Calculus

Problem 20801

Evaluate the integral: 5x2+2x5x3xdx\int \frac{5 x^{2}+2 x-5}{x^{3}-x} d x

See Solution

Problem 20802

Use substitution to simplify (sec2x)ln(tanx+8)dx\int (\sec^2 x) \ln(\tan x + 8) \, dx to lnudu\int \ln u \, du and evaluate it.

See Solution

Problem 20803

Berechnen Sie die mittlere Steigung von ff in den Intervallen: a) f(x)=12x2+1,I=[1;3]f(x)=\frac{1}{2} x^{2}+1, I=[1 ; 3], b) f(x)=4x,I=[2;8]f(x)=\frac{4}{x}, I=[2 ; 8], c) f(x)=2x,I=[0;1]f(x)=2x, I=[0 ; 1], d) f(x)=2x,I=[1;3]f(x)=2^{x}, I=[1 ; 3].

See Solution

Problem 20804

Use substitution to simplify (cosx)ln(sinx+2)dx\int(\cos x) \ln (\sin x+2) d x to lnudu\int \ln u \, du and evaluate it.

See Solution

Problem 20805

Gegeben sind f(x)=2xf(x)=2^{x} und g(x)=2x+4g(x)=-2x+4. Skizzieren Sie die Graphen und zeigen Sie, dass sie bei S(12)S(1|2) schneiden. Berechnen Sie die Fläche zwischen den Graphen und den Achsen.

See Solution

Problem 20806

Calculate the value of 23x+x25dx23xx25dx+223x25dx\int_{2}^{3} \frac{x+x^{2}}{5} dx - \int_{2}^{3} \frac{x-x^{2}}{5} dx + 2 \cdot \int_{2}^{3} \frac{x^{2}}{5} dx.

See Solution

Problem 20807

Bestimmen Sie die durchschnittliche Steigung der Funktion f(x)=2xf(x)=2x im Intervall I=[0;1]I=[0 ; 1].

See Solution

Problem 20808

Bestimme die Ableitung von f(x)=32xf(x)=3 \cdot 2^{x} und schreibe sie als allgemeine Exponentialfunktion.

See Solution

Problem 20809

Bestimmen Sie die Ableitung von f(x)=32xf(x)=3 \cdot 2^{x} und formulieren Sie das Ergebnis als allgemeine Exponentialfunktion.

See Solution

Problem 20810

Bestimmen Sie die Tangentengleichung von f(x)=12e2xf(x)=\frac{1}{2} \cdot e^{2 x} bei x=0x=0.

See Solution

Problem 20811

Berechnen Sie die mittlere Steigung von f(x)=4xf(x)=\frac{4}{x} im Intervall [2;8][2 ; 8] und von f(x)=2xf(x)=2^{x} im Intervall [1;3][1 ; 3].

See Solution

Problem 20812

Gegeben ist die Funktion fr(x)=14x492rx2+rf_{r}(x)=\frac{1}{4} x^{4}-\frac{9}{2} r x^{2}+r. Bestimmen Sie a) f2f_{-2} und f23f_{\frac{2}{3}}, b) die Extremstellen und deren Minima, c) die yy-Werte der Extrempunkte und Bedingungen für die yy-Achse.

See Solution

Problem 20813

Find the area between the revenue R(t)=100+10tR(t)=100+10t and costs C(t)=66+5tC(t)=66+5t from t=0t=0 to t=5t=5.

See Solution

Problem 20814

Gegeben ist die Funktion f(x)=x3+3x2f(x)=-x^{3}+3 x^{2}. Zeichne die Tangente bei P(12)P(1 \mid 2) ein und bestimme die Steigung mm durch f(1)f'(1).

See Solution

Problem 20815

Evaluate these limits carefully: i. limxx22x2+ex\lim _{x \rightarrow \infty} \frac{x^{2}}{2 x^{2}+e^{x}} ii. limxx22x2+ex\lim _{x \rightarrow-\infty} \frac{x^{2}}{2 x^{2}+e^{x}} iii. limx3e2xx3e2x+1\lim _{x \rightarrow \infty} \frac{3 e^{2 x}-x-3}{e^{2 x}+1} iv. limx3e2xx3e2x+1\lim _{x \rightarrow-\infty} \frac{3 e^{2 x}-x-3}{e^{2 x}+1}

See Solution

Problem 20816

Construct and simplify the difference quotient f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} for f(x)=98x3f(x)=9-8 x^{3}.

See Solution

Problem 20817

Evaluate the integral using integration by parts: (6x)6xdx\int(6-x) 6^{x} d x (Include constant CC).

See Solution

Problem 20818

Zeigen Sie, dass die Tangentengleichung an P(x0f(x0))P\left(x_{0} \mid f\left(x_{0}\right)\right) ist y=f(x0)x+f(x0)f(x0)x0y=f^{\prime}\left(x_{0}\right) \cdot x+f\left(x_{0}\right)-f^{\prime}\left(x_{0}\right) \cdot x_{0}. Welche Bedingung muss ff bei x0x_{0} erfüllen?

See Solution

Problem 20819

Find limx1(x+1)f(x)\lim _{x \rightarrow 1}(x+1) f(x) given f(x)=f(3x+1)f(x)=f(3 x+1) and limx4f(x)x2+13x4=12\lim _{x \rightarrow 4} \frac{f(x)-x^{2}+13}{x-4}=12. Answer: 6.

See Solution

Problem 20820

Find the derivative of the function f(x)=3x2+3x2f(x)=3x^{2}+3x-2, denoted as f(x)f^{\prime}(x).

See Solution

Problem 20821

Evaluate the integral using integration by parts: x(x+4)6dx\int x(x+4)^{6} dx. Use CC for the constant of integration.

See Solution

Problem 20822

Find the limit of the population function P(t)=300t2t2+8P(t)=\frac{300 t}{2 t^{2}+8} as tt \rightarrow \infty and graph it.

See Solution

Problem 20823

Evaluate the integral using integration by parts: x5ln(x)dx\int x^{5} \ln (x) d x (include constant CC).

See Solution

Problem 20824

Find the limit: limx1(x+1)f(x)\lim _{x \rightarrow 1}(x+1) f(x) given f(x)=f(3x+1)f(x)=f(3x+1) and limx4f(x)x2+13x4=12\lim _{x \rightarrow 4} \frac{f(x)-x^{2}+13}{x-4}=12.

See Solution

Problem 20825

Find the area between the marginal cost C(x)=0.01x23x+229C(x)=0.01 x^{2}-3 x+229 and marginal revenue R(x)=4292xR(x)=429-2 x curves from x=0x=0.

See Solution

Problem 20826

Find the series expansion for F(x)=5+n=0(1)nx2n+2(2n+1)!(2n+2)F(x)=-5+\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+2}}{(2 n+1) !(2 n+2)}.

See Solution

Problem 20827

Determine where the function f(x)=(x24)2f(x)=(x^{2}-4)^{2} is decreasing.

See Solution

Problem 20828

Calculate the area between the curve y=3xln(x)y=3 x \ln (x), the xx-axis, x=1x=1, and x=ex=e.

See Solution

Problem 20829

Finde die Ableitung von f(x)=3x2+3x2f(x) = 3x^2 + 3x - 2.

See Solution

Problem 20830

Evaluate these limits and justify your answers: (a) limxlnx+x10x0.1\lim _{x \rightarrow \infty} \frac{\ln x+\sqrt[10]{x}}{x^{0.1}} (b) limxlnx+0.99xx100\lim _{x \rightarrow \infty} \frac{\ln x+0.99^{x}}{\sqrt[100]{x}} (c) limxlnx+1.01xx5\lim _{x \rightarrow \infty} \frac{\ln x+1.01^{x}}{x^{5}}

See Solution

Problem 20831

Invest \13,484at6.113,484 at 6.1% interest compounded continuously. Find the function P(t)$, balances for 1, 2, 5, 10 years, and doubling time.

See Solution

Problem 20832

Determine where the function f(x)=5x3+9x27x+3f(x)=5 x^{3}+9 x^{2}-7 x+3 is increasing.

See Solution

Problem 20833

Prove that ddx(cscx)=cscxcotx\frac{d}{d x}(\csc x)=-\csc x \cot x using definitions: cotx=1/tanx\cot x=1 / \tan x, cscx=1/sinx\csc x=1 / \sin x, secx=1/cosx\sec x=1 / \cos x.

See Solution

Problem 20834

Bestimme die Tangentengleichung t\mathrm{t} an den Graphen von f\mathrm{f} im Punkt PP und wo sie die xx-Achse schneidet.

See Solution

Problem 20835

Berechne die Ableitung von f(x)=x2+2 f(x) = \frac{x}{2} + 2 .

See Solution

Problem 20836

Determine if f(x)=x4exf(x)=\frac{x^{4}}{e^{x}} has a global max or min on (,)(-\infty, \infty). Justify your answer.

See Solution

Problem 20837

Differentiate cos5(x23x)\cos^{5}(x^{2}-3x).

See Solution

Problem 20838

Umformen und Ableiten der Funktionen: a) f(x)=x(x2+2x3)f(x)=x \cdot (x^{2}+2x-3), f(x)=f^{\prime}(x)= b) f(x)=(x+1)(x2)f(x)=(x+1) \cdot (x-2), f(x)=f^{\prime}(x)= c) f(x)=(2x+0.5)2f(x)=(2x+0.5)^{2}, f(x)=f^{\prime}(x)=

See Solution

Problem 20839

Given f(3)=0f(-3) = 0, f(3)=3f'(-3) = 3, f(3)=6f''(-3) = -6, f(3)=9f'''(-3) = 9, f(4)(3)=12f^{(4)}(-3) = -12, f(5)(3)=15f^{(5)}(-3) = 15, f(6)(3)=18f^{(6)}(-3) = -18, find f(x)f(x).

See Solution

Problem 20840

Bestimmen Sie die Ableitung f(x)f^{\prime}(x) für die Funktionen: a) f(x)=ax2f(x)=a x^{2}, b) f(x)=x2+af(x)=x^{2}+a, c) f(x)=x2af(x)=\frac{x^{2}}{a}, d) f(x)=a2xf(x)=a^{2} x, e) f(x)=ax2+bxf(x)=a x^{2}+b x, f) f(x)=ax2+bf(x)=a x^{2}+b, g) f(x)=bx2+af(x)=b x^{2}+a, h) f(x)=ax3+a3xf(x)=a x^{3}+a^{3} x.

See Solution

Problem 20841

Find the difference quotient for f(x)=x2+4x6f(x)=x^{2}+4 x-6. Choose from: 1) 2x+h+42 x+h+4, 2) 8x128 x-12, 3) 10x+h1210 x+h-12, 4) 2hx+h2+8x12h\frac{2 h x+h^{2}+8 x-12}{h}.

See Solution

Problem 20842

Find the derivatives: f(x)=3x2+4x3f(x) = 3x^{2} + 4x - 3, f(x)=2x1f(x) = 2x - 1, f(x)=8x+2f(x) = 8x + 2.

See Solution

Problem 20843

An object at 130F130^{\circ} \mathrm{F} cools in water at 40F40^{\circ} \mathrm{F}. Find F(t)F(t) with cooling constant k=0.2k=0.2. F(t)= F(t)=

See Solution

Problem 20844

Skizziere den Graphen der Funktion f(x)=1x2f(x)=1-x^{2} im Intervall [0,1][0,1] und teile es in 4 gleich große Teile. Berechne U4U_{4} und O4O_{4}.

See Solution

Problem 20845

How long to double \$1000 at 8.5% interest, compounded continuously? Answer: 8.15 years.

See Solution

Problem 20846

Find the horizontal asymptote of y(t)=0.8t+10005t+4,t15y(t)=\frac{0.8 t+1000}{5 t+4}, t \geq 15 and interpret its meaning.

See Solution

Problem 20847

Find the derivative of ln[(4x2)(3x46)]\ln \left[(4 x^{2})(3 x^{4}-6)\right] with respect to xx.

See Solution

Problem 20848

Find intervals for the function y=cos(xπ)y=\cos (x-\pi) on [0,4π][0,4 \pi] where the average rate of change is negative and when the instantaneous rate is zero.

See Solution

Problem 20849

Find the integral of 1(4x2+9)2\frac{1}{(4x^{2}+9)^{2}}.

See Solution

Problem 20850

A lake has 400 fish. After 5 months, find P(t)P(t) and state the biologist's concern about reaching 2500 fish.

See Solution

Problem 20851

Find the derivative of the function f(z)=7ez5f(z)=7 e^{z-5}. What is dfdz=?\frac{d f}{d z}=?

See Solution

Problem 20852

A student invests \$ 2500 at a 1.3% interest rate compounded continuously. How long to reach \$ 3300?

See Solution

Problem 20853

Find a closed form for the derivatives f(n)(4)f^{(n)}(4) given: f(4)=4f(4) = -4, f(4)=16f'(4) = 16, f(4)=64f''(4) = -64, f(4)=256f'''(4) = 256, f(4)(4)=1024f^{(4)}(4) = -1024.

See Solution

Problem 20854

Given y=cos(xπ)y=\cos (x-\pi) for x[0,4π]x \in[0,4 \pi], find: a) Interval with negative average rate of change (sketch needed) b) x\mathrm{x}-value(s) where instantaneous rate of change is zero (use sketch)

See Solution

Problem 20855

Berechne die Fläche FF zwischen der Funktion f(x)=0,25x2+1,5x3f(x)=-0,25 x^{2}+1,5 x-3 und der xx-Achse im Intervall I[1,6]I[-1,6].

See Solution

Problem 20856

Find where the function f(x)=x32ex1+0.8(x+3)2f(x)=-x^{3}-2 e^{x-1}+0.8(x+3)^{2} is decreasing. Round to two decimal places.

See Solution

Problem 20857

Find where the function f(x)=13x3+x2x+3f(x)=\frac{1}{3} x^{3}+x^{2}-x+3 is increasing. Round to four decimal places.

See Solution

Problem 20858

Find the relative minimum values of f(x)=0.02x40.05x30.75x2+x+2f(x)=0.02 x^{4}-0.05 x^{3}-0.75 x^{2}+x+2. Round to four decimal places. Options: 1) 5.6830,5.4732-5.6830,-5.4732 2) 3.8300,5.1064-3.8300,5.1064 3) 3.8457,5.0810-3.8457,5.0810 4) 5.7194,5.5102-5.7194,-5.5102 5) None.

See Solution

Problem 20859

Rewrite y=sec(tanx)y=\sec(\tan x) as y=f(u)y=f(u) and u=g(x)u=g(x), then find dydx\frac{dy}{dx}. What are f(u)f(u) and g(x)g(x)?

See Solution

Problem 20860

Express y=e6xy=e^{-6 x} as y=f(u)y=f(u) and u=g(x)u=g(x), then find dydx\frac{d y}{d x}. Which option is correct? A. y=6u,u=exy=6 u, u=e^{-x} B. y=6u,u=exy=-6 u, u=e^{x} C. y=eu,u=6xy=e^{u}, u=-6 x D. y=eu,u=6xy=-e^{u}, u=6 x

See Solution

Problem 20861

Find the derivative of y=(cscxcotx)1y=(\csc x-\cot x)^{-1}. What is dydx\frac{\mathrm{dy}}{\mathrm{dx}}?

See Solution

Problem 20862

Find the derivative of y=8+3xy=\sqrt{-8+3x}. What is dydx\frac{d y}{d x}?

See Solution

Problem 20863

Deposit \$2200 yearly at 8% interest compounded continuously. Find future value after 10 years and total interest earned.

See Solution

Problem 20864

Fox population grows at 9%9\% yearly from 15,00015,000 in 2013.
(a) Model: n(t)=15,000e0.09tn(t)=15,000 e^{0.09 t}. (b) Estimate population in 2020. (c) Years to reach 22,00022,000?

See Solution

Problem 20865

What does 100+015n(t)dt100+\int_{0}^{15} n^{\prime}(t) d t represent for a bee population starting with 100 bees?

See Solution

Problem 20866

Find the derivative of f(x)=9+xtanxf(x)=\sqrt{9+x \tan x}. What is ddx9+xtanx=\frac{d}{d x} \sqrt{9+x \tan x}=\square?

See Solution

Problem 20867

Find the value(s) of cc from the Mean Value Theorem for Integrals for these functions on their intervals: 43. f(x)=x2xf(x)=x-2\sqrt{x}, [0,2][0,2]; 44. f(x)=9x3f(x)=\frac{9}{x^{3}}, [1,3][1,3].

See Solution

Problem 20868

Find the derivative of y=3xe6x3ex2y=3 x e^{-6 x}-3 e^{x^{2}}. What is dydx\frac{\mathrm{dy}}{\mathrm{dx}}?

See Solution

Problem 20869

Find the bacteria population after 24 hours with growth rates of 15%15\% (no antibiotic) and 8%8\% (with antibiotic) from 22 initial bacteria. Round to whole numbers.

See Solution

Problem 20870

Find the time tt in years for \5500at10%interesttoaccumulateto$11000using5500 at 10\% interest to accumulate to \$11000 using A=Pe^{rt}$.

See Solution

Problem 20871

An object with velocity v(t)=t(9t)v(t)=t(9-t) starts at -2 units. Find its position 18 seconds later.

See Solution

Problem 20872

Find the average value of f(x)=4x2f(x)=4-x^{2} over [2,2][-2,2] and where it equals this average. Then do the same for f(x)=4(x2+1)x2f(x)=\frac{4\left(x^{2}+1\right)}{x^{2}} over [1,3][1,3].

See Solution

Problem 20873

Find the derivative of q=cos(tt+5)q=\cos \left(\frac{t}{\sqrt{t+5}}\right) and express it as dqdt=\frac{d q}{d t}=\square.

See Solution

Problem 20874

Sketch the graph of RR. For the fish population $P(t)=\frac{2600}{1+12 e^{-\frac{t}{5}}$: a. Initial fish count? b. Population limit as $t \rightarrow \infty$? c. Years to reach 1000 fish?

See Solution

Problem 20875

Find the initial amount and half-life of the isotope given A(t)=700e0.02827tA(t)=700 e^{-0.02827 t}. Initial amount is 700g; half-life is \square years.

See Solution

Problem 20876

A bowl of soup cools according to T(t)=51+137e0.05tT(t)=51+137 e^{-0.05 t}. Find the initial temp, temp after 10 min, and time to reach 100F100^{\circ} F.

See Solution

Problem 20877

Find f(x)f(x) given f(1)=1f(1)=1 and the tangent line at (x,f(x))(x, f(x)) has slope 5x\frac{5}{x}. What is f(x)f(x)?

See Solution

Problem 20878

Radium-221 has a half-life of 30sec30 \mathrm{sec}. How long for 92%92\% of a sample to decay? Round to nearest whole number. sec\mathrm{sec}

See Solution

Problem 20879

Check if f(x)=cos(3x)f(x)=\cos(3x) meets Rolle's Theorem conditions on [π12,7π12][\frac{\pi}{12}, \frac{7\pi}{12}] and find cc.

See Solution

Problem 20880

Given the formula A(t)=700e0.02838tA(t)=700 e^{-0.02838 t}, find the initial amount and half-life of the isotope.

See Solution

Problem 20881

Find V(t)V(t), the total hours of video uploaded by time tt, given v(t)=1.1t22.6t+2.3v(t)=1.1 t^{2}-2.6 t+2.3.

See Solution

Problem 20882

Given the function f(x)=x34x216x+2f(x)=x^{3}-4 x^{2}-16 x+2 on [4,4][-4,4], is ff continuous? Find f(x)f^{\prime}(x), f(4)f(-4), and f(4)f(4). Can Rolle's theorem apply? If yes, find cc where f(c)=0f^{\prime}(c)=0.

See Solution

Problem 20883

Find the derivative of y=cos(e4θ3)y=\cos \left(e^{-4 \theta^{3}}\right). What is dydθ\frac{d y}{d \theta}?

See Solution

Problem 20884

Find the function f(x)f(x) where f(1)=1f(1)=1 and the tangent line at (x,f(x))(x, f(x)) has slope 7x\frac{7}{x}.

See Solution

Problem 20885

Given f(x,y)=x+1y+1f(x, y)=\frac{x+1}{y+1}, find and simplify: a. fxf_{x}, b. fyf_{y}, c. fxxf_{x x}, d. fyyf_{y y}, e. fxyf_{x y}.

See Solution

Problem 20886

Find (fg)(1)(f \circ g)^{\prime}(1) where f(u)=u5+9f(u)=u^{5}+9, u=g(x)=xu=g(x)=\sqrt{x}, and x=1x=1.

See Solution

Problem 20887

Find the initial amount and half-life of a radioactive isotope given by A(t)=500e0.02839tA(t)=500 e^{-0.02839 t}.

See Solution

Problem 20888

Estimate the integral 050f(t)dt\int_{0}^{50} f(t) \, dt using the emissions data for nitrogen oxides from 1940 to 1990.

See Solution

Problem 20889

Find the tangent line to y=x2x+10y=\sqrt{x^{2}-x+10} at x=3x=3. What is the equation of the tangent line?

See Solution

Problem 20890

Find the 9th-degree Taylor polynomial p9(x)p_{9}(x) at 0 for the solution of yx2y=0y'' - x^{2} y = 0 with y(0)=1,y(0)=1y(0)=-1, y'(0)=1.

See Solution

Problem 20891

Evaluate the limit: limxx2+55x2+1\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}+5}}{\sqrt{5 x^{2}+1}}

See Solution

Problem 20892

Estimate the slope of the tangent line to f(x)=xx2f(x)=\frac{x}{x-2} at x=3x=3.

See Solution

Problem 20893

Find dydx\frac{d y}{d x} using implicit differentiation for the equation 8x2y+3xy2=48 x^{2} y + 3 x y^{2} = -4.

See Solution

Problem 20894

Find the min and max values of f(x)=x36x2+9x+7f(x)=x^{3}-6x^{2}+9x+7 on the interval [1,9][-1,9].

See Solution

Problem 20895

An athlete needs 20 calories/pound/day. If intake is HH, find the differential equation for weight W(t)W(t) and its limit as tt \to \infty for W(0)=170W(0)=170, H=3700H=3700.

See Solution

Problem 20896

Find the intervals for population PP where it is increasing (<P<<P<) and decreasing (P>P>) in the logistic model dPdt=8500P(5P)\frac{d P}{d t}=\frac{8}{500} P(5-P).

See Solution

Problem 20897

Find the average value of f(x)f(x) over the interval and where f(x)f(x) equals that average for: 47. f(x)=4x2,[2,2]f(x)=4-x^{2}, \quad[-2,2] 48. f(x)=4(x2+1)x2,[1,3]f(x)=\frac{4\left(x^{2}+1\right)}{x^{2}},[1,3] 49. f(x)=sinx,[0,π]f(x)=\sin x,[0, \pi] 50. f(x)=cosx,[0,π/2]f(x)=\cos x,[0, \pi / 2]

See Solution

Problem 20898

Dead leaves accumulate at 4 g/cm²/yr and decompose at 75%/yr.
A. Write the differential equation for QQ: dQdt= \frac{d Q}{d t}=
B. Sketch the solution showing equilibrium.
Initial leaves: Q(0)=Q(0)= Equilibrium level: Qeq=Q_{eq}= Does equilibrium depend on initial condition? A. yes B. no

See Solution

Problem 20899

Find dydx\frac{\mathrm{dy}}{\mathrm{dx}} using implicit differentiation for the equation x416xy+y4=1x^{4}-16 x y+y^{4}=1.

See Solution

Problem 20900

Find equilibrium solutions for dPdt=12P\frac{d P}{d t}=\frac{1}{2} P and dPdt=12P(3P)\frac{d P}{d t}=\frac{1}{2} P(3-P). Determine stability.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord