the rate of change of the angle between clock hands, at 9 o'clock in rad/min\mathrm{rad} / \mathrm{min}.

See Solution

Problem 7312

A cone with height 16 ft and radius 5 ft leaks water at 10 ft³/min. Find the water depth change rate when it's 10 ft high.

See Solution

Problem 7313

Determine the critical numbers of f(x)=12x545x4+20x3+1f(x)=-12 x^{5}-45 x^{4}+20 x^{3}+1 and classify them with a graph.

See Solution

Problem 7314

Determine the absolute min and max of f(x)=2x3+12x2126x+1f(x)=2x^3 + 12x^2 - 126x + 1 for 7x4-7 \leq x \leq 4.

See Solution

Problem 7315

Find the rate of change of the base of a triangle when the altitude is 12 cm and area is 83 cm², given specific rates.

See Solution

Problem 7316

Show that the derivative of axa^{x} is axln(a)a^{x} \ln(a), where aa is a constant.

See Solution

Problem 7317

Plot the line segment between f(2)f(2) and f(5)f(5), then find all cc in [2,5][2, 5] satisfying the Mean Value Theorem for ff.

See Solution

Problem 7318

Finde die Tangente an f(x)=2x2f(x)=2 x^{-2} bei x0=3x_0=3.

See Solution

Problem 7319

Bestimmen Sie die Tangente an f(x)=x4f(x)=x^{4} bei P0(0,5)P_{0}(0,5).

See Solution

Problem 7320

Given the growth law dMdt=CM3/4\frac{d M}{d t}=C M^{3 / 4}, find the growth rate at M=175 kgM=175 \mathrm{~kg} and the mass needed to double growth from M=0.2 kgM=0.2 \mathrm{~kg}.

See Solution

Problem 7321

Estimate the increase in metabolic rate PP when body mass increases from 78 kg to 79 kg using P=73.3m3/4P=73.3 m^{3/4}. Round to three decimal places.

See Solution

Problem 7322

Find the tangent line equation for f(x)=16excos2(x)f(x)=16 e^{x} \cos^{2}(x) at x=π4x=\frac{\pi}{4}. Express as yy and xx.

See Solution

Problem 7323

Estimate the increase in metabolic rate PP when body mass mm changes from 78 kg to 79 kg using P=73.3m3/4P=73.3 m^{3/4}.

See Solution

Problem 7324

Find the second and third derivatives of y=5etsin(t)y=5 e^{t} \sin(t).
y= y^{\prime \prime}= y= y^{\prime \prime \prime}=

See Solution

Problem 7325

Find dBdI\frac{d B}{d I} for B=kI2/3B=k I^{2/3} and dHdW\frac{d H}{d W} for H=kW3/2H=k W^{3/2}.

See Solution

Problem 7326

Jan pedals on a stationary bike, modeled by h(t)=0.17sin(t)+0.25h(t)=-0.17 \sin (t)+0.25. Find the vertical velocity vv at t=3πt=3 \pi.

See Solution

Problem 7327

Finde Werte für a, damit der Graph GfaG_{f_{a}} rechtsgekrümmt ist für: a) fa(x)=a(2x3)4f_{a}(x)=a \cdot(2 x-3)^{4}, b) fa(x)=a2x(x0)f_{a}(x)=\sqrt{a^{2} x}(x \geq 0), c) fa(x)=ax2(x0)f_{a}(x)=\frac{a}{x^{2}}(x \neq 0). Gib ein Gegenbeispiel für: ff^{\prime} streng monoton wachsend f\Rightarrow f streng monoton wachsend.

See Solution

Problem 7328

Find the second derivative of 16cos2(t)16 \cos^2(t). Calculate d2dt216cos2(t)\frac{d^{2}}{d t^{2}} 16 \cos ^{2}(t).

See Solution

Problem 7329

A hiker walks 8 miles in 4 hours. Find her instantaneous velocity at 2.1 hours using s(t)=332t4t3+3t2s(t)=\frac{3}{32} t^{4}-t^{3}+3 t^{2}. Round to three decimal places.

See Solution

Problem 7330

Bestimmen Sie die Tangente an f(x)=1xx3f(x)=\frac{1}{x}-x^{3} im Punkt P0 (5f(5)5|f(5)).

See Solution

Problem 7331

Bestimmen Sie die Tangentengleichung von f(x)=3e2x+2f(x)=3 \cdot e^{2 x+2} am Punkt (-1/3).

See Solution

Problem 7332

Bestimme die Tangente an f(x)=2x33x2f(x)=2 x^{3}-3 x^{-2} im Punkt P0(2f(2))P_0(2 | f(2)).

See Solution

Problem 7333

Berechne die Fläche unter f(x)=xln(0,1x)f(x)=-x \cdot \ln(0,1x) von 0 bis 10 mit Produktintegration. Finde g(x)g'(x), g(x)g(x), h(x)h(x), h(x)h'(x) und berechne 010(xln(0,1x))dx\int_{0}^{10}(-x \cdot \ln(0,1 x)) dx. Bestimme schließlich 2010(xln(0,1x))dx2 \cdot \int_{0}^{10}(-x \cdot \ln(0,1 x)) dx.

See Solution

Problem 7334

Bestimme g(x)g^{\prime}(x) und h(x)h(x) für die folgenden Integrale: a) ab(cos(x)x)dx\int_{a}^{b}(\cos (x) \cdot x) d x b) ab(x2ln(x))dx\int_{a}^{b}\left(x^{2} \cdot \ln (x)\right) d x c) ab(e2xx)dx\int_{a}^{b}\left(-e^{2 x} \cdot x\right) d x d) ab(3xsin(2x3))dx\int_{a}^{b}(3 x \cdot \sin (2 x-3)) d x

See Solution

Problem 7335

Gegeben ist die Funktion fa(x)=aea+xf_{a}(x)=a \cdot e^{a+x}. a) Zeigen Sie, dass die Tangente tat_{a} die Gleichung y˙=aea1x+2aea1\dot{y}=a \cdot e^{a-1} \cdot x+2 \cdot a \cdot e^{a-1} hat. b) Bestimmen Sie den Flächeninhalt des Dreiecks, das tat_{a} und die Achsen einschließt.

See Solution

Problem 7336

Zeichne die Tangente von f(x)=2x1f(x)=-2 x^{-1} bei x=1x=-1 und schätze die Steigung in diesem Punkt.

See Solution

Problem 7337

Approximate the zero of the differentiable function ff using its tangent line at x=2x=-2 given f(2)=1f(-2)=1 and f(2)=5f'(-2)=5. What is the approximation? D) -2.4

See Solution

Problem 7338

Calcule o limite da indeterminação quando xx tende a -\infty: limxx212x+3\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}-1}}{2 x+3}

See Solution

Problem 7339

Ein Auto beschleunigt mit aa in \left.\frac{m}{s^{2}}\right. a) Geschwindigkeit nach 2s und 5s bei a=3a=3. b) Zeit für 0 auf 5050 und 100kmh100 \frac{\mathrm{km}}{\mathrm{h}} bei a=3a=3. c) Geschwindigkeit für allgemeines aa.

See Solution

Problem 7340

Find the IROC of 3x3+2x219x+63 x^{3}+2 x^{2}-19 x+6 at the point (3,12)(3,12).

See Solution

Problem 7341

Bestimmen Sie die Extrem- und Wendepunkte der Funktion f(x)=13x3+12x26x+1f(x)=\frac{1}{3} x^{3}+\frac{1}{2} x^{2}-6 x+1.

See Solution

Problem 7342

Find the limit: limx23x64x2\lim _{x \rightarrow 2} \frac{3 x-6}{4-x^{2}}.

See Solution

Problem 7343

Find the maximum slope of the tangent line to the graph of f(x)=3x22x3f(x)=3x^2-2x^3. Options: A) 32\frac{3}{2} B) 34\frac{3}{4} C) 92\frac{9}{2} D) 12\frac{1}{2}

See Solution

Problem 7344

Find the value of the integral dx2+cos2x\int \frac{d x}{2+\cos 2 x} and identify the correct expression among the options.

See Solution

Problem 7345

Bestimmen Sie den Grenzwert der Folge an=2+1na_{n}=2+\frac{1}{n} und zeigen Sie die Schritte zur Berechnung.

See Solution

Problem 7346

Gegeben ist die Funktion f(x)=19(3x+2)3f(x)=\frac{1}{9}(3 x+2)^{3}. Finde die Steigung bei P(2f(2))P(2 \mid f(2)), prüfe waagerechte Tangenten und Punkte mit 4545^{\circ} Steigungswinkel.

See Solution

Problem 7347

Bestimmen Sie den Grenzwert der Sequenz an=32n2na_{n}=\frac{3-2 n}{2 n} und erläutern Sie den Lösungsweg.

See Solution

Problem 7348

Find the critical points (min, max, inflection) of g(z)=32(e2z+4e3z)8g(z)=32(e^{2z}+4e^{-3z})^8.

See Solution

Problem 7349

Find the critical points of F(t)=13t33.5t2+10t+21F(t)=\frac{1}{3} t^{3}-3.5 t^{2}+10 t+21 and classify the smaller one, t1t_1.

See Solution

Problem 7350

Find the smaller critical point, t1t_1, of F(t)=13t36.5t2+30t+26F(t)=\frac{1}{3} t^{3}-6.5 t^{2}+30 t+26 and classify it as max, min, or inflection.

See Solution

Problem 7351

Find the smaller critical point t1t_1 of F(t)=13t35t2+16t+21F(t) = \frac{1}{3} t^{3}-5 t^{2}+16 t+21 and classify it as max, min, or inflection.

See Solution

Problem 7352

Find the value of zz where the function g(z)=28(e4z+3e5z)4g(z)=28\left(e^{4 z}+3 e^{-5 z}\right)^{4} has a min, max, or inflection point.

See Solution

Problem 7353

Déterminez quels énoncés sur la fonction ff sont vrais parmi A à G concernant les dérivées et la continuité.

See Solution

Problem 7354

Soit u(x)u(x) et v(x)v(x) des fonctions dérivables. Quels énoncés suivants sont vrais ? A. Aucun vrai. B. (k2)=2k\nabla\left(k^{2}\right)^{\prime}=2 k. C. (ku(x))=ku(x)(k \cdot u(x))^{\prime}=k^{\prime} \cdot u^{\prime}(x). D. (u(x)v(x))=u(x)v(x)(u(x) \cdot v(x))^{\prime}=u^{\prime}(x) v^{\prime}(x). E. ddx(u(x)2)=u(x)2\frac{d}{d x}\left(\frac{u(x)}{2}\right)=\frac{u^{\prime}(x)}{2}. F. v(u(x)+v(x))=u(x)+v(x)v(u(x)+v(x))^{\prime}=u^{\prime}(x)+v^{\prime}(x).

See Solution

Problem 7355

Quel est le taux de variation instantané de la fonction f(x)=x35x2+4x6f(x)=x^{3}-5 x^{2}+4 x-6 en x=3x=3 ?

See Solution

Problem 7356

Determine which statements about the slopes of tangent and normal lines to a function ff are true.

See Solution

Problem 7357

A 15 ft ladder's base moves away from a wall at 2 ft/sec. Find the top's downward rate when the base is 12 ft from the wall. Rate: Blank 1: Blank 2:

See Solution

Problem 7358

A balloon falls at 5 m/s from 40 m away. Find the rate of change of the angle of elevation when it's 30 m high.

See Solution

Problem 7359

Find the second derivative of the function f(x)=6x38x2+8xf(x)=-6 x^{3}-8 x^{2}+8 x.

See Solution

Problem 7360

Find the intervals where the function f(x)=5x3+75x2+5x+6f(x)=-5 x^{3}+75 x^{2}+5 x+6 is concave up or down.

See Solution

Problem 7361

Evaluate f(7)f^{\prime \prime}(7), f(9)f^{\prime \prime}(-9), and f(10)f^{\prime \prime}(-10) for f(x)=6x38x2+8xf(x)=-6x^{3}-8x^{2}+8x.

See Solution

Problem 7362

How far does an egg fall if it hits the ground at 7.0 m/s7.0 \mathrm{~m} / \mathrm{s}?

See Solution

Problem 7363

Evaluate the limit: limx0x+sinxx\lim _{x \rightarrow 0} \frac{x+\sin x}{x} using a table of values.

See Solution

Problem 7364

Find the second derivative of the function f(x)=7x+4f(x)=\sqrt{7x+4}.

See Solution

Problem 7365

Find the second derivative of the function f(x)=8x+4f(x)=\sqrt{8x+4}.

See Solution

Problem 7366

Find xx such that f(x)=6x2+4=0f''(x) = -6x^2 + 4 = 0. Are there any constraints on xx?

See Solution

Problem 7367

Find points of inflection for the function f(x)=5x3+75x2+5x+6f(x)=-5 x^{3}+75 x^{2}+5 x+6. Provide answers as (x,y)(x, y)-pairs.

See Solution

Problem 7368

Estimate the volume error of a cube with side length 9 cm9 \mathrm{~cm} and accuracy 0.04 cm0.04 \mathrm{~cm} using differentials.

See Solution

Problem 7369

Find the differential dyd y for the function y=4sin(2x)y=4 \sin (2 x).

See Solution

Problem 7370

Graph the differential for f(x)=x23+3xf(x)=-\frac{x^{2}}{3}+3x at x=5x=5 and Δx=1.4\Delta x=-1.4. Find dydy and Δy\Delta y, rounded to two decimals.

See Solution

Problem 7371

Find the point of diminishing returns for the sales function S(x)=92+44.4x20.4x3S(x)=92+44.4 x^{2}-0.4 x^{3}, where xx is in thousands.

See Solution

Problem 7372

Find f(4)f^{\prime \prime}(4), f(5)f^{\prime \prime}(5), and f(1)f^{\prime \prime}(-1) for f(x)=3x+5f(x)=\sqrt{3x+5}.

See Solution

Problem 7373

Find the differential dyd y for the function y=103xy=\sqrt{10-3 x}.

See Solution

Problem 7374

Find the second derivative of the function f(x)=6x26x37f(x)=-6 x^{2}-6 \sqrt[3]{x}-7.

See Solution

Problem 7375

Find the point of diminishing returns for the sales function S(x)=118+42x20.5x3S(x)=118+42x^{2}-0.5x^{3}, where 0x560 \leq x \leq 56.

See Solution

Problem 7376

Graph the function f(x)=x23+3xf(x)=-\frac{x^{2}}{3}+3 x on Desmos. With x=5x=5 and Δx=1.4\Delta x=-1.4, find dyd y and Δy\Delta y.

See Solution

Problem 7377

Find the derivative ddxf(g(x))\frac{d}{d x} f(g(x)) for f(x)=x7f(x)=x^{7} and g(x)=8x6g(x)=8 x-6. Calculate f(x)f^{\prime}(x) and g(x)g^{\prime}(x).

See Solution

Problem 7378

Find dyd y for y=2x3y=\sqrt{2 x-3} and evaluate at x=2x=2, dx=0.1d x=0.1. Provide an exact answer.

See Solution

Problem 7379

Find dyd y for y=4x1y=\sqrt{4 x-1} and evaluate at x=3x=3, dx=0.3d x=0.3. (Provide an exact answer.)

See Solution

Problem 7380

Find the derivative of the composition f(g(x))f(g(x)) where f(x)=xf(x)=\sqrt{x} and g(x)=x2+8g(x)=x^{2}+8.

See Solution

Problem 7381

Find dyd y for y=x+4y=\sqrt{x+4} and evaluate at x=3x=3, dx=0.3d x=0.3. (Provide an exact answer.)

See Solution

Problem 7382

Find the limit: limx93xx9\lim _{x \rightarrow 9} \frac{3-\sqrt{x}}{x-9}.

See Solution

Problem 7383

Find ddxf(g(x))\frac{d}{d x} f(g(x)) for f(x)=7xf(x)=\frac{7}{x} and g(x)=6x2g(x)=6-x^{2}. First, compute f(x)f^{\prime}(x) and g(x)g^{\prime}(x).

See Solution

Problem 7384

Find dyd y for y=7x9y=\sqrt{7 x-9} and evaluate at x=3x=3, dx=0.1d x=-0.1.

See Solution

Problem 7385

Find the volume change dVd V when a cube's side increases from 6 cm6 \mathrm{~cm} to 6.4 cm6.4 \mathrm{~cm}. Round to the nearest tenth. dV=cm3 d V=\square \mathrm{cm}^{3}

See Solution

Problem 7386

Find the first three derivatives of f(x)=cos(3x2)f(x)=\cos(3x^{2}).

See Solution

Problem 7387

Find the volume change dVd V when a cube's side goes from 14 cm14 \mathrm{~cm} to 14.2 cm14.2 \mathrm{~cm}. Round to the nearest tenth.

See Solution

Problem 7388

Find the derivative of f(x)=6(sin(3x2))f(x) = 6(-\sin(3x^2)).

See Solution

Problem 7389

Find the second derivative d2ydx2\frac{d^{2} y}{d x^{2}} for the equation x2y=x3+9yx^{2} y = x^{3} + 9 y.

See Solution

Problem 7390

Find the volume change dVd V of a cube when side length changes from 10 cm10 \mathrm{~cm} to 10.2 cm10.2 \mathrm{~cm}.

See Solution

Problem 7391

Find the intervals of xx where d2ydx2>0\frac{d^{2} y}{d x^{2}}>0, given dydx=5x3+8x2+11\frac{d y}{d x}=5 x^{3}+8 x^{2}+11.

See Solution

Problem 7392

Find an equation for yy given dydx=112(ax2+ax3)12(2ax+a3(ax)23)\frac{d y}{d x}=\frac{11}{2}\left(a x^{2}+\sqrt[3]{a x}\right)^{\frac{1}{2}}\left(2 a x+\frac{a}{3 \sqrt[3]{(a x)^{2}}}\right).

See Solution

Problem 7393

Find the original function yy from the derivative dydx=112(ax2+ax3)12(2ax+a3(ax)23)\frac{d y}{d x}=\frac{11}{2}\left(a x^{2}+\sqrt[3]{a x}\right)^{\frac{1}{2}}\left(2 a x+\frac{a}{3 \sqrt[3]{(a x)^{2}}}\right).

See Solution

Problem 7394

Find a possible equation for yy given dydx=112(ax2+ax3)12(2ax+a3(ax)23)\frac{d y}{d x}=\frac{11}{2}\left(a x^{2}+\sqrt[3]{a x}\right)^{\frac{1}{2}}\left(2 a x+\frac{a}{3 \sqrt[3]{(a x)^{2}}}\right).

See Solution

Problem 7395

Find the per capita growth rate of the Beverton-Holt model g(N)=6N1+7N45g(N)=\frac{6 N}{1+\frac{7 N}{45}} using 1NdgdN\frac{1}{N} \cdot \frac{d g}{d N}.

See Solution

Problem 7396

Gegeben ist die Funktion f(x)=19(3x+2)3f(x)=\frac{1}{9}(3 x+2)^{3}.
a) Finde die Steigung von ff bei P(2f(2))P(2 \mid f(2)). b) Hat der Graph waagerechte Tangenten? c) Finde Punkte mit einem Steigungswinkel von 4545^{\circ}.

See Solution

Problem 7397

Find where the function f(x)=5sin2xf(x)=5 \sin^{2} x is increasing and decreasing on [π,π][-\pi, \pi]. f(x)=10sinxcosxf^{\prime}(x)=10 \sin x \cos x. Use interval notation.

See Solution

Problem 7398

Find the derivative of the function f(x)=cos(5x1)sin(5x+3)f(x)=\cos(5x-1)\sin(5x+3). What is f(x)f^{\prime}(x)?

See Solution

Problem 7399

Find the derivative dydx\frac{d y}{d x} for $y=\frac{e^{x^{5}}}{\sqrt{1-x^{3}}$.

See Solution

Problem 7400

Find the derivative of f(x)=sin3xf(x)=\sin^{3} x and calculate f(1)f^{\prime}(1), rounding to the nearest hundredth.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord