Calculus

Problem 18001

Bestimmen Sie eine Stammfunktion für:
a) f(x)=12x3+cos(0,5x)f(x)=\frac{1}{2 x^{3}}+\cos (0,5 x)
b) f(x)=2(5x+1)7+xf(x)=2(5 x+1)^{7}+\sqrt{x}

See Solution

Problem 18002

Bestimme die Steigung von f(x)=10x39x2+2xf(x)=10 x^{3}-9 x^{2}+2 x bei x=5x=5.

See Solution

Problem 18003

Untersuchen Sie die Funktion f(x)=2x+1xf(x)=\frac{2 x+1}{x}:
1. Skizzieren Sie den Graphen für 0x120 \leq x \leq 12.
2. Vermuten Sie das Verhalten für große xx.
3. Berechnen Sie f(1),f(10),f(100),f(1000)f(1), f(10), f(100), f(1000).

See Solution

Problem 18004

Gegeben ist die Funktion fa(x)=x3+a2x,a>0f_{a}(x)=-x^{3}+a^{2} \cdot x, a>0. Finde Nullstellen, Extremstellen und Wendestellen.

See Solution

Problem 18005

Find the time intervals where the particle's speed is decreasing based on the velocity graph v(t)v(t) for 0tm0 \leq t \leq m.

See Solution

Problem 18006

Berechnen Sie die Integrale: 244e2xdx\int_{2}^{4} 4 e^{2 x} d x und 245x4dx243x2dx+425x4dx\int_{2}^{4} 5 x^{4} d x - \int_{2}^{4} 3 x^{2} d x + \int_{4}^{2} 5 x^{4} d x.

See Solution

Problem 18007

Find tt in 1t161 \leq t \leq 16 where instantaneous velocity equals average velocity for p(t)=t2p(t)=\sqrt{t}-2. Choices: (A) 1, (B) 12125\frac{121}{25}, (C) 254\frac{25}{4}, (D) 25.

See Solution

Problem 18008

Eine Familie nutzt eine Solaranlage. Vergleiche die Funktionen f(t)f(t) und g(t)g(t) und berechne den solaren Deckungsgrad.

See Solution

Problem 18009

Find when the particle's speed decreases given its velocity graph intersects at t=0,k,mt=0, k, m and has tangents at t=j,lt=j, l.

See Solution

Problem 18010

Gegeben ist die Funktion f(x)=18x312xf(x)=\frac{1}{8} x^{3}-\frac{1}{2} x.
1. Berechne die Fläche zwischen ff und der xx-Achse im Intervall [1,2][-1, 2].
2. Finde die Fläche zwischen ff und g(x)=12x2+xg(x)=-\frac{1}{2} x^{2}+x.
3. Skizziere die Tangente tt an ff bei P(2,5/0,7P(2,5/0,7 und erkläre die Flächenberechnung zwischen ff, tt und der xx-Achse.

See Solution

Problem 18011

Aufgabe 1: Gegeben ist die Funktionsschar fa(x)=x3+a2xf_{a}(x)=-x^{3}+a^{2} \cdot x. Bestimme Nullstellen, Extremstellen und Wendestellen.
Aufgabe 2: Für fa(x)=ax3+4axf_{a}(x)=-a x^{3}+4 a x zeige Symmetrie, Punkte P(20)P(-2|0) und Q(20)Q(2|0), Hoch- und Trefpunkt und Wendetangente.
Aufgabe 3: Beurteile Aussagen zu fa(x)=ax2+ax+4f_{a}(x)=a x^{2}+a x+4 bezüglich Wendestellen, Hochpunkten, y-Achsen-Schnitt, x-Achsen-Schnitten, Parabelöffnung, Steigungen und Punkt P(100)P(10|0).

See Solution

Problem 18012

Find the acceleration of the particle at the first point where the velocity v(t)=dxdt=0v(t)=\frac{dx}{dt}=0 for x(t)=sintcostx(t)=\sin t-\cos t.

See Solution

Problem 18013

Beweisen Sie, dass aaf(x)dx=0\int_{a}^{a} f(x) d x=0. Untersuchen Sie das Integral von f(x)=e14xf(x)=e^{-\frac{1}{4} x} im Intervall [1;][1; \infty].
Für f(x)=18x312xf(x)=\frac{1}{8} x^{3}-\frac{1}{2} x:
1. Berechnen Sie die Fläche im Intervall [1;2][-1; 2].
2. Bestimmen Sie die Fläche zwischen ff und g(x)=12x2+xg(x)=-\frac{1}{2} x^{2}+x.
3. Skizzieren Sie die Tangente tt an ff bei P(2,5/0,7P(2, 5/0,7) und erklären Sie, wie man die Fläche zwischen der xx-Achse, ff und tt berechnet.

See Solution

Problem 18014

Bestimmen Sie pp für f(x)=3x2+p2f(x)=3 x^{2}+p^{2}, sodass die Fläche im Intervall [1;2][-1; 2] gleich 21 FE ist.

See Solution

Problem 18015

Find when the speed of a particle, with velocity v(t)=t3+2t2+2tv(t)=-t^{3}+2 t^{2}+2^{-t} for t0t \geq 0, is increasing.

See Solution

Problem 18016

A snail's velocity is v(t)=1.4ln(1+t2)v(t)=1.4 \ln(1+t^{2}). Find its acceleration at t=5t=5 minutes.

See Solution

Problem 18017

Find how many times the velocity, given by y(t)=16cos(5t)14sin(5t)y(t)=\frac{1}{6} \cos (5 t)-\frac{1}{4} \sin (5 t), is 0 in 4 seconds.

See Solution

Problem 18018

A particle moves along the xx-axis with velocity v(t)=cos(π6t)v(t)=\cos \left(\frac{\pi}{6} t\right) and starts at x=2x=-2.
(a) When is the particle moving left for 0t120 \leq t \leq 12? (c) Find acceleration at time tt and determine if speed is increasing or decreasing at t=4t=4.

See Solution

Problem 18019

Bestimme die Stammfunktion FF für die Funktionen: a) f(x)=5x3+7x24x+9f(x)=5 x^{3}+7 x^{2}-4 x+9, b) f(x)=13x6+xf(x)=\frac{1}{3} x^{6}+x, c) f(x)=8x2x+2f(x)=8 x^{2}-x+2, e) f(x)=4x3+3x+1f(x)=4 x^{3}+3 x+1.

See Solution

Problem 18020

Particle XX moves as x(t)=5t39t2+7x(t)=5 t^{3}-9 t^{2}+7. Determine its direction at t=1t=1, when it's farthest left, and area change at t=1t=1 for triangle with YY.

See Solution

Problem 18021

Find the limit of the sequence an=n2+(1)nn(n+3)2a_{n}=\frac{n^{2}+(-1)^{n} \cdot n}{(n+\sqrt{3})^{2}} as nn \to \infty.

See Solution

Problem 18022

Berechnen Sie den Grenzwert: limn(4n2+11n2n)\lim _{n \rightarrow \infty}\left(\sqrt{4 n^{2}+11 n}-2 n\right).

See Solution

Problem 18023

Skizzieren Sie die Flächen und berechnen Sie die Fläche A für die Funktionen: 44.1 f(x)=x2+1f(x)=x^2+1 zwischen x=1x=1 und x=2x=2; 44.2 f(x)=12x28f(x)=\frac{1}{2}x^2-8.

See Solution

Problem 18024

Find the limit: limn(1+π2n+1)2n\lim _{n \rightarrow \infty}\left(1+\frac{\pi}{2^{n+1}}\right)^{2^{n}}.

See Solution

Problem 18025

Evaluate the integral 51(x4)3dx\int_{-\infty}^{-5} \frac{-1}{(x-4)^{3}} dx or say if it diverges.

See Solution

Problem 18026

Evaluate the integral I=02e13xdxI = \int_{0}^{\infty} 2 e^{-\frac{1}{3} x} dx or state if it diverges.

See Solution

Problem 18027

Ordnen Sie die Ableitungen A, B oder C den Funktionstermen 1-4 zu. f(x)=xnxn+1,f(x)=x2nx,f(x)=(xn)2x,f(x)=(xxn)2f(x)=x^{n} \cdot x^{n+1}, \, f(x)=\frac{x^{2 n}}{x}, \, f(x)=\left(x^{n}\right)^{2} \cdot x, \, f(x)=\left(\frac{\sqrt{x}}{x^{n}}\right)^{2}

See Solution

Problem 18028

Evaluate the integral e32x(lnx)32dx\int_{e}^{\infty} \frac{-3}{2 x(\ln x)^{\frac{3}{2}}} dx or determine if it diverges.

See Solution

Problem 18029

Evaluate the integral 244x9dx\int_{-\infty}^{-2} \frac{-4}{4x-9} \, dx or indicate if it diverges.

See Solution

Problem 18030

Evaluate the integral e1012xlnxdx\int_{e^{10}}^{\infty} \frac{-1}{2 x \ln x} d x or indicate if it diverges.

See Solution

Problem 18031

Berechne das Integral 31(x3+4x2+3x)dx\int_{-3}^{-1}\left(x^{3}+4 x^{2}+3 x\right) d x.

See Solution

Problem 18032

Hausaufgabe 13: Betrachten Sie die Differentialgleichung y=y3x2+1y^{\prime}=-\frac{y^{3}}{x^{2}+1}.
(a) Finde konstante Lösungen. (b) Finde alle Lösungen. (c) Löse das Anfangswertproblem y=y3x2+1,y(1)=1y^{\prime}=-\frac{y^{3}}{x^{2}+1}, \quad y(1)=1.

See Solution

Problem 18033

Evaluate the integral 02e13xdx\int_{0}^{\infty} 2 e^{-\frac{1}{3} x} dx or state if it diverges.

See Solution

Problem 18034

Ein Getränk wird aus dem Kühlschrank (5°C) geholt. Raumtemperatur ist 22°C. Nutze T(t)=2217e0,02tT(t)=22-17 \cdot e^{-0,02t}.
a) Zeichne T(t)T(t) und finde, wann T=12°CT=12°C ist. b) Berechne, wann T=12°CT=12°C erreicht wird. c) Zeige, dass T(t)T(t) die Form S(1cat)S(1-c \cdot a^t) hat.

See Solution

Problem 18035

Finde die kleinste natürliche Zahl nεn_{\varepsilon}, sodass an97<11000\left|a_{n}-\frac{9}{7}\right|<\frac{1}{1000} für alle n>nεn>n_{\varepsilon}.

See Solution

Problem 18036

Find the time tt when the drug concentration C(t)=0.6tt2+40C(t)=\frac{0.6 t}{t^{2}+40} is maximized. Round your answer to 2 decimal places.

See Solution

Problem 18037

Find the first and second derivatives of f(x)=(x21)e0.5xf(x)=(x^{2}-1) \cdot e^{-0.5 x}.

See Solution

Problem 18038

Find the average change in revenue for R(q)=200q2q2R(q)=200 q-2 q^{2} when sales increase from 30 to 35 units.

See Solution

Problem 18039

Find the limit: limn((sin(π/2))n+(2sin(π/4))n+(1/10)n)1/n\lim _{n \rightarrow \infty}\left((\sin (\pi / 2))^{n}+(2 \sin (\pi / 4))^{n}+(1 / 10)^{n}\right)^{1 / n}

See Solution

Problem 18040

Find the marginal revenue for the revenue function R(q)=200q2q2R(q)=200 q-2 q^{2} when 30 units are sold.

See Solution

Problem 18041

Calculate the integral of 3x3 \sqrt{x} with respect to xx.

See Solution

Problem 18042

1. a) Find points where the slope of y=sinxy=-\sin x is i) zero ii) a local max iii) a local min b) Determine intervals for i) concave up ii) concave down

See Solution

Problem 18043

Temperatures in Michigan are given by T(x)=15e0.3857x+25T(x)=-15 e^{-0.3857 x}+25.
a. Find the yy-intercept and its meaning. b. What was the temperature at noon? Round to the nearest tenth. c. Find limxT(x)\lim_{x \rightarrow \infty} T(x) and its meaning. Round to the nearest tenth.

See Solution

Problem 18044

Berechne das Volumen des Körpers, der entsteht, wenn die Fläche zwischen f(x)=3xf(x)=3 \sqrt{x} und g(x)=4xg(x)=\sqrt{4-x} um die xx-Achse rotiert.

See Solution

Problem 18045

Find the area between the graph of y=2x+3y=-2x+3 over [0,1][0,1] and the xx-axis using limits. Sketch the region.

See Solution

Problem 18046

Find the population in 13 years using the model P(t)=197,000e0.0141tP(t)=197,000 e^{-0.0141t}. Round to the nearest person.

See Solution

Problem 18047

Find the derivative of f(x)=912xf(x) = 9 - \frac{1}{2}x using the limit definition: f(x)=limΔx0912(x+Δx)[912x]Δxf^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{9-\frac{1}{2}(x+\Delta x)-\left[9-\frac{1}{2}x\right]}{\Delta x}.

See Solution

Problem 18048

Find the derivative f(x)f'(x) of f(x)=4xf(x) = \frac{4}{\sqrt{x}} using the limit definition.

See Solution

Problem 18049

Find the derivative of y=ln(x24)y=\ln(x^{2}-4).

See Solution

Problem 18050

Find the value of 252x3dx\int_{2}^{5} 2|x-3| \, dx.

See Solution

Problem 18051

Use substitution to simplify the integral (secxtanx)ln(secx+15)dx\int(\sec x \tan x) \ln (\sec x+15) d x to lnudu\int \ln \mathrm{u} \, du and evaluate.

See Solution

Problem 18052

Find the derivative of y=esinxy=e^{\sin x} with respect to xx.

See Solution

Problem 18053

Find the value of limx1x1\lim _{x \rightarrow-1^{-}} |x-1|.

See Solution

Problem 18054

Find the partial derivative fx(x,y)f_{x}(x, y) of f(x,y)=4x2y216x2+4yf(x, y)=4 x^{2} y^{2}-16 x^{2}+4 y.

See Solution

Problem 18055

What is the best choice for dv\mathrm{dv} in xneaxdx\int x^{n} e^{a x} \mathrm{dx} using integration by parts? A. eaxdxe^{a x} \mathrm{dx} B. eaxe^{a x} C. xndxx^{n} d x D. xnx^{n}

See Solution

Problem 18056

Evaluate the integral lnxx9dx=\int \frac{\ln x}{x^{9}} d x = \square using integration by parts.

See Solution

Problem 18057

Evaluate the integral 0π3xcosxdx\int_{0}^{\pi} 3 x \cos x \, dx using integration by parts. Which expression is simpler?

See Solution

Problem 18058

Find the increase in cost when producing 300 to 720 bikes using the marginal cost function C(x)=200x3C^{\prime}(x)=200-\frac{x}{3}.

See Solution

Problem 18059

Evaluate the integral 0π3xcosxdx\int_{0}^{\pi} 3 x \cos x \, dx using integration by parts. Choose the correct expression for the new integral.

See Solution

Problem 18060

a. Show that r1(x)dx=yf(y)dy\int r^{-1}(x) dx = \int y f^{\prime}(y) dy. What steps are needed to prove this?
b. Integrate y(y)dy\int y^{\prime}(y) dy using xf(x)dx=xf(x)f(x)dx\int x f^{\prime}(x) dx = x f(x) - \int f(x) dx. Choose the correct answer.
c. Find lnxdx\int \ln x \, dx in terms of xx.
d. Find sin1xdx\int \sin^{-1} x \, dx in terms of xx.
e. Find tan1xdx\int \tan^{-1} x \, dx in terms of xx.

See Solution

Problem 18061

Maximize profit P(x,y)=24xx2xy2y2+33y43P(x, y)=24 x-x^{2}-x y-2 y^{2}+33 y-43 for goods xx and yy. What are the optimal values?

See Solution

Problem 18062

Find the partial derivative fx(x,y)f_{x}(x, y) for f(x,y)=4x2+5x2y+12xy2f(x, y)=4 x^{2}+5 x^{2} y+12 x y^{2} and evaluate at x=12x=12, y=4y=4.

See Solution

Problem 18063

Is it true that to evaluate 7x6x4+2x2dx\int \frac{7 x^{6}}{x^{4}+2 x^{2}} d x, you first need the partial fraction decomposition? A. No, numerator degree > denominator. B. No, denominator not factored. C. Yes, numerator degree > denominator. D. Yes, denominator can be factored.

See Solution

Problem 18064

Find the derivative of the function f(x)=x2lnxf(x)=x^{2} \ln x. What is f(x)f^{\prime}(x)?

See Solution

Problem 18065

Is it easier to evaluate 10x+35x2+3xdx\int \frac{10 x+3}{5 x^{2}+3 x} d x using partial fractions? Choose A, B, C, or D.

See Solution

Problem 18066

Eva invests \$8000 at 4.7% annual interest, compounded continuously. Find the investment value after 8 years, rounded to the nearest cent.

See Solution

Problem 18067

Calculate the integral 06(5e0.5x+1)dx\int_{0}^{6}\left(5 e^{0.5 x}+1\right) d x.

See Solution

Problem 18068

Calculate the integral from 0 to 2 of the function 6e0.5x6x6 e^{0.5 x} - 6 x.

See Solution

Problem 18069

Calculate the integral from 0 to 6 of the function 3e0.5x+43 e^{-0.5 x} + 4.

See Solution

Problem 18070

Evaluate the integral I=x2x+8dxI=\int \frac{x^{2}}{x+8} d x using substitution u=x+8u=x+8 and long division. Compare results.

See Solution

Problem 18071

Find the derivative of y=x2lnxy=x^{2} \ln x with respect to xx.

See Solution

Problem 18072

Find the average value of f(x)=12x11f(x)=\frac{1}{2 x-11} from x=3x=3 to x=5x=5, expressed as a constant times ln5\ln 5.

See Solution

Problem 18073

Evaluate the integral 2x+5x2+36dx\int \frac{2 x+5}{x^{2}+36} d x. Can partial fraction decomposition be used? A. Yes B. No. Find the integral's value.

See Solution

Problem 18074

Find the derivative of y=lnx3y=\ln \sqrt[3]{x} with respect to xx.

See Solution

Problem 18075

Find the derivative of y=ln(x24)y=\ln(x^{2}-4) with respect to xx.

See Solution

Problem 18076

Evaluate the integral: sin2(θπ5)dθ=\int \sin ^{2}\left(\theta-\frac{\pi}{5}\right) d \theta = (exact answer).

See Solution

Problem 18077

Calculate the integral: 6102dx2x\int_{6}^{10} \frac{2 d x}{2-x}.

See Solution

Problem 18078

Untersuche die Funktion f(x)=110000(40x30,15x4)f(x)=\frac{1}{10000}(40 x^{3}-0,15 x^{4}) für x[0;267]x \in[0; 267]. Bestimme Nullstellen und Extrema.

See Solution

Problem 18079

Calculate 264x10dx\int_{2}^{6} \frac{4}{x-10} dx and express the result as a constant multiplied by ln2\ln 2.

See Solution

Problem 18080

Find the first four nonzero terms of the Taylor series for f(x)=12xf(x)=\sqrt{1-2 x} around 0. 12x=++++\sqrt{1-2 x}=\square+\square+\square+\square+\cdots

See Solution

Problem 18081

Calculate the integral from 1 to 4 of 5x+2x\frac{5 x+2}{\sqrt{x}} dx.

See Solution

Problem 18082

Find the integral of the function: 16x2dx\int \frac{16}{x^{2}} d x

See Solution

Problem 18083

Bestimme den mittleren Anstieg und den mittleren Anstiegswinkel der Skischanze mit f(x)=1120x2x+60f(x)=\frac{1}{120} x^{2}-x+60 für 0x300 \leq x \leq 30.

See Solution

Problem 18084

Évaluez les intégrales: a) x1+4xdx\int x \sqrt{1+4 x} d x b) 1+2x1+16x2dx\int \frac{1+2 x}{1+16 x^{2}} d x

See Solution

Problem 18085

Evaluate the integral π4π3cosxsin2xdx\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{\cos x}{\sin ^{2} x} d x using a change of variables.

See Solution

Problem 18086

Evaluate the integral: sin2(θπ5)dθ=\int \sin^{2}\left(\theta-\frac{\pi}{5}\right) d\theta = \square (exact answer).

See Solution

Problem 18087

Bestimmen Sie das Krümmungsverhalten von f(x)=13x3x2x+32f(x)=\frac{1}{3} x^{3}-x^{2}-x+\frac{3}{2} durch die zweite Ableitung.

See Solution

Problem 18088

Berechne das Volumen des Rotationskörpers, der durch die Kurven y=4xy=\frac{4}{x} und y=5xx3y=5 x-x^{3} im ersten Quadranten um die xx-Achse entsteht.

See Solution

Problem 18089

Evaluate the integral x2e3xdx\int x^{2} e^{3 x} d x using integration by parts. Choose the correct answer from options A, B, C, D.

See Solution

Problem 18090

Find the limit: limn(1+πln(n))ln(3n)\lim _{n \rightarrow \infty}\left(1+\frac{\pi}{\ln (n)}\right)^{\ln (3 n)}.

See Solution

Problem 18091

Evaluate the integral 16x2(x24)(x+8)2dx\int \frac{16 x^{2}}{(x-24)(x+8)^{2}} d x and find its partial fraction decomposition.

See Solution

Problem 18092

Evaluate 354x215x+11x2dx\int_{3}^{5} \frac{4x^{2}-15x+11}{x-2} \, dx and simplify your answer, condensing logs if needed.

See Solution

Problem 18093

Find the projected world population in 2036 given a 2017 population of 7.5 billion and a growth rate of 1.11%1.11\% per year.

See Solution

Problem 18094

Calculate the integral: (3t3+t2)dt\int\left(3^{\frac{t}{3}}+t^{2}\right) d t

See Solution

Problem 18095

Find the projected world population in 2046, given a 2017 population of 7.5 billion and a growth rate of 1.11%1.11\%. Round to nearest ten millionth.

See Solution

Problem 18096

Calculate the sum: k=22k+33k\sum_{k=2}^{\infty} \frac{2^{k+3}}{3^{k}}.

See Solution

Problem 18097

Évaluez la limite suivante avec la règle de l'Hôpital si applicable: limy(1+2y)2y=\lim _{y \rightarrow \infty}\left(1+\frac{2}{y}\right)^{2 y}=\square

See Solution

Problem 18098

Bestimmen Sie die Ableitung von f(x)=2x25f(x)=2 x^{-2}-5.

See Solution

Problem 18099

Bestimmen Sie die Extremstellen von f(x)=3xexf(x)=3 x \cdot e^{x}. Berechnen Sie f(x)f'(x), f(x)f''(x) und finden Sie xx für f(x)=0f'(x)=0.

See Solution

Problem 18100

Bestimmen Sie die Ableitung von f(x)=x1f(x) = x^{-1} oder f(x)=1/xf(x) = 1/x.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord