Calculus

Problem 1401

Choose uu for integration by parts in x6ln(x)dx\int x^{6} \ln (x) \, dx. Recall udv=uvvdu\int u \, dv = uv - \int v \, du.

See Solution

Problem 1402

Calculate the indefinite integral of ln(x2)\ln \left(x^{2}\right) with respect to xx: ln(x2)dx=\int \ln \left(x^{2}\right) d x=

See Solution

Problem 1403

Calculate the volume of the solid formed by rotating the area between x=0x=0, x=1x=1, y=0y=0, and y=9+x4y=9+x^{4} around the xx-axis. V=V=

See Solution

Problem 1404

Find the volume of the solid formed by rotating the area between y=2x2y=2 x^{2}, x=1x=1, and y=0y=0 around the xx-axis. V= V=

See Solution

Problem 1405

Calculate the volume of the solid formed by rotating the area between y=e1x+5y=e^{1 x}+5, y=0y=0, x=0x=0, and x=0.6x=0.6 around the xx-axis.

See Solution

Problem 1406

Find the volume of the solid formed by rotating the area between y=x1y=\sqrt{x-1}, y=0y=0, x=2x=2, and x=3x=3 around the xx-axis. Volume= \text{Volume} =

See Solution

Problem 1407

Find the volume of the solid formed by rotating the area under y=x4x2y=x \sqrt{4-x^{2}} from x=0x=0 to x=2x=2 around the xx-axis.  Volume = \text { Volume }=

See Solution

Problem 1408

Find the volume of the solid formed by rotating the area between y=x2+x2y=x^{2}+x-2 and y=0y=0 around the xx-axis.

See Solution

Problem 1409

Find the volume of the solid formed by rotating the area under y=x4x2y=x \sqrt{4-x^{2}} from x=0x=0 to x=2x=2 about the yy-axis using 022π4y2dy\int_{0}^{2} 2 \pi \sqrt{4-y^{2}} d y. Evaluate the integral for the volume.

See Solution

Problem 1410

Calculate the volume of the solid formed by rotating the area between y=x2y=x^{2}, x=2x=2, and y=0y=0 around the xx-axis.  Volume =\text { Volume }=

See Solution

Problem 1411

Find the limit as xx approaches 3 for the expression 5x2+4x+25x^{2} + 4x + 2.

See Solution

Problem 1412

Solve the initial value problem: y+18x=0y'' + 18x = 0, with y(0)=2y(0) = 2 and y(0)=2y'(0) = 2. Find y=::y = \quad: \cdots \quad:

See Solution

Problem 1413

Evaluate the limit: limx196x14x196\lim _{x \rightarrow 196} \frac{\sqrt{x}-14}{x-196} to three decimal places or state DNE.

See Solution

Problem 1414

Solve the initial value problem: y+18x=0y'' + 18x = 0, with y(0)=2y(0) = 2 and y(0)=2y'(0) = 2. Find y=y =.

See Solution

Problem 1415

Solve the initial value problem: y+18x=0y^{\prime \prime}+18 x=0, with y(0)=2y(0)=2, y(0)=2y^{\prime}(0)=2. Find y=...y=...

See Solution

Problem 1416

Find all values of rr for which y=rx2y=r x^{2} satisfies the equation y=9xy^{\prime}=9 x. Enter answers as a list. r= r=

See Solution

Problem 1417

Evaluate the limit or state if it doesn't exist: limx0sin(15x)x=\lim _{x \rightarrow 0} \frac{\sin (15 x)}{x}= (3 decimal places or DNE)

See Solution

Problem 1418

Find the growth constant kk for a trout population growing from 2500 to 6250 in 1 year, with a capacity of 25000. When will it reach 12900? k= k= yr1\therefore \mathrm{yr}^{-1} Time to 12900: \approx - years.

See Solution

Problem 1419

Find the average rate of change of f(t)=t22tf(t)=t^{2}-2t from t=2t=2 to t=5t=5. Show your work.

See Solution

Problem 1420

Evaluate the integral using substitution: x(58x)5dx=C\int -x(5-8x)^{5} \, dx = C.

See Solution

Problem 1421

Find the limit: limx6x+6x2+x30\lim_{x \rightarrow -6} \frac{x+6}{x^{2}+x-30} and give your answer to three decimal places.

See Solution

Problem 1422

Find the one-sided limit: limx02sin(x)3x\lim _{x \rightarrow 0^{-}} \frac{2 \sin (x)}{3|x|} to three decimal places.

See Solution

Problem 1423

Find the one-sided limit: limx7+x+9x7=\lim _{x \rightarrow 7^{+}} \frac{x+9}{x-7}= (Enter DNE if it doesn't exist.)

See Solution

Problem 1424

Plot the function and estimate the limit value: limx0sin(2x)sin(4x)=\lim _{x \rightarrow 0} \frac{\sin (2 x)}{\sin (4 x)}= (two decimal places).

See Solution

Problem 1425

Find the left and right limits of 7xx2\frac{7 x}{x-2} as xx approaches 2: limx2+\lim _{x \rightarrow 2^{+}} and limx2\lim _{x \rightarrow 2^{-}}.

See Solution

Problem 1426

A rocket starts from rest with mass m0m_0 and burns fuel at rate kk. Find v(t)v(t) from mdvdt=ckmgm \frac{d v}{d t}=c k-m g.
(a) v(t)=θm/secv(t)=\quad \theta_{-} \mathrm{m} / \mathrm{sec}
(b) If fuel is 80% of m0m_0 and lasts 110 s, find v(110)v(110) with g=9.8 m/s2g=9.8 \mathrm{~m/s}^2 and c=2500 m/sc=2500 \mathrm{~m/s}. Round to nearest whole number.

See Solution

Problem 1427

Find and simplify the difference quotient f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} for the functions: 71. f(x)=4xf(x)=4x, 72. f(x)=7xf(x)=7x.

See Solution

Problem 1428

Simplify the difference quotient f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} for f(x)=x24x+3f(x) = x^2 - 4x + 3, with h0h \neq 0.

See Solution

Problem 1429

Find the limit: limx8+1x8\lim _{x \rightarrow 8^{+}} \frac{1}{x-8}.

See Solution

Problem 1430

Find the limit: limx2+x6(x2)2\lim _{x \rightarrow 2^{+}} \frac{x-6}{(x-2)^{2}}.

See Solution

Problem 1431

The area between y=sin(x)y=\sin (x) and the xx-axis from x=πx=-\pi to x=πx=\pi is given by ππsin(x)dx\int_{-\pi}^{\pi} \sin (x) dx. True or False?

See Solution

Problem 1432

False. The solutions to the differential equation dydx=y24y\frac{d y}{d x}=y^{2}-4 y include other values.

See Solution

Problem 1433

Verify if 11+x2dx=tan1(x)+C\int \frac{1}{1+x^{2}} \, dx = \tan^{-1}(x) + C and show the proof step by step.

See Solution

Problem 1434

Find the limits for the piecewise function f(x)={x2+16,x<16x+16,x16f(x)=\left\{\begin{array}{ll}x^{2}+16, & x<-16 \\ \sqrt{x+16}, & x \geq-16\end{array}\right.: a. limx16f(x)\lim _{x \rightarrow-16^{-}} f(x) b. limx16+f(x)\lim _{x \rightarrow-16^{+}} f(x) c. limx16f(x)\lim _{x \rightarrow-16} f(x)

See Solution

Problem 1435

Is it true or false that 1x2ln(1+t2)dt=1x2tln(1+t4)dt\int_{1}^{x^{2}} \ln(1+t^{2}) dt = \int_{1}^{x} 2t \ln(1+t^{4}) dt?

See Solution

Problem 1436

Find the value of KK in the solution y(t)=K1+Aerty(t)=\frac{K}{1+A e^{-r t}} for the IVP dydt=3y(1y12)\frac{d y}{d t}=3 y(1-\frac{y}{12}), y(0)=2y(0)=2.

See Solution

Problem 1437

Find the limits of the function g(x)g(x) defined as:
g(x)={0if x636x2if 6<x<6xif x6g(x)=\begin{cases} 0 & \text{if } x \leq -6 \\ \sqrt{36-x^{2}} & \text{if } -6 < x < 6 \\ x & \text{if } x \geq 6 \end{cases}
for x6,6+,6,6+,6x \to -6^{-}, -6^{+}, 6^{-}, 6^{+}, 6.

See Solution

Problem 1438

Solve the initial value problem: dydt=3y(1y12)\frac{d y}{d t}=3 y\left(1-\frac{y}{12}\right), y(0)=2y(0)=2. Find y(t)y(t).

See Solution

Problem 1439

Calculate the work done by the force F(x)=2x2+4xF(x)=2 x^{-2}+4 x from x=1x=1 to x=2x=2: evaluate 12(2x2+4x)dx\int_{1}^{2}\left(2 x^{-2}+4 x\right) d x. Provide the answer to three decimal places.

See Solution

Problem 1440

Find the inflection point of g(x)=1x2e2tdtg(x)=\int_{1}^{x^{2}} e^{2 \sqrt{t}} d t and give the exact xx-coordinate.

See Solution

Problem 1441

Find the value of f(π)f(\pi) where f(T)=0xxcos(x)dxf(T)=\int_{0}^{x} x \cos (x) d x. Provide the answer to three decimal places.

See Solution

Problem 1442

Find the value of f(π)f(\pi) where f(T)=0Txcos(x)dxf(T)=\int_{0}^{T} x \cos (x) d x. Round to three decimal places.

See Solution

Problem 1443

Does the integral 031xdx\int_{0}^{3} \frac{1}{x} dx converge or diverge?

See Solution

Problem 1444

Determine if the integral 141x2/3dx\int_{-1}^{4} \frac{1}{x^{2 / 3}} d x converges or diverges.

See Solution

Problem 1445

Does the integral e3xdx\int_{-\infty}^{\infty} e^{-3 x} dx converge or diverge?

See Solution

Problem 1446

Find the limit: limt4+7t28t216\lim _{t \rightarrow 4^{+}} \frac{|7 t-28|}{t^{2}-16}.

See Solution

Problem 1447

Find the tangent line equation for the curve at the specified parameter value for each case.
1. x=t4+1,  y=t3+t;  t=1x=t^{4}+1, \; y=t^{3}+t; \; t=-1
2. x=tt1,  y=1+t2;  t=1x=t-t^{-1}, \; y=1+t^{2}; \; t=1
3. x=et,  y=tlnt2;  t=1x=e^{\sqrt{t}}, \; y=t-\ln t^{2}; \; t=1
4. x=cosθ+sin2θ,  y=sinθ+cos2θ;  θ=0x=\cos \theta+\sin 2 \theta, \; y=\sin \theta+\cos 2 \theta; \; \theta=0

See Solution

Problem 1448

Find the value of y(1)y(1) for the initial value problem dydx=ln(x)x\frac{d y}{d x}=\frac{\ln (x)}{x} with y(e)=3y(e)=3.

See Solution

Problem 1449

Find the value of the integral 44f(x)dx\int_{4}^{4} f(x) d x given that ff and gg are continuous functions.

See Solution

Problem 1450

Find the value of 25f(x)dx\int_{2}^{5} f(x) d x given that 02f(x)dx=1\int_{0}^{2} f(x) dx=-1 and 05f(x)dx=3\int_{0}^{5} f(x) dx=3.

See Solution

Problem 1451

Find the value of the integral 20g(x)dx\int_{2}^{0} g(x) d x given 02g(x)dx=8\int_{0}^{2} g(x) d x=8. Enter as a decimal or DNE.

See Solution

Problem 1452

Calculate the integral 02(5f(x)+g(x))dx\int_{0}^{2}(5 f(x)+g(x)) d x given that 02f(x)dx=1\int_{0}^{2} f(x) d x=-1 and 02g(x)dx=8\int_{0}^{2} g(x) d x=8.

See Solution

Problem 1453

Given that f(x)f(x) is said to be nonnegative but has negative values in the table, clarify this. Find y(4)y(4) from dydx=y2f(x),y(3)=1\frac{d y}{d x}=y^{2} f^{\prime}(x), \quad y(3)=1.

See Solution

Problem 1454

Find the value of aa so that the function f(x)=30+xx2x6f(x)=\frac{30+x-x^{2}}{x-6} is continuous at x=6x=6.

See Solution

Problem 1455

Check if the function f(x)={x21x1if x14if x=1f(x)=\left\{\begin{array}{ll} \frac{x^{2}-1}{x-1} & \text{if } x \neq 1 \\ 4 & \text{if } x=1 \end{array}\right. is continuous at a=1a=1.

See Solution

Problem 1456

Prove there’s a solution to cos(x)=72x\cos (x)=7-2 x using the Intermediate Value Theorem. Find intervals for aa and bb.

See Solution

Problem 1457

Find the limit: limx4+3xx22x8\lim _{x \rightarrow 4^{+}} \frac{3-x}{x^{2}-2 x-8}.

See Solution

Problem 1458

Find the derivatives of these functions: 1) y=sin2x+(2x5)2y=\sin 2x + (2x-5)^{2} 2) y=cotx+sec2x+5y=\cot x + \sec^{2} x + 5

See Solution

Problem 1459

Find the derivative of these functions:
1. y=cot4xy=\cot ^{4} x
2. y=sec3xy=\sec ^{3} x
3. y=cosx2y=\cos x^{2}
4. y=secx+tanxsecxtanxy=\sqrt{\frac{\sec x+\tan x}{\sec x-\tan x}}
5. y=sin2x+(2x5)2y=\sin 2 x+(2 x-5)^{2}
6. y=cotx+sec2x+5y=\cot x+\sec ^{2} x+5
7. y=sec1secx+1y=\frac{\sec -1}{\sec x+1}
8. y=cosec3x3y=\operatorname{cosec} 3 x^{3}
9. y=sin3xx+1y=\frac{\sin 3 x}{x+1}
10. y=sin2x2x+5y=\frac{\sin 2 x}{2 x+5}
11. y=cot2xy=\cot 2 x
12. y=(3x+1)cos2xexy=\frac{(3 x+1) \cos 2 x}{e^{x}}
13. y=secxy=\sec x

See Solution

Problem 1460

Find the derivatives of these functions: 1. y=sin3xx+1y=\frac{\sin 3 x}{x+1}, 2. y=sin2x2x+5y=\frac{\sin 2 x}{2 x+5}, 3. y=cot2xy=\cot 2 x, 4. y=(3x+1)cos2xexy=\frac{(3 x+1) \cos 2 x}{e^{x}}, 5. y=secxy=\sec x.

See Solution

Problem 1461

Find c(3,5)c \in (3, 5) such that cos(c)=72c\cos(c) = 7 - 2c using the Intermediate Value Theorem.

See Solution

Problem 1462

Is the statement true or false? The derivative of f(x)f(x) is the instantaneous rate of change of y=f(x)y=f(x) with respect to xx. Choose A, B, C, or D.

See Solution

Problem 1463

Find the average velocity from t=2t=2 to t=3t=3 and t=2t=2 to t=4t=4, and the instantaneous velocity at t=2t=2.

See Solution

Problem 1464

Find the average velocity of a particle given s(t)=t2+4t3s(t)=t^{2}+4t-3 over intervals [2,3] and [2,4].

See Solution

Problem 1465

Is it true or false that a derivative can exist where a function does not? Explain your reasoning.

See Solution

Problem 1466

Find the derivatives of these functions:
1. y=cotx+sec2x+5y=\cot x+\sec ^{2} x+5
2. y=1secx+1y=\frac{1}{\sec x+1} or y=sec(x1)secx+1y=\frac{\sec (x-1)}{\sec x+1}.

See Solution

Problem 1467

Find the derivative of f(x)=x2+9x6f(x)=-x^{2}+9x-6 using the limit definition: limh0f(x+h)f(x)h\lim_{h \to 0} \frac{f(x+h)-f(x)}{h}.

See Solution

Problem 1468

Find the average velocity of a ball rolling down a ramp for functions s(t)=10t2s(t)=10 t^{2} and s(t)=12t2s(t)=12 t^{2} over specified intervals.

See Solution

Problem 1469

Find the derivative of the implicit function: y2+siny+x+y+ysinx+ysiny+cos(y2+1)+siny+x2+4y=cosxy^2 + \sin y + x + y + y \sin x + y \sin y + \cos(y^2 + 1) + \sin y + x^2 + 4y = \cos x and 3xy2+cosy2=2x3+53xy^2 + \cos y^2 = 2x^3 + 5 and tan(5y)ysinx+3xy2=9\tan(5y) - y \sin x + 3xy^2 = 9.

See Solution

Problem 1470

Find the derivative f(x)f^{\prime}(x) of the function f(x)=9x2f(x)=9x-2.

See Solution

Problem 1471

Find the derivative f(x)f'(x) of the function f(x)=x25f(x) = x^2 - 5.

See Solution

Problem 1472

Find the derivative f(x)f^{\prime}(x) for the function f(x)=7x2+xf(x)=7 x^{2}+x.

See Solution

Problem 1473

Find the derivative R(t)R'(t) for R(t)=0.1t2R(t) = -0.1 t^{2} and calculate R(1)R'(1).

See Solution

Problem 1474

Find the derivative of R(t)=0.1t2R(t)=-0.1 t^{2} and evaluate it at t=1t=1. What is R(1)R'(1)?

See Solution

Problem 1475

Find the equation of the tangent line to the curve y=4xy=\frac{4}{x} at the point (3,43)\left(3, \frac{4}{3}\right).

See Solution

Problem 1476

Estimate the growth rate of Whooping cranes in 2007 using rr and given values. Choose all correct answers. dN/dt=rNtr=ln( lambda )dN/dt=0.086258r=ln(1.09) d N / d t=r^{*} N_{t} \\ r=\ln (\text { lambda }) \\ d N / d t=0.086^{*} 258 \\ r=\ln (1.09)

See Solution

Problem 1477

Find the derivative U(t)U'(t) of U(t)=5.1t21.2tU(t)=5.1 t^{2}-1.2 t and evaluate it at t=8t=8.

See Solution

Problem 1478

Find the tangent line equation to the curve y=x2+5x4y=-x^{2}+5x-4 at x=1x=1.

See Solution

Problem 1479

Find the limit as xx approaches 4 for the expression x3+xx^{3}+x.

See Solution

Problem 1480

Evaluate these limits: 1. limx4(x3+x)\lim_{x \to 4}(x^3 + x) 2. limx4(x2+1)\lim_{x \to 4}(x^2 + 1) 3. limx2x2x2x22x\lim_{x \to 2} \frac{x^2 - x - 2}{x^2 - 2x} 4. limx1x22x+1x3x\lim_{x \to 1} \frac{x^2 - 2x + 1}{x^3 - x} 5. limxx2+1x2\lim_{x \to \infty} \frac{\sqrt{x^2 + 1}}{x^2} 6. limx4(x2+3x5)\lim_{x \to 4}(x^2 + 3x - 5) 7. limy(y32y+7)\lim_{y \to \infty}(y^3 - 2y + 7) 8. limt02t2+1t3+3t4\lim_{t \to 0} \frac{2t^2 + 1}{t^3 + 3t - 4} 9. limx1(s+1)22x2+3\lim_{x \to 1} \frac{(s + 1)^2}{2x^2 + 3} 10. limw23w24w+2w35\lim_{w \to 2} \frac{3w^2 - 4w + 2}{w^3 - 5} 11. limw13w22w+7w2+1\lim_{w \to -1} \frac{3w^2 - 2w + 7}{w^2 + 1} 12. limx2x2x24\lim_{x \to 2} \frac{\sqrt{x - 2}}{\sqrt{x^2 - 4}} 13. limx2(1x2)1(1x2)2\lim_{x \to 2} \frac{(1 - x^2)^{1}}{(1 - x^2)^2} 14. limx3x3x29\lim_{x \to 3} \frac{x - 3}{\sqrt{x^2 - 9}} 15. limx42x23\lim_{x \to \infty} \frac{4}{2x^2 - 3} 16. limx2x23x2+5\lim_{x \to \infty} \frac{2x^2}{3x^2 + 5} 17. limxx23x24x+1\lim_{x \to \infty} \frac{x^2}{3x^2 - 4x + 1} 18. limx23x\lim_{x \to \infty} 2^{\frac{3}{x}} 19. limx0+21x\lim_{x \to 0^+} 2^{\frac{1}{x}} 20. limx0+11+21x\lim_{x \to 0^+} \frac{1}{1 + 2^{\frac{1}{x}}}

See Solution

Problem 1481

Find the average rate of change of y=2×3xy=2 \times 3^{x} from x=0x=0 to x=4x=4. Options: A 40.5 B 162 C 158 D 40 E 4

See Solution

Problem 1482

Find dydx\frac{d y}{d x} for y=2x4+9x24xy=\frac{2 x^{4}+9 x^{2}}{4 x}. Choices include options A to E.

See Solution

Problem 1483

Find dydx\frac{d y}{d x} for y=2x4+9x24xy=\frac{2 x^{4}+9 x^{2}}{4 x}. Options: A, B, C, D, E.

See Solution

Problem 1484

Find dydx\frac{d y}{d x} for y=2x4+9x24xy=\frac{2 x^{4}+9 x^{2}}{4 x}. Choices are A, B, C, D, E.

See Solution

Problem 1485

Find the derivative of f(x)=3x+54xf(x)=\frac{3x+5}{4-x}.

See Solution

Problem 1486

Find the derivative of f(x)=(2xx3)2x2f(x)=(2x-x^{3})\sqrt{2-x^{2}}.

See Solution

Problem 1487

Find the derivative of f(x)=25xcos10xf(x)=\frac{2-5 x}{\cos 10 x}.

See Solution

Problem 1488

Find the slope of the function f(x)=x17xf(x)=\frac{-x-1}{7 \sqrt{x}} at the point (8, -0.45).

See Solution

Problem 1489

Find the slope of f(x)=5x1+37xf(x)=-5x-1+3\sqrt{7x} at the point (2,0.22)(2,0.22) using a graphing tool and round to the nearest hundredth.

See Solution

Problem 1490

Find the slope of f(x)=2x13xf(x)=\frac{2x-1}{3\sqrt{x}} at the point (2, 0.71).

See Solution

Problem 1491

Find the slope of the function f(x)=4x3+5x2+3x+8f(x)=4x^{3}+5x^{2}+3x+8 at the point (3, 170).

See Solution

Problem 1492

Find the slope of the function f(x)=3x34x2+5x+3f(x)=-3 x^{3}-4 x^{2}+5 x+3 at the point (4, -233).

See Solution

Problem 1493

Calculate the limit f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} for h0h \neq 0 where f(x)=x2+5x1f(x)=x^{2}+5x-1 and f(x)=1x+3f(x)=\frac{1}{x+3}.

See Solution

Problem 1494

Find the meaning of f(6)=6f^{\prime}(6)=-6 for the function f(x)=x3+8x2+6x+5f(x)=-x^{3}+8 x^{2}+6 x+5.

See Solution

Problem 1495

Find the meaning of f(5)=767f^{\prime}(5)=-767 for the function f(x)=9x310x2+8x+3f(x)=-9 x^{3}-10 x^{2}+8 x+3.

See Solution

Problem 1496

Find the limit of f(x)f(x) as xx approaches 1, where f(x)=(x1)2(x+1)x1f(x)=\frac{(x-1)^{2}(x+1)}{|x-1|} for x1x \neq 1 and f(1)=2f(1)=2.

See Solution

Problem 1497

Find limxπ4g(x)\lim _{x \rightarrow \frac{\pi}{4}} g(x) for g(x)=2cos2x1cosxsinxg(x)=\frac{2 \cos ^{2} x-1}{\cos x-\sin x}.

See Solution

Problem 1498

Find limxπ4g(x)\lim _{x \rightarrow \frac{\pi}{4}} g(x) for g(x)=2cos2x1cosxsinxg(x)=\frac{2 \cos ^{2} x-1}{\cos x-\sin x}. Which option is equivalent?

See Solution

Problem 1499

Find limx1f(x)\lim_{x \rightarrow 1} f(x) if g(x)f(x)h(x)g(x) \leq f(x) \leq h(x) where g(x)=sin(π2x)+4g(x)=\sin \left(\frac{\pi}{2} x\right)+4 and h(x)=14x3+34x+92h(x)=-\frac{1}{4} x^{3}+\frac{3}{4} x+\frac{9}{2}.

See Solution

Problem 1500

Calculate the average rate of change of g(x)=5x3+4g(x)=-5 x^{3}+4 between x=4x=-4 and x=4x=4.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord