Calculus

Problem 28001

Find the tangent line to f(x)=x2f(x)=x^{2} at x=3x=3. Choose the correct equation: a. y=6x9y=6 x-9, b. y=3x6y=3 x-6, c. y=2x6y=2 x-6, d. y=2x3y=2 x-3.

See Solution

Problem 28002

Find the integral of the function: 2x(x1)2dx\int \frac{2 x}{(x-1)^{2}} d x

See Solution

Problem 28003

Find the limit: limx2x24x24x+4\lim _{x \rightarrow 2} \frac{x^{2}-4}{x^{2}-4 x+4}

See Solution

Problem 28004

Finde die Tangentengleichung an die Funktion f(x)=x33xf(x) = x^3 - 3x durch den Wendepunkt.

See Solution

Problem 28005

A \$4,000 deposit earns 5.5% interest, compounded continuously, for 30 years. What is the final amount received?

See Solution

Problem 28006

Find the volume of revolution for the region between x=y2x=y^{2}, x=6yx=6-y, and the xx-axis using different methods.

See Solution

Problem 28007

Find the limit as xx approaches 0 for the expression 2xtan2x\frac{2 x}{\tan ^{2} \sqrt{x}}.

See Solution

Problem 28008

Find the area between the curve y=xy=x, the xx-axis, and the lines x=0x=0 and x=ax=a where a>0a>0.

See Solution

Problem 28009

Find dydx\frac{d y}{d x} for the function y=sin(2x)+2xy = \sin(2x) + 2x.

See Solution

Problem 28010

Calculate the integral 02xdx\int_{0}^{2} x \, dx.

See Solution

Problem 28011

Find the general solution to the equation x¨+ωn2x=0\ddot{x}+\omega_{n}^{2} x=0.

See Solution

Problem 28012

Calculate the integral 0111+x2dx\int_{0}^{1} \frac{1}{1+x^{2}} d x.

See Solution

Problem 28013

Find the limit as xx approaches 0 for 2xtan2(x)\frac{2x}{\tan^{2}(\sqrt{x})} using L'Hôpital's rule.

See Solution

Problem 28014

Find turning points for these functions: a) y=12x2x2y=12 x-2 x^{2} (first derivative) b) y=72x4y=7-2 x^{4} (second derivative).

See Solution

Problem 28015

Calculate the integral 2xcos(x25)\int 2 x \cos \left(x^{2}-5\right).

See Solution

Problem 28016

Differentiate xsinx+cosxx \sin x + \cos x and evaluate 0π2xcosxdx\int_{0}^{\frac{\pi}{2}} x \cos x \, dx. Also, find yy if dydx=12x\frac{d y}{d x} = \frac{1}{\sqrt{2-x}} and y=2y=-2 when x=1x=1.

See Solution

Problem 28017

Calculate the integrals: 1) 7sin(x)dx\int 7 \sin (x) dx, 2) 9sin(3x)dx\int 9 \sin (3x) dx, 3) 7cos(5x)dx\int 7 \cos (5x) dx.

See Solution

Problem 28018

Verify that xp=acos(ωt)ωn2ω2x_{p}=a \frac{\cos (\omega t)}{\omega_{n}^{2}-\omega^{2}} solves x^+ω1t2x=acos(ωt)\hat{x}+\omega_{1 t}^{2} x=a \cos (\omega t) and yp=bsin(ωt)ωn2ω2y_{p}=b \frac{\sin (\omega t)}{\omega_{n}^{2}-\omega^{2}} solves y+ωn2y=bsin(ωt)y+\omega_{n}^{2} y=b \sin (\omega t) for ω±ωn\omega \neq \pm \omega_{n}.

See Solution

Problem 28019

Find the oblique asymptotes, domain, range, vertical asymptotes, behavior near them, and end behavior for g(x)=x38x23x4g(x) = \frac{x^{3} - 8}{x^{2} - 3x - 4}.

See Solution

Problem 28020

Evaluate the integral from 0 to 2: 02xdx\int_{0}^{2} x \, dx.

See Solution

Problem 28021

Calculate the integral: (cosx+sinx)dx=\int(\cos x + \sin x) \, dx = \ldots

See Solution

Problem 28022

Find dydx\frac{d y}{d x} for the equation sin2x+2x=0\sin 2 x + 2 x = 0.

See Solution

Problem 28023

Calculate the integral from 0 to 1 of 11+x2\frac{1}{1+x^{2}} with respect to xx.

See Solution

Problem 28024

Find the area between the curve y=xy=x, the xx-axis, and the lines x=0x=0 and x=ax=a, where a>0a>0.

See Solution

Problem 28025

Calculate the integral of etan1x1+x2dx\int \frac{e^{\tan^{-1} x}}{1+x^{2}} \, dx.

See Solution

Problem 28026

A particle's acceleration is a=(166t)ms2a=(16-6t) \mathrm{ms}^{-2}. Given x=5x=-5, v=1v=1 at t=1t=1, find speed UU at t=Tt=T.

See Solution

Problem 28027

Show that the function f(x)=sin(1x)f(x)=\sin \left(\frac{1}{x}\right) is bounded for x0x \neq 0.

See Solution

Problem 28028

Show that the sequence nn+2\frac{\sqrt{n}}{\sqrt{n}+2} is a Cauchy sequence using its definition.

See Solution

Problem 28029

Find the limit as xx approaches 3 for f(g(x))f(g(x)) where f(x)=12x6f(x)=\frac{1}{2x-6} and g(x)=x2g(x)=\sqrt{x-2}.

See Solution

Problem 28030

Evaluate the integral π4π4sin2(x)dx\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \sin ^{2}(x) \, dx.

See Solution

Problem 28031

Calculate the value of the integral 0π6(secx+tanx)2dx\int_{0}^{\frac{\pi}{6}}(\sec x+\tan x)^{2} d x.

See Solution

Problem 28032

Calculate the integral 02xdx\int_{0}^{2} x \, dx. Choose: a) 1 b) 0 c) 2 d) None

See Solution

Problem 28033

Determine if the following statements are true or false and justify:
1. Is R\mathbb{R} closed?
2. Is {1,2}\{1,2\} not closed in R\mathbb{R}?
3. Is n=1[2,2+1n]=ϕ\bigcap_{n=1}^{\infty}\left[2,2+\frac{1}{n}\right]=\phi?
4. Is f(x)=sin(1x)f(x)=\sin \left(\frac{1}{x}\right) bounded in R\mathbb{R}?
5. If f(x)f(x) is continuous at x=cx=c, is it differentiable at x=cx=c?
6. Is ddxf(x)-\frac{d}{d x} f(x) at x=cx=c unique if it exists?

See Solution

Problem 28034

Berechnen Sie die Ableitung f(x)f^{\prime}(x) der Funktion f(x)=4x22f(x)=4 x^{2}-2 an der Stelle x=3x=3.

See Solution

Problem 28035

Find relative extrema of g(x)=x+2sinxg(x) = x + 2 \sin x on (0,2π)(0, 2\pi) using the second derivative test.

See Solution

Problem 28036

A helicopter drops a bag from 669 m669 \mathrm{~m} at 100 m/s100 \mathrm{~m/s}. What is the bag's impact velocity? Options: a. 153 m/s153 \mathrm{~m/s} b. 122 m/s122 \mathrm{~m/s} c. 199 m/s199 \mathrm{~m/s} d. 229 m/s229 \mathrm{~m/s} e. 76 m/s76 \mathrm{~m/s}

See Solution

Problem 28037

Bestimme f(1)f^{\prime}(1) und f(2)f^{\prime}(2) für f(x)=3x2f(x)=3 x^{2}; sowie f(3)f^{\prime}(3) und f(2)f^{\prime}(-2) für f(x)=4x2f(x)=4 x^{2}.

See Solution

Problem 28038

Find the derivative of 3sin(5x)+73 \sin (5 x) + 7. What is ddx(3sin(5x)+7)\frac{d}{d x}(3 \sin (5 x)+7)?

See Solution

Problem 28039

Find the derivative of y=(x39)4y=(x^{3}-9)^{4} with respect to xx: dydx\frac{d y}{d x}.

See Solution

Problem 28040

Find the derivative of a2x\sqrt{a-2x} with respect to xx, where aa is a constant.

See Solution

Problem 28041

Find the sum of the series: 1+12+14+18+1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots What does it converge to?

See Solution

Problem 28042

Find the derivative of y=(x+1)2x+5y=(x+1) \sqrt{2 x+5} with respect to xx: dydx\frac{d y}{d x}.

See Solution

Problem 28043

Find the derivative of y=xx2y=\frac{x}{x-2}, which is dydx\frac{d y}{d x}. Options: 2(x2)2-\frac{2}{(x-2)^{2}}, 2x2-\frac{2}{x-2}, 2(x2)2\frac{2}{(x-2)^{2}}, 2x2\frac{2}{x-2}.

See Solution

Problem 28044

Find the derivative of (x1)(x+3)(x-1)(x+3). Choices: 2x22x-2, 1-1, 11, 2x+22x+2.

See Solution

Problem 28045

Find the derivative of y=2x1x1y=\frac{\sqrt{2 x-1}}{x-1}, i.e., compute dydx\frac{d y}{d x}.

See Solution

Problem 28046

Find the derivative dydx\frac{d y}{d x} for y=x2x+3y=\frac{x}{\sqrt{2 x+3}}.

See Solution

Problem 28047

Find dsdt\frac{d s}{d t} for s=44et25ts=4-4 e^{-t}-\frac{2}{5} t. Choose the correct option from the given choices.

See Solution

Problem 28048

Find the value of mm for which the line x+y=mx+y=m is normal to the curve y2=12xy^{2}=12 x.

See Solution

Problem 28049

Find the value of ddx(extanx)\frac{d}{d x}\left(e^{x} \tan x\right) when x=0x=0. Options: -1, 0, 2, 1.

See Solution

Problem 28050

Find aa, bb, and cc in the derivative equation: d(12e3x+2x27)dx=ae3x+bx+c\frac{d(12 e^{3 x}+2 x^{2}-7)}{d x}=a e^{3 x}+b x+c.

See Solution

Problem 28051

Find the derivative of exsinx+excosxe^{x} \sin x + e^{x} \cos x. What is it?

See Solution

Problem 28052

Find the derivative of y=6x2+cos(3x)x2sin(x)y=6 x^{2}+\cos (3 x)-x^{2} \sin (x). What is dydx=\frac{d y}{d x}=?

See Solution

Problem 28053

Find aa in the equation: d(ecos(x))dx=aecos(x)sin(x)\frac{d\left(e^{\cos (x)}\right)}{d x}=a e^{\cos (x)} \sin (x).

See Solution

Problem 28054

Find the derivative of 15x2+sec(2x)x4cos(2x) 15 x^{2}+\sec (2 x)-x^{4} \cos (2 x) and match it with the options provided.

See Solution

Problem 28055

Bestimme den Wert von xx, um die Querschnittsfläche einer U-förmigen Rinne aus einer 40 cm breiten Blechtafel zu maximieren.

See Solution

Problem 28056

Find the degree of the differential equation dydx=3x7dydx\frac{d y}{d x}=\frac{3 x-7}{\frac{d y}{d x}}. Options: 1, 2, 3, Cannot be determined.

See Solution

Problem 28057

Find the limit: limx0e2xsinx3x\lim _{x \rightarrow 0} \frac{e^{2 x} \sin x}{3 x}. What is the value? Options: 1/21/2, 1/51/5, 1/31/3, 1/41/4.

See Solution

Problem 28058

Solve the equation (2+sinx)dydx+(y+1)cosx=0(2+\sin x) \frac{d y}{d x}+(y+1) \cos x=0 with y(0)=1y(0)=1 to find y(π/2)y(\pi / 2). Options: 13\frac{-1}{3}, 13\frac{1}{3}, 43\frac{4}{3}, 23\frac{-2}{3}.

See Solution

Problem 28059

Calculate the integral from 0 to 1 of 11+x2\frac{1}{1+x^{2}} dx. What is the value? Options: 1, 0, π4\frac{\pi}{4}, π2\frac{\pi}{2}.

See Solution

Problem 28060

Find the limit: limx1tan(x1)x1=? \lim _{x \rightarrow 1} \frac{\tan (x-1)}{x-1} = ? Options: O2, O1, O1, O0.

See Solution

Problem 28061

Find the order of the differential equation with the general solution y=(c1+c2)cos(x+c3)c4ex+c5y=(c_{1}+c_{2}) \cos (x+c_{3})-c_{4} e^{x}+c_{5}.

See Solution

Problem 28062

Find nn in the equation: d(esin(x))dx=esin(x)cosn(x)\frac{d\left(e^{\sin (x)}\right)}{d x}=e^{\sin (x)} \cos ^{n}(x).

See Solution

Problem 28063

Leite die Funktion f(x)=12(ex+ex)f(x)=\frac{1}{2}\left(e^{-x}+e^{x}\right) ab.

See Solution

Problem 28064

Find the limits of the piecewise function f(x)={2x1x>13x1x1f(x)=\left\{\begin{array}{ll}2 x-1 & x>1 \\ 3 x-1 & x \leq 1\end{array}\right. as xx approaches 1.

See Solution

Problem 28065

Find the derivative of 1+ex\sqrt{1+e^{x}} and select the correct answer from the options: 1) ex1+ex\frac{e^{x}}{\sqrt{1+e^{x}}} 2) ex21+ex\frac{e^{x}}{2 \sqrt{1+e^{x}}} 3) 2ex1+ex\frac{2 e^{x}}{\sqrt{1+e^{x}}} 4) 121+ex\frac{1}{2 \sqrt{1+e^{x}}}

See Solution

Problem 28066

Find aa and bb in y=ex(acos(2x)+bsin(2x))y' = e^x(a \cos(2x) + b \sin(2x)) for y=ex(12cos(2x)9sin(2x))y = e^x(12 \cos(2x) - 9 \sin(2x)).

See Solution

Problem 28067

Find aa and bb in the derivative y=ex(acos(2x)+bsin(2x))y' = e^x(a \cos(2x) + b \sin(2x)) for y=ex(3sin(2x)+6cos(2x))y = e^x(3 \sin(2x) + 6 \cos(2x)).

See Solution

Problem 28068

Find the limit: limx2x38x2=\lim _{x \rightarrow 2} \frac{x^{3}-8}{x-2}=? (Options: 1, 12, 20, 10)

See Solution

Problem 28069

Find the derivative of y=e5x4y=e^{5 x^{4}} in the form dydx=axnebx4\frac{d y}{d x}=a x^{n} e^{b x^{4}}. Identify aa, nn, and bb.

See Solution

Problem 28070

Bestimme die Monotonieintervalle und die Extrempunkte der Funktionen: a) f(x)=4x2+3f(x)=4 x^{2}+3, b) f(x)=18x5f(x)=18 x^{5}, c) f(x)=13x34x+2f(x)=\frac{1}{3} x^{3}-4 x+2.

See Solution

Problem 28071

Berechne die Verkaufszahlen für f(t)=4400tf(t)=4-\frac{400}{t} in den ersten 800 und 807 Tagen und bestimme f(800)f^{\prime}(800).

See Solution

Problem 28072

Berechne den Unterschied zwischen maximaler und minimaler Temperatur an einem Sommertag mit T(t)=11000(14t3+411t22218t+19089)T(t)=\frac{1}{1000}(-14 t^{3}+411 t^{2}-2218 t+19089).

See Solution

Problem 28073

Find the derivative of y=e1xy=e^{\frac{1}{\sqrt{x}}} with respect to xx.

See Solution

Problem 28074

Find α\alpha in the equation d(ex2e2x)dx=α(xex2e2x)\frac{d\left(e^{x^{2}}-e^{2 x}\right)}{d x}=\alpha\left(x e^{x^{2}}-e^{2 x}\right).

See Solution

Problem 28075

Calculate the integral: cos2xdx=\int \cos ^{2} x \, dx =

See Solution

Problem 28076

Is f(x)=x4+8x3+19x2+12xf(x)=x^{4}+8 x^{3}+19 x^{2}+12 x at x=2x=-2 a max or min? Justify your answer.

See Solution

Problem 28077

Berechne für den Weg s(t)=0,4t2s(t)=0,4 t^{2} nach 10 s: a) zurückgelegter Weg, b) Durchschnittsgeschwindigkeit, c) Geschwindigkeit.

See Solution

Problem 28078

sinxx+12=0\sin x - x + \frac{1}{2} = 0 denkleminin [0,π][0, \pi] aralığındaki kökünü basit iterasyonla iki adımda bulun.

See Solution

Problem 28079

Find the limit as xx approaches 76\frac{7}{6} from the left for 16x76x\frac{16x}{7-6x}.

See Solution

Problem 28080

Find the limit as x x approaches -1 for f(x) f(x) and determine if f(1) f(-1) is defined.

See Solution

Problem 28081

Find the tangent line equation for the curve y=2x24x+1y=2 x^{2}-4 x+1 at x=3x=3. Choose the correct option.

See Solution

Problem 28082

Berechne den Differenzenquotienten für die Funktionen ff in den angegebenen Intervallen II.

See Solution

Problem 28083

Find the limit as zz approaches 76\frac{7}{6} from the right for 16z76z\frac{16 z}{7-6 z}.

See Solution

Problem 28084

Identify which statements about limits are true:
1. limxa+f(x)=6\lim _{x \rightarrow a^{+}} f(x)=-6 implies limxaf(x)=6\lim _{x \rightarrow a} f(x)=-6.
2. limxaf(x)=6\lim _{x \rightarrow a} f(x)=-6 and limxa+f(x)=6\lim _{x \rightarrow a^{+}} f(x)=-6 imply limxaf(x)=6\lim _{x \rightarrow a^{-}} f(x)=-6.
3. limxaf(x)=6\lim _{x \rightarrow a} f(x)=-6 implies limxa+f(x)=6\lim _{x \rightarrow a^{+}} f(x)=-6.
4. limxaf(x)=6\lim _{x \rightarrow a} f(x)=-6 implies limxaf(x)=6\lim _{x \rightarrow a^{-}} f(x)=-6.
5. limxaf(x)=6\lim _{x \rightarrow a^{-}} f(x)=-6 implies limxa+f(x)=6\lim _{x \rightarrow a^{+}} f(x)=-6.
6. limxaf(x)=6\lim _{x \rightarrow a^{-}} f(x)=-6 implies limxaf(x)=6\lim _{x \rightarrow a} f(x)=-6.
7. limxa+f(x)=6\lim _{x \rightarrow a^{+}} f(x)=-6 implies limxaf(x)=6\lim _{x \rightarrow a^{-}} f(x)=-6.
8. limxa+f(x)=6\lim _{x \rightarrow a^{+}} f(x)=-6 and limxaf(x)=6\lim _{x \rightarrow a^{-}} f(x)=-6 imply limxaf(x)=6\lim _{x \rightarrow a} f(x)=-6.
9. limxaf(x)=6\lim _{x \rightarrow a} f(x)=-6 and limxaf(x)=6\lim _{x \rightarrow a^{-}} f(x)=-6 imply limxa+f(x)=6\lim _{x \rightarrow a^{+}} f(x)=-6.

See Solution

Problem 28085

Finde die 1. und 2. Ableitung von f(x)=5e7x2+4xf(x) = 5e^{7x^2 + 4x}.

See Solution

Problem 28086

Evaluate the limit: limx33x1x3\lim _{x \rightarrow 3} \frac{3 x-1}{x-3}. Choices: a. does not exist b. 2 c. -2 d. 1

See Solution

Problem 28087

Find where the graph of f(x)=x4+2x3100x2+30x4f(x)=x^{4}+2 x^{3}-100 x^{2}+30 x-4 is concave up and down.

See Solution

Problem 28088

Given the function h(t)=4.9t2+78.4t+11h(t)=-4.9 t^{2}+78.4 t+11, find the velocity at t=6t=6, minimum height, and impact velocity.

See Solution

Problem 28089

Determine the convergence of the series n=1e1n\sum_{n=1}^{\infty} e^{\frac{1}{n}}. Options: a) 1, b) 1e1\frac{1}{e-1}, c) e, d) diverges.

See Solution

Problem 28090

Is the function f(t)=2etetf(t)=\frac{2}{e^{t}-e^{-t}} continuous everywhere? True or False? Justify and find its interval(s) of continuity.

See Solution

Problem 28091

Find the limit: limx0x8\lim _{x \rightarrow 0} x^{8}. Show that for ε>0\varepsilon>0, choose δ=ε8\delta=\sqrt[8]{\varepsilon}.

See Solution

Problem 28092

Find the volume of the solid formed by revolving the triangle bounded by 3x+4y=123x + 4y = 12 and the xx-axis around the xx-axis.

See Solution

Problem 28093

Find the volume of the solid formed by rotating the area between y=2xy=2-x, x=2x=2, and y=2y=2 around the yy-axis.

See Solution

Problem 28094

Find the volume of the solid formed by revolving the area between y=xy=x, y=0y=0, and x=3x=3 around the line x=2x=-2 using the shell method.

See Solution

Problem 28095

Calculate the surface area from revolving y=x+1y=\sqrt{x+1}, for 1x191 \leq x \leq 19, around the specified axis.

See Solution

Problem 28096

Find the arc length of the curve y=3x3/21y=3 x^{3/2}-1 from x=0x=0 to x=1x=1.

See Solution

Problem 28097

Evaluate the integral 22(x3cosx2+1)4x2dx\int_{-2}^{2}\left(x^{3} \cos \frac{x}{2}+1\right) \sqrt{4-x^{2}} d x.

See Solution

Problem 28098

Determine if limx5f(x)\lim _{x \rightarrow 5} f(x) exists for f(x)={x225x5x50x=5f(x)=\left\{\begin{array}{cc}\frac{x^{2}-25}{x-5} & x \neq 5 \\ 0 & x=5\end{array}\right.. Explain your reasoning.

See Solution

Problem 28099

Calculate the work done by a force moving an object 12 m12 \mathrm{~m}, given the force varies from 55 N to 22 N.

See Solution

Problem 28100

Find the volume of the solid formed by revolving the area between y=xy=x and y=x2y=x^{2} around the yy-axis using the shell method.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord