Calculus

Problem 18801

Calculate the average value favef_{\text{ave}} of the function f(x)=x2(x3+10)2f(x)=\frac{x^{2}}{(x^{3}+10)^{2}} over the interval [-2, 2].

See Solution

Problem 18802

Use Euler's method with step size 0.25 to find y1,y2,y3,y4y_{1}, y_{2}, y_{3}, y_{4} for y=22x2yy' = 2 - 2x - 2y, y(0)=2y(0) = -2.

See Solution

Problem 18803

Find the initial temperature and the temperature after 18 minutes for T(x)=4+26e0.028xT(x)=-4+26 e^{-0.028 x}. Round to the nearest degree.

See Solution

Problem 18804

Given y˙=4tey\dot{y}=4 t e^{-y} with y(0)=1y(0)=-1, use Euler's Method (h=0.2h=0.2) to find y(0.2)y(0.2) to y(1.0)y(1.0), then find y(t)y(t) exactly and compute errors for y(0.2)y(0.2), y(0.6)y(0.6), and y(1)y(1).

See Solution

Problem 18805

Evaluate the limit: limNs=1N3s22s5N3\lim _{N \rightarrow \infty} \sum_{s=1}^{N} \frac{3 s^{2}-2 s-5}{N^{3}} as a whole number.

See Solution

Problem 18806

Find g(x)g'(x) if g(x)=0xt+t3dtg(x)=\int_{0}^{x} \sqrt{t+t^{3}} dt.

See Solution

Problem 18807

Differentiate the integral 1xet2dt\int_{1}^{x} e^{-t^{2}} dt with respect to xx.

See Solution

Problem 18808

A girl flies a kite at 300 ft high, moving horizontally at 25 ft/sec. How fast must she pay out string when the kite is 500 ft away? 20ft/s20 \mathrm{ft/s}

See Solution

Problem 18809

Evaluate the integral 111xdx\int_{-1}^{1} \frac{1}{x} \, dx.

See Solution

Problem 18810

Find g(s)g'(s) for the function defined by g(s)=5s(tt2)8dtg(s)=\int_{5}^{s}(t-t^{2})^{8} dt.

See Solution

Problem 18811

Find the total area between the curve f(x)=x3+x22xf(x)=x^{3}+x^{2}-2 x and the xx-axis, considering where it is above and below.

See Solution

Problem 18812

Trouvez les nombres critiques de f(x)=x23(2x)f(x) = \sqrt[3]{x^{2}}(2-x)f(c)=0f'(c)=0 ou f(c)f'(c) n'existe pas.

See Solution

Problem 18813

Water is in an inverted cone tank (8 ft diameter, 10 ft deep). Rate of water removal is 5ft3/min5 \mathrm{ft}^{3}/\mathrm{min}. Find the water level change rate at 6 ft depth and time to empty the tank.

See Solution

Problem 18814

Find the limit: limxexex\lim _{x \rightarrow \infty} e^{x}-e^{-x}.

See Solution

Problem 18815

Find the limit: limxxexex\lim _{x \rightarrow \infty} \frac{x}{e^{x}-e^{-x}}.

See Solution

Problem 18816

Find the limit of f(x)=32x+4f(x)=\frac{3}{2} x+4 on [0,4][0,4] and verify using geometry. Provide a whole number answer.

See Solution

Problem 18817

A balloon is 200 ft up, rising at 15 ft/sec. A car below moves at 45 mph. Find the rate of distance change after 1 sec.

See Solution

Problem 18818

Find the area of the shaded region between y=x3y=\sqrt[3]{x}, y=1xy=\frac{1}{x}, and the line x=27x=27.

See Solution

Problem 18819

Which two series converge by the root test? Choose from:
1. n=1(2n2n+1)2n\sum_{n=1}^{\infty}\left(\frac{2 n}{2 n+1}\right)^{2 n}
2. n=1(n4ln2(cos1n)n+1)n\sum_{n=1}^{\infty}\left(\frac{n^{4} \ln ^{2}\left(\cos \frac{1}{n}\right)}{n+1}\right)^{n}
3. n=1(3n3n1)n2\sum_{n=1}^{\infty}\left(\frac{3 n}{3 n-1}\right)^{n^{2}}
4. n=1(2arctannπ)n\sum_{n=1}^{\infty}\left(\frac{2 \arctan n}{\pi}\right)^{n}
5. n=1(nlnn)n/2\sum_{n=1}^{\infty}\left(\frac{n}{\ln n}\right)^{n / 2}
6. n=1(n+12n1)n\sum_{n=1}^{\infty}\left(\frac{n+1}{2 n-1}\right)^{n}

See Solution

Problem 18820

Which two series diverge according to the ratio test? Choose from the following:
1. n=1(n+1)2n(n+1)!\sum_{n=1}^{\infty} \frac{(n+1)^{2 n}}{(n+1) !}
2. n=1(n2)!(2n)!\sum_{n=1}^{\infty} \frac{\left(n^{2}\right) !}{(2 n) !}
3. n=1(n!)2(2n)!\sum_{n=1}^{\infty} \frac{(n !)^{2}}{(2 n) !}
4. 13+1335+\frac{1}{3}+\frac{1 \cdot 3}{3 \cdot 5}+\cdots
5. 31+3513+\frac{3}{1}+\frac{3 \cdot 5}{1 \cdot 3}+\cdots
6. n=1n!2n!\sum_{n=1}^{\infty} \frac{n !}{2^{n !}}

See Solution

Problem 18821

Find the volume VV of the solid formed by rotating the area between y=x1y=\sqrt{x-1}, y=0y=0, and x=6x=6 around the xx-axis.

See Solution

Problem 18822

Find the limit of f(x)=279xf(x)=27-9x over [2,6][2,6] and confirm with geometry. Provide a whole number answer. limNMN=\lim _{N \rightarrow \infty} M_{N}=

See Solution

Problem 18823

Find the volume VV of the solid formed by rotating the area between y=x1y=\sqrt{x-1}, y=0y=0, x=6x=6 around the xx-axis. V= V= Sketch the region.

See Solution

Problem 18824

Find the volume of the solid formed by rotating the area between x=3y2+15y12x=-3y^{2}+15y-12 and x=0x=0 about the xx-axis using cylindrical shells.

See Solution

Problem 18825

Find the volume of the solid formed by rotating the region x2+(y2)2=4x^{2}+(y-2)^{2}=4 around the yy-axis.

See Solution

Problem 18826

Rewrite the limit using l'Hôpital's Rule to resolve the indeterminate form:
limx1lnx11xx210 \lim _{x \rightarrow 1} \frac{\ln x}{11 x-x^{2}-10}

See Solution

Problem 18827

Evaluate the limit: limx01cos3x3x2\lim _{x \rightarrow 0} \frac{1-\cos 3 x}{3 x^{2}} using l'Hôpital's Rule when applicable.

See Solution

Problem 18828

Find how dAdt\frac{dA}{dt} relates to dadt\frac{da}{dt}, dbdt\frac{db}{dt}, and dθdt\frac{d\theta}{dt} for area A=(1/2)absinθA=(1/2)ab\sin\theta.

See Solution

Problem 18829

Evaluate the integral: 3dt(t29)2\int \frac{3 d t}{(t^{2}-9)^{2}} (include absolute values and use CC for the constant).

See Solution

Problem 18830

Rewrite the limit using l'Hôpital's Rule to eliminate the indeterminate form:
limx0e4x12x2+2x=limx0() \lim _{x \rightarrow 0} \frac{e^{4 x}-1}{2 x^{2}+2 x}=\lim _{x \rightarrow 0}(\square)

See Solution

Problem 18831

Find the derivative of the function defined by f(x)=x15t2dtf(x)=\int_{x}^{15} t^{2} d t. What is f(x)=?f^{\prime}(x)=?

See Solution

Problem 18832

Find the distance traveled by an object with velocity v(t)=14tv(t)=14 t m/s over intervals [0,2][0,2] and [2,5][2,5].

See Solution

Problem 18833

Compute R6,L6,M3R_{6}, L_{6}, M_{3} to estimate distance over [0,3][0,3] with given velocity at half-second intervals.

See Solution

Problem 18834

Determine which two of the following sequences converge:
1. n=1(n22n+1)n\sum_{n=1}^{\infty}\left(\frac{n^{2}}{2 n+1}\right)^{n}
2. n=1n!(2n)!\sum_{n=1}^{\infty} \frac{n !}{(2 n) !}
3. n=1(n1n+1)n2+n\sum_{n=1}^{\infty}\left(\frac{n-1}{n+1}\right)^{n^{2}+n}
4. n=13nn3\sum_{n=1}^{\infty} \frac{3^{n}}{n^{3}}
5. n=1135(2n1)n!\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{n !}
6. n=1(1+1n2)n3\sum_{n=1}^{\infty}\left(1+\frac{1}{n^{2}}\right)^{n^{3}}
7. n=1n3+1n10+n3\sum_{n=1}^{\infty} \frac{n^{3}+1}{\sqrt[3]{n^{10}+n}}

See Solution

Problem 18835

Find the displacement formula and total distance traveled by a particle with velocity v(t)=81tv(t)=8-1 t at t=4t=4 seconds.

See Solution

Problem 18836

Calculate the integral 9821[7f(x)+5g(x)h(x)]dx\int_{-98}^{-21}[7 f(x)+5 g(x)-h(x)] d x using given values for f(x)f(x), g(x)g(x), and h(x)h(x).

See Solution

Problem 18837

A dinghy is pulled to a dock with a rope 6ft6 \mathrm{ft} above the bow, hauled in at 2ft/sec2 \mathrm{ft/sec}. Find: (a) Speed of the boat when 10ft10 \mathrm{ft} of rope is out. (b) Rate of change of angle θ\theta at that moment.

See Solution

Problem 18838

Find f(1)f^{\prime}(-1) given that f(x)=x10h(x)f(x)=x^{10} h(x), h(1)=2h(-1)=2, and h(1)=5h^{\prime}(-1)=5.

See Solution

Problem 18839

Find RNR_{N} and calculate the area under f(x)=7x2+49xf(x)=7x^{2}+49x from x=6x=6 to x=11x=11 as a limit. limNRN=\lim_{N \rightarrow \infty} R_{N} =

See Solution

Problem 18840

Solve using Laplace transforms: y+y=u(tπ)u(t3π)y^{\prime \prime}+y=u(t-\pi)-u(t-3\pi), with y(0)=0y(0)=0, y(0)=0y^{\prime}(0)=0.

See Solution

Problem 18841

Approximate the area AA under f(x)=2x2+12xf(x)=2x^2+12x from x=1x=1 to x=3x=3 using a left-endpoint sum: A=limNLNA=\lim_{N \to \infty} L_N.

See Solution

Problem 18842

Inge flies a kite at 300ft300 \mathrm{ft} high, moving away at 25ft/sec25 \mathrm{ft/sec}. How fast to let out string when 500ft500 \mathrm{ft} away?

See Solution

Problem 18843

Approximate the area AA under f(x)=2x2+12xf(x)=2x^2+12x from x=1x=1 to x=3x=3 using left-endpoint sums. Find A=limNLNA=\lim_{N \to \infty} L_N.

See Solution

Problem 18844

Approximate the area AA under f(x)=2x2+12xf(x) = 2x^2 + 12x over [1,3][1,3] using a left-endpoint method. Find A=limNLNA = \lim_{N \to \infty} L_N. Enter exact value.

See Solution

Problem 18845

Find the local maximum of y=x311x240x54y=-x^{3}-11x^{2}-40x-54 and choose a suitable graph window from the options provided.

See Solution

Problem 18846

Find the limit of f(x)=279xf(x)=27-9x over [2,6][2,6] and verify geometrically. The limit is limNMN=7\lim _{N \rightarrow \infty} M_{N}=7.

See Solution

Problem 18847

Find the limit of f(x)=279xf(x)=27-9x as NN approaches infinity over [2,6][2,6] and verify using geometry.

See Solution

Problem 18848

Evaluate the integral of u4\sqrt[4]{u} with respect to uu: u4du\int \sqrt[4]{u} \, du.

See Solution

Problem 18849

Calculate the integral: dw2\int \frac{d w}{\sqrt{2}}.

See Solution

Problem 18850

Calculate the integral of the function: 4x3dx\int 4 x^{3} dx

See Solution

Problem 18851

Find dVdt\frac{dV}{dt} in terms of RR and dRdt\frac{dR}{dt} for V=400280(R2r2)V= \frac{400}{280} (R^2 - r^2) with L=70L=70, p=400p=400, v=0.003v=0.003.

See Solution

Problem 18852

A 26 ft ladder leans against a wall. If the base moves away at 5 ft/s, how fast is the top lowering when 10 ft from the wall?

See Solution

Problem 18853

Given constants p=500p=500, L=80 mmL=80 \mathrm{~mm}, and v=0.003v=0.003, find dV/dtd V / d t in terms of RR and dR/dtd R / d t. If dRdt=0.0002 mm/sec\frac{d R}{d t}=-0.0002 \mathrm{~mm/sec} and R=0.075 mmR=0.075 \mathrm{~mm}, compute dV/dtd V / d t.

See Solution

Problem 18854

A cylinder has a radius decreasing at 2 in/sec and height increasing at 5 in/sec. Find the volume change rate when r=4r=4 in and h=6h=6 in. Use V=πr2hV=\pi r^{2} h.

See Solution

Problem 18855

Two cars start together; one goes north at 25mph25 \mathrm{mph}, the other east at 60mph60 \mathrm{mph}. Find the distance increase rate after 1hr1 \mathrm{hr}. Use D2=x2+y2D^{2}=x^{2}+y^{2} to solve.

See Solution

Problem 18856

Berechne für v0=34 m/sv_{0}=34 \mathrm{~m/s} die mittlere Geschwindigkeit in den ersten 2 Sekunden und die Geschwindigkeit bei t=0,1,2,3,4,5t=0,1,2,3,4,5 s. Was bedeutet negative Geschwindigkeit?

See Solution

Problem 18857

Ein Auto fährt gegen eine Mauer. Berechne die kinetische Energie E(t)=5000t2E(t)=5000 \cdot t^{2} in den Intervallen [0;5][0; 5] und [5;10][5; 10]. Vergleiche die Zunahmen und die mittlere Zunahme. Bestimme die Zunahmegeschwindigkeit E(t)E^{\prime}(t) und den Zeitpunkt, an dem E(t)E(t) am schnellsten wächst. Berechne die Zunahmegeschwindigkeit zu Beginn, nach 5 s und nach 10 s.

See Solution

Problem 18858

Bestimme den Flächeninhalt A, der zwischen den Schnittpunkten der Funktionen f(x)=1xx2f(x)=1 x-x^{2} und g(x)=x22x+1g(x)=x^{2}-2 x+1 liegt.

See Solution

Problem 18859

Show that the function f(x)=xf(x)=\sqrt{x} is uniformly continuous on the interval [a,+)[a,+\infty) for a>0a>0.

See Solution

Problem 18860

A lamppost is 26 ft tall. Andy, 6 ft tall, walks away at 4 ft/sec. When 20 ft away, find the rate of change of his shadow's length.

See Solution

Problem 18861

Bestimme die Ableitung von fa(x)=ax44x3+a2xf_a(x)=a x^{4}-4 x^{3}+a^{2} x und die Steigung bei x=0x=0. Für welches aa ist die Steigung 1?

See Solution

Problem 18862

At noon, ship A is 150 km east of ship B. A sails west at 35 km/h, B sails north at 25 km/h. Find the distance change rate at 4 p.m.

See Solution

Problem 18863

Find the derivative of fa(x)=1ax2+2a+af_a(x)=\frac{1}{a} x^{2}+\frac{2}{a}+a at x=0x=0 and the value of aa for slope = 1.

See Solution

Problem 18864

Find the formula for the area A(y)A(y) of a square cross-section of a pyramid 12 inches tall with a 10-inch base. Show A(12)=100A(12)=100 and evaluate 012A(y)dy\int_{0}^{12} A(y) dy. Explain the result.

See Solution

Problem 18865

A blue car heads north from 15 miles south, and a red car heads east from 20 miles west. Find rates of separation and closest distance.

See Solution

Problem 18866

Berechnen Sie die lokale Änderungsrate von ff an x0x_0 durch Grenzwertrechnung: a) f(x)=0,5x2,x0=2f(x)=0,5 x^{2}, x_{0}=2 b) f(x)=1x2,x0=2f(x)=1-x^{2}, x_{0}=2 c) f(x)=2x+1;x0=3f(x)=2 x+1; x_{0}=3

See Solution

Problem 18867

Calculate the area under the normal curve with mean μ=100\mu = 100 and standard deviation 1515 from scores 112 to 114.

See Solution

Problem 18868

Find the slope of the curve 7y6+8x5=5y+10x7 y^{6}+8 x^{5}=5 y+10 x at the point (1,1).

See Solution

Problem 18869

Ein Ball wird mit 30 m/s in 35 m Höhe geworfen. Bestimme die Höhenfunktion h(t)h(t) und die Aufprallgeschwindigkeit.

See Solution

Problem 18870

Find the slope of the curve 7y9+8x3=2y+13x7 y^{9}+8 x^{3}=2 y+13 x at the point (1,1).

See Solution

Problem 18871

Find the derivative of y=(2t1)(6t5)1y=(2t-1)(6t-5)^{-1}.

See Solution

Problem 18872

Find the derivative of the function y=3ex+e4xy=3 e^{-x}+e^{4 x}.

See Solution

Problem 18873

Finde die Stammfunktion von f(x)=2xf(x)=2 \cdot x für die Bedingungen: a) Ursprung, b) Punkt P(1|4), c) Schnitt bei 3, d) W={yR,y4}W=\{y \in \mathbb{R}, y \geq 4\}, e) Berührung bei Q(1|2).

See Solution

Problem 18874

Bestimmen Sie aa und bb für die Funktion f(x)=12x42x2+4f(x)=\frac{1}{2} x^{4}-2 x^{2}+4. Untersuchen Sie Symmetrie, Nullstellen, Extrema, Wendepunkte und zeichnen Sie den Graphen für 2x2-2 \leq x \leq 2.

See Solution

Problem 18875

Find the derivative of f(x)=x2+xx+3x2f(x) = x^{2} + x \sqrt{x} + 3x - 2 and its domain.

See Solution

Problem 18876

Find the derivative of f(x)=x43x3+4x21f(x) = x^{4}-3 x^{3}+4 x^{2}-1 and state its domain.

See Solution

Problem 18877

Untersuche die Funktion f(x)=13x3+3xf(x)=-\frac{1}{3} x^{3}+3 x: a) Ist sie punktsymmetrisch? b) Finde Nullstellen, Hoch-, Tief- und Wendepunkt. c) Berechne die Steigung im Wendepunkt.

See Solution

Problem 18878

Determine where the function ff is concave down based on its rate of change: (A) 0<x<10<x<1 (B) 1<x<21<x<2 (C) 2<x<32<x<3 (D) 3<x<43<x<4

See Solution

Problem 18879

Let fn(x)=x1+nx2f_n(x) = \frac{x}{1 + n x^2}. Show: 1) fnff_n \to f pointwise, 2) fnf_n converges uniformly to ff, 3) f(x)=limn+fn(x)f'(x) = \lim_{n \to +\infty} f_n'(x) iff xRx \in \mathbb{R}^*.

See Solution

Problem 18880

Find the limit: limn3n9n2+1\lim _{n \rightarrow \infty} 3 n - \sqrt{9 n^{2}+1}.

See Solution

Problem 18881

Find the average rate of change of f(x)=10(2)xf(x)=10(2)^{x} from x=3x=3 to x=5x=5. Enter your answer in the box.

See Solution

Problem 18882

Compute the integral: 1(1+9x2)82(tan1(3x))2dx\int \frac{1}{(1+9 x^{2}) \sqrt{8-2(\tan^{-1}(3 x))^{2}}} dx

See Solution

Problem 18883

Find the extreme points of fa(x)=x33a2x+2f_{a}(x)=x^{3}-3 a^{2} x+2 as a function of the parameter aa.

See Solution

Problem 18884

Find the area to the right of x=1x=1 for the given curve. Choose all that apply: P(x<1)P(x<1), 1P(x>1)1-P(x>1), 1+P(x<1)1+P(x<1), 1P(x<1)1-P(x<1), P(x>1)P(x>1).

See Solution

Problem 18885

Find the average rate of change of f(x)=42x2f(x)=4-2 x^{2} over the interval [1,3][-1,3].

See Solution

Problem 18886

Calculate the average rate of change of g(x)=2x1g(x)=2x-1 on the interval [2,2+b][2, 2+b].

See Solution

Problem 18887

Find the average rate of change of p(t)=(t22)(t+2)t2+4p(t)=\frac{(t^{2}-2)(t+2)}{t^{2}+4} on the interval [3,1][-3,-1].

See Solution

Problem 18888

Consider the functions fn(x)=x1+nx2f_{n}(x)=\frac{x}{1+n x^{2}}. Prove: 1. fnff_{n} \rightarrow f pointwise. 2. fnf_{n} converges uniformly. 3. f(x)=limn+fn(x)f^{\prime}(x)=\lim_{n \rightarrow+\infty} f_{n}^{\prime}(x) iff xRx \in \mathbb{R}^{*}.

See Solution

Problem 18889

Find the derivative f(x)f^{\prime}(x) for f(x)=3e25x2ln(tanx)f(x)=-3 e^{2}-5 x^{-2}-\ln (\tan x).

See Solution

Problem 18890

Calculate the average rate of change of g(x)=2x24g(x)=2x^{2}-4 over the interval [x,x+h][x, x+h].

See Solution

Problem 18891

Find the tangent line equation for the curve f(x)=3x2+1f(x)=-3 x^{2}+1 at the point where x=1x=-1.

See Solution

Problem 18892

Find the average rate of change of f(x)=1x+2f(x)=\frac{1}{x+2} on the interval [0,0+h][0,0+h] for real numbers hh.

See Solution

Problem 18893

Find the derivative dyd y for the function y=cot1(1x2)+sin1(5x)y=\cot^{-1}\left(\frac{1}{x^{2}}\right)+\sin^{-1}(5x).

See Solution

Problem 18894

Find dy for the function y=cot1(1x2)+sin1(5x)y=\cot^{-1}\left(\frac{1}{x^2}\right)+\sin^{-1}(5x).

See Solution

Problem 18895

Find the acceleration of the object at t=5t=5 seconds, given s(t)=4t32t+1s(t)=4 t^{3}-2 t+1.

See Solution

Problem 18896

Find the derivative ff^{\prime} of the function f(x)=sinxcosxf(x)=\frac{\sin x}{\cos x}.

See Solution

Problem 18897

Approximate the area under f(x)=x22x+3f(x)=x^{2}-2 x+3 from x=1x=1 to x=3x=3 using Right Hand Riemann Rule with n=4n=4.

See Solution

Problem 18898

Find the derivative of f(x)cotxf(x) \cot x. Which option is correct?
1) f(x)cotx+f(x)csc2xf^{\prime}(x) \cot x + f(x) \csc^2 x 2) f(x)csc2x-f^{\prime}(x) \csc^2 x 3) f(x)tanxf(x)csc2xf^{\prime}(x) \tan x - f(x) \csc^2 x 4) f(x)cotxf(x)csc2xf^{\prime}(x) \cot x - f(x) \csc^2 x

See Solution

Problem 18899

Find the derivative of f(x)cotxf(x) \cot x. Choose the correct option from:
1. f(x)cotx+f(x)csc2xf^{\prime}(x) \cot x + f(x) \csc^2 x
2. f(x)csc2x-f^{\prime}(x) \csc^2 x
3. f(x)tanxf(x)csc2xf^{\prime}(x) \tan x - f(x) \csc^2 x
4. f(x)cotxf(x)csc2xf^{\prime}(x) \cot x - f(x) \csc^2 x

See Solution

Problem 18900

Find f(π3)f^{\prime}\left(\frac{\pi}{3}\right) for f(x)=cotxsinxf(x)=\frac{\cot x}{\sin x}.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord