Calculus

Problem 4401

Calculate the derivative of h(t)=10(6t)e0.05t2+0.6t1.75h(t)=10 \cdot(6-t) \cdot e^{-0.05 t^{2}+0.6 t-1.75} with respect to tt.

See Solution

Problem 4402

Zeichnen Sie die Graphen der Funktionen und finden Sie die Stellen x0\mathrm{x}_{0}, an denen die Ableitung nicht existiert. a) f(x)=x21f(x)=\left|x^{2}-1\right| b) f(x)={x2,x1x,x>1f(x)=\left\{\begin{array}{ll}x^{2}, & x \leq 1 \\ x, & x>1\end{array}\right. c) f(x)={x2,x00,0<x1x1,x>1f(x)=\left\{\begin{array}{ll}x^{2}, & x \leq 0 \\ 0, & 0<x \leq 1 \\ x-1, & x>1\end{array}\right.

See Solution

Problem 4403

Find the derivative of f(t)=e0.05t2+0.6t1.75f(t) = e^{-0.05t^2 + 0.6t - 1.75}.

See Solution

Problem 4404

Calculate the volume of the solid formed by rotating the parabola y=x2y=x^{2} from x=0x=0 to x=3x=3 around the xx-axis.

See Solution

Problem 4405

Find the volume of the solid formed by rotating the area between y=xx2y=x-x^{2} and the xx-axis around the xx-axis.

See Solution

Problem 4406

Calculate the volume of the solid formed by rotating the area between the xx-axis and x=11+y2x=\frac{1}{1+y^{2}}, x=12x=\frac{1}{2} around the xx-axis.

See Solution

Problem 4407

Find the volume of the solid formed by rotating the area between the xx-axis and x=y+5x=\sqrt{y}+5, x=5x=5, x=7x=7 around the xx-axis.

See Solution

Problem 4408

Find the volume when the area between y=3xy=3-x, y=0y=0, x=0x=0, x=2x=2 is rotated around the yy-axis.

See Solution

Problem 4409

Find the volume when the region between y=14xy=\frac{1}{4-x}, y=0y=0, x=1x=1, and x=2x=2 is rotated around x=4x=4.

See Solution

Problem 4410

Find the volume when the area between y=x2y=x^{2} and y=3xy=3x is rotated around the yy-axis.

See Solution

Problem 4411

Calculate the integral: 12(x2+1)dx\int_{1}^{2}\left(x^{2}+1\right) dx.

See Solution

Problem 4412

Finde die Extrempunkte der Funktion f(x)=18x413x3+1f(x)=-\frac{1}{8} x^{4}-\frac{1}{3} x^{3}+1.

See Solution

Problem 4413

Find limxf(x)\lim _{x \rightarrow \infty} f(x) and limxf(x)\lim _{x \rightarrow -\infty} f(x) for f(x)=x32x+1136x5f(x)=\frac{x^{3}-2 x+11}{3-6 x^{5}}.

See Solution

Problem 4414

Finden Sie die Extrempunkte der Funktion f(x)=x312xf(x)=x^{3}-12 x mit der ersten und zweiten Ableitung.

See Solution

Problem 4415

Bestimme die Extrempunkte der Funktionen f(x)=x33x2f(x)=x^{3}-3 x^{2}, f(x)=x3+6x2f(x)=-x^{3}+6 x^{2}, f(x)=x312xf(x)=x^{3}-12 x, f(x)=16x3+2xf(x)=-\frac{1}{6} x^{3}+2 x, f(x)=13x332x2+1f(x)=\frac{1}{3} x^{3}-\frac{3}{2} x^{2}+1, f(x)=13x3+4x29xf(x)=\frac{1}{3} x^{3}+4 x^{2}-9 x mit Ableitungen.

See Solution

Problem 4416

Bestimme die Hoch- und Tiefpunkte der Funktionen: a) f(x)=x33x2f(x)=x^{3}-3 x^{2}, b) f(x)=x312xf(x)=x^{3}-12 x, c) f(x)=13x332x2+1f(x)=\frac{1}{3} x^{3}-\frac{3}{2} x^{2}+1, d) f(x)=x3+6x2f(x)=-x^{3}+6 x^{2}, e) f(x)=16x3+2xf(x)=-\frac{1}{6} x^{3}+2 x mithilfe der Ableitungen.

See Solution

Problem 4417

Bestimmen Sie die Wertebereiche der Funktionen f(x)=2sin(x)1f(x)=2 \sin (x)-1 und g(x)=2x1g(x)=2 x-1. Zeigen Sie, dass die Graphen GfG_f und GgG_g im Punkt A(01)A(0|-1) die gleiche Steigung haben. Finden Sie eine Tangentengleichung an GfG_f, die parallel zu gg verläuft und nicht den Punkt AA enthält.

See Solution

Problem 4418

A tank has 180 gallons and 45 oz of salt. Water flows in with concentration 16(1+18sint)\frac{1}{6}\left(1+\frac{1}{8} \sin t\right) oz/gal at 8 gal/min. Find the long-term oscillation level and amplitude, rounded to two decimals. Level = oz, Amplitude = oz.

See Solution

Problem 4419

A tank has 180 gallons and 45 oz of salt. Water with salt concentration 16(1+18sint)\frac{1}{6}\left(1+\frac{1}{8} \sin t\right) oz/gal flows in at 8 gal/min. Find the constant level O2 and amplitude of oscillation (oz), rounded to two decimal places.

See Solution

Problem 4420

Calculate the average rate of change of y=5x+1y=\sqrt{5x+1} from x=3x=3 to x=7x=7. Simplify your answer.

See Solution

Problem 4421

Find the integral of the expression: (4y+cos(y))dy\int(4 y+\cos (y)) d y.

See Solution

Problem 4422

Calculate the integral: 1y2dy\int \frac{1}{y^{2}} d y

See Solution

Problem 4423

Berechne den Flächeninhalt AA unter den Funktionen f(x)=x3f(x)=x^{3}, f(x)=x2+2x+3f(x)=-x^{2}+2x+3, und f(x)=x34x2+3xf(x)=x^{3}-4x^{2}+3x im Intervall von 0 bis 1.

See Solution

Problem 4424

Berechne die Ableitungen der Funktionen: a) f(t)=7t3f(t)=\sqrt{7 t-3}, b) f(x)=(x+1)4f(x)=(x+1)^{-4}, c) f(t)=(6t)2f(t)=(6 t)^{-2}, d) f(t)=24t+6f(t)=-2 \cdot \sqrt{4 t+6}, e) f(x)=(x+2)6f(x)=(-x+2)^{-6}, f) f(x)=32xf(x)=\sqrt{3-2 x}, g) f(x)=38xf(x)=-\sqrt{3-8 x}, h) f(t)=3(5t4)3f(t)=3 \cdot(5 t-4)^{-3}, i) f(x)=3xf(x)=\sqrt{3 x}.

See Solution

Problem 4425

Leiten Sie die Funktionen ab: a) f(x)=sin(3x+3)f(x)=\sin (3 x+3), b) f(t)=2cos(πt2)f(t)=2 \cdot \cos (\pi t-2), c) f(t)=cos(5t)f(t)=-\cos (5 t), d) f(x)=4sin(πx)f(x)=-4 \cdot \sin (\pi-x), e) f(t)=sin(t6)f(t)=\sin (t-6), f) f(x)=cos(3x+π)f(x)=\cos (3 x+\pi).

See Solution

Problem 4426

Finde die Hoch- und Tiefpunkte der Funktion f(x)=(x2)2f(x) = (x-2)^2.

See Solution

Problem 4427

Geben Sie an, ob die Aussagen richtig oder falsch sind und nennen Sie Gegenbeispiele bei falschen Aussagen. a) an+bna_n + b_n konvergent? b) anbna_n - b_n divergent? c) an+bna_n + b_n konvergent? d) Ist bn=1anb_n = \frac{1}{a_n} konvergent?

See Solution

Problem 4428

Find the derivative of f(x)=e5x210xf(x)=e^{5 x^{2}} \cdot 10 x.

See Solution

Problem 4429

Bestimmen Sie die Ableitung von f(x)=(x2+1)(x62)f(x)=(x^{2}+1)(x^{6}-2) mit der Produktregel.

See Solution

Problem 4430

Bestimmen Sie die Ableitung von f(x)f(x) für die folgenden Funktionen: a) f(x)=x4x3x2f(x)=\frac{x^{4}-x^{3}}{x^{2}} b) f(x)=x12+x8+1x10f(x)=\frac{x^{12}+x^{8}+1}{x^{10}} c) f(x)=x4+2x2x5f(x)=\frac{x^{4}+2 x^{2}}{x^{5}}

See Solution

Problem 4431

Find the average rate of change of f(x)=x1x+4f(x)=\frac{x-1}{x+4} on [3,5] and [x, x+h].

See Solution

Problem 4432

Determine the local max and min of f(t)=0.25t33t2+9tf(t)=0.25t^{3}-3t^{2}+9t using first and second derivatives.

See Solution

Problem 4433

Bestimmen Sie die Werte der folgenden Integrale und veranschaulichen Sie sie mit einer Figur: a) 150,25xdx\int_{1}^{5} 0,25 x d x b) 0,53xdx\int_{0,5}^{3} x d x c) 141,8dx\int_{-1}^{4} 1,8 d x d) 502tdt\int_{5}^{0} 2 t d t e) 62(2x+2)dx\int_{6}^{2}(2 x+2) d x f) 52(0,5u1)du\int_{-5}^{-2}(-0,5 u-1) d u

See Solution

Problem 4434

Gegeben ist die Funktion f(x)=0,25x2(x2)(x+1)+1f(x)=-0,25 x^{2}(x-2)(x+1)+1.
a) Skizziere den Graphen der Ableitungsfunktion ff' und erläutere dein Vorgehen. b) Bestimme ff' rechnerisch und überprüfe mit dem GTR, ob der Graph von ff' deiner Skizze entspricht.

See Solution

Problem 4435

Finde die Stammfunktion von (x2+2x)ex(x^{2}+2x) \cdot e^{-x} mit dem Hauptsatz der Differential- und Integralrechnung.

See Solution

Problem 4436

Calculate the integral 52(0.5u1)du\int_{-5}^{-2}(-0.5 u - 1) \, du.

See Solution

Problem 4437

Find the equation of the curve where dydx=4x6\frac{d y}{d x}=4 x-6 and it passes through the point (2,4)(2,4).

See Solution

Problem 4438

Ordnen Sie den Graphen ff den Ableitungen ff^{\prime}. Bestimmen Sie ff^{\prime} und prüfen Sie mit dem GTR.
Bestimmen Sie die Stellen, an denen f(x)=2x2+2f(x)=2 x^{2}+2 die Steigung m=4m=4 hat und dieselbe Steigung wie g(x)=x34x1g(x)=x^{3}-4 x-1.
Bilden Sie die Ableitungen von f(x)=2x26x+6,5f(x)=2 x^{2}-6 x+6,5, g(x)=x38x2+16xg(x)=x^{3}-8 x^{2}+16 x und h(x)=x45x2+4h(x)=x^{4}-5 x^{2}+4. Finden Sie die Extrempunkte und skizzieren Sie die Graphen. Überprüfen Sie Ihre Ergebnisse mit dem GTR.

See Solution

Problem 4439

Bestimmen Sie die Ableitung der Funktionen: a) f(x)=x(x3)f(x)=x \cdot(x-3) b) f(x)=5x3x35f(x)=\frac{5}{x^{3}}-\frac{x^{3}}{5} c) f(x)=(x+4)2f(x)=(x+4)^{2} d) f(x)=x4+1x2f(x)=\sqrt[4]{x}+\frac{1}{x^{2}} e) f(x)=x(x+1x)f(x)=x \cdot\left(x+\frac{1}{x}\right) f) f(x)=2x3x5f(x)=\frac{2}{\sqrt{x}}-\frac{3}{x^{5}}

See Solution

Problem 4440

The AROC of f(x)=P(0.2)xf(x)=P(0.2)^{x} on [3,3+h][3,3+h] is negative for any h>0h>0. True or False?

See Solution

Problem 4441

Bestimmen Sie die Ableitung von f(x)=12x2f(x) = \frac{1}{2}-x^{2}.

See Solution

Problem 4442

Find the derivative of f(x)=18(12x2)7f(x)=\frac{1}{8}\left(\frac{1}{2}-x^{2}\right)^{7}.

See Solution

Problem 4443

Find the tangent line to the curve with dydx=4(2y+1)2\frac{dy}{dx} = \frac{4}{{(2y+1)}^2} at the point (1,2)(-1,-2).

See Solution

Problem 4444

Bestimmen Sie die Ableitung von f(x)=(23x+x2)3f(x) = (2-3x+x^2)^3.

See Solution

Problem 4445

Bestimme die Ableitung von f(x)=3x2+(x21)3f(x)=3 x^{2}+(x^{2}-1)^{3}.

See Solution

Problem 4446

Bestimmen Sie die Wendestellen und Sattelstellen für: a) f(x)=2x32x2+1f(x)=2 x^{3}-2 x^{2}+1 b) g(x)=3x4+8x3g(x)=3 x^{4}+8 x^{3} c) h(x)=14x4+103x316x2+32xh(x)=-\frac{1}{4} x^{4}+\frac{10}{3} x^{3}-16 x^{2}+32 x

See Solution

Problem 4447

Bestimmen Sie die Ableitung von ff mit f(x)=38xf(x)=-\sqrt{3-8 x}.

See Solution

Problem 4448

Solve the system: x=(106610)x+(2tet)\mathbf{x}^{\prime}=\begin{pmatrix}-10 & 6 \\ 6 & -10\end{pmatrix} \mathbf{x}+\begin{pmatrix}2 t \\ e^{t}\end{pmatrix}.

See Solution

Problem 4449

Bestimmen Sie die erste Ableitung von f(t)=2cos(πt2)f(t)=2 \cdot \cos (\pi t-2).

See Solution

Problem 4450

Find the integral of the function: (x23x4)dx\int \left(\frac{x^{2}}{3}-\frac{x}{4}\right) dx.

See Solution

Problem 4451

Bestimmen Sie die Ableitung von f(t)=cos(st)tf(t)=-\cos(st)-t.

See Solution

Problem 4452

Bestimmen Sie die Ableitung von f(t)=cos(st)f(t)=-\cos(st).

See Solution

Problem 4453

Bestimmen Sie die erste Ableitung von f(t)=cos(5t)f(t)=-\cos(5t).

See Solution

Problem 4454

Bestimmen Sie die Extrempunkte von f(x)f(x) im angegebenen Intervall: a) f(x)=sin(2πx)f(x)=\sin (2 \pi x) für x[0;1]x \in[0 ; 1]; b) f(x)=2cos(x+π2)f(x)=2 \cos \left(x+\frac{\pi}{2}\right) für x[0;2π]x \in[0 ; 2 \pi]; c) f(x)=sin(π(x0,5))+2f(x)=-\sin (\pi(x-0,5))+2 für x[0;2]x \in[0 ; 2].

See Solution

Problem 4455

Find the limit: limx15π14cos(14xcos(7x))\lim _{x \rightarrow \frac{15 \pi}{14}} \cos (14 x-\cos (7 x)). Is the function continuous at this point?

See Solution

Problem 4456

Find the limit: limx(x+4x+49)\lim _{x \rightarrow \infty}(\sqrt{x+4}-\sqrt{x+49}). Simplify your answer.

See Solution

Problem 4457

Find the limit of f(x)=2x4f(x)=\frac{2}{x}-4 as xx \to \infty and xx \to -\infty. What is limxf(x)\lim_{x \to \infty} f(x)?

See Solution

Problem 4458

Bestimmen Sie die Ableitung von f(x)=(2x)3f(x) = (2-x)^{3}.

See Solution

Problem 4459

How much will \$ 5,000,000 grow in 30 years at a continuous 4% interest rate? A. \$ 16,405,153.94 B. \$ 16,600,584.61 C. \$ 16,567,490.07 D. \$ 16,501,934.47

See Solution

Problem 4460

Find the limit of f(x)=8+2x38x2f(x)=\frac{-8+\frac{2}{x}}{3-\frac{8}{x^{2}}} as xx \to \infty and xx \to -\infty.

See Solution

Problem 4461

Bestimme die Wendepunkte und die Tangentensteigungen für die Funktionen: a) fa(x)=x3ax2f_{a}(x)=x^{3}-a x^{2}, b) fa(x)=a3xx2f_{a}(x)=\frac{a^{3}}{x}-x^{2}, c) fa(x)=x42ax2+1f_{a}(x)=x^{4}-2 a x^{2}+1.

See Solution

Problem 4462

Estimate the instantaneous rate of change of y=x3+2xy=x^{3}+2x at x=2x=2 using the difference quotient with h=0.1h=0.1.

See Solution

Problem 4463

Find the derivative of h(x)=(x22x)2h(x)=\left(\frac{x}{2-2x}\right)^{2}. What is h(x)=?h^{\prime}(x)=?

See Solution

Problem 4464

Gegeben ist die Funktion f:x1x+0,5+1f: x \mapsto \frac{-1}{x+0,5}+1. Bestimmen Sie die Asymptoten und prüfen Sie für x=2x=2 und x=3x=3, ob GfG_f im Streifen liegt.

See Solution

Problem 4465

Find the limit as hh approaches 0 of f(3+h)f(3)h\frac{f(3+h)-f(3)}{h} for f(x)=6x1f(x)=6x-1. Simplify your answer.

See Solution

Problem 4466

Gegeben ist die Funktion f(x)=x23xf(x)=x^{2}-3 x. a) Zeichnen Sie den Graphen für 1x4-1 \leq x \leq 4. b) Bestimmen Sie die Steigung bei x0=2x_0=2. c) Finden Sie den Steigungswinkel bei x0=2x_0=2. d) Welchen Winkel schneidet der Graph mit der y-Achse?

See Solution

Problem 4467

Find the derivative of h(x)=(2x3x1)3h(x)=\left(\frac{2x}{3x-1}\right)^{3}.

See Solution

Problem 4468

Find the derivative of h(x)=(2x3x1)3h(x)=\left(\frac{2 x}{3 x-1}\right)^{3}. What is N(x)=?N(x)=?

See Solution

Problem 4469

Find the limit as hh approaches 0 for f(7+h)f(7)h\frac{f(7+h)-f(7)}{h} where f(x)=x2+2f(x)=x^{2}+2. What is the limit?

See Solution

Problem 4470

Find the derivative of h(x)=(2x3x1)3h(x)=\left(\frac{2 x}{3 x-1}\right)^{3}. What is h(x)=?h^{\prime}(x)=?

See Solution

Problem 4471

Find the critical points of the function F(t)=13t35t2+21t+25F(t)=\frac{1}{3} t^{3}-5 t^{2}+21 t+25 and characterize them. Round answers to two digits.

See Solution

Problem 4472

Find the tangent line equation for y=16xy=16\sqrt{x} at (16,64) and sketch both. Equation: (Type an equation.)

See Solution

Problem 4473

Verify the max rate of change of y=cosxy=\cos x at x=270x=270^{\circ} using slopes of points around it.

See Solution

Problem 4474

Find the critical points of the function F(t)=13t35t2+21t+25F(t)=\frac{1}{3} t^{3}-5 t^{2}+21 t+25 and characterize them.

See Solution

Problem 4475

Find the tangent line equation for y=6x3y=6x^3 at point (1,6) and sketch both the curve and tangent line.

See Solution

Problem 4476

Find the critical points of the function F(t)=13t35t2+21t+25F(t)=\frac{1}{3} t^{3}-5 t^{2}+21 t+25 and characterize them.

See Solution

Problem 4477

Find the derivative of the function h(x)=2cos14(x)h(x)=2 \cos^{14}(x).

See Solution

Problem 4478

Verify the max rate of change of y=cosxy=\cos x at x=270x=270^{\circ} using slopes of points near 270270^{\circ}.

See Solution

Problem 4479

Find the extremum of the function g(z)=28(e5z+3e4z)8g(z) = 28\left(e^{5 z}+3 e^{-4 z}\right)^{8}.

See Solution

Problem 4480

Find the derivative of h(x)=2cos14(x)h(x)=2 \cos^{14}(x). What is h(x)=?h'(x)=?

See Solution

Problem 4481

Bestimme die Ableitung von f(x)=3xf(x) = \sqrt{3x}.

See Solution

Problem 4482

Find the derivative of h(x)=2cos14(x)h(x)=2 \cos^{14}(x). What is h(x)h'(x)?

See Solution

Problem 4483

Find the limit: limh0(2+h)24h\lim _{h \rightarrow 0} \frac{(2+h)^{2}-4}{h}.

See Solution

Problem 4484

Find the derivative of h(x)=sin(2x43)h(x)=-\sin(2x^4-3). What is h(x)h'(x)?

See Solution

Problem 4485

Find the limit as xx approaches 5 for the expression (x5)(x+9)(x5)(x+2)\frac{(x-5)(x+9)}{(x-5)(x+2)}.

See Solution

Problem 4486

Evaluate the limit: limh0(4+h)216h\lim _{h \rightarrow 0} \frac{(4+h)^{2}-16}{h}. What is the result?

See Solution

Problem 4487

Find the limit: limx8x364xx2+8x\lim _{x \rightarrow-8} \frac{x^{3}-64 x}{x^{2}+8 x}.

See Solution

Problem 4488

Find the limit: limx1(x+1)(x+3)(x+1)(x+5)\lim _{x \rightarrow-1} \frac{(x+1)(x+3)}{(x+1)(x+5)}.

See Solution

Problem 4489

Find the derivative of f(x)=2tan(x2)+5sec(3x)+csc(4x)f(x)=2 \tan \left(x^{2}\right)+5 \sec (3 x)+\csc (4 x).

See Solution

Problem 4490

Find the derivative of f(t)=(3x42x)3xf(t) = (3x^4 - 2x) \cdot \sqrt{3x}.

See Solution

Problem 4491

Evaluate the limit: limx0x3+2x2xx\lim _{x \rightarrow 0} \frac{x^{3}+2 x^{2}-x}{x}.

See Solution

Problem 4492

Find dydx\frac{d y}{d x} using the chain rule: dydx=dydududx\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x} for y=5u45y=5 u^{4}-5 and u=3xu=3 \sqrt{x}.

See Solution

Problem 4493

Find the limit of the difference quotient for the derivative of f(x)=(x+5)2f(x)=(x+5)^{2}.

See Solution

Problem 4494

Find dydx\frac{d y}{d x} using the chain rule for y=5u45y=5 u^{4}-5 and u=3xu=3 \sqrt{x}.

See Solution

Problem 4495

Given the function f(x)=3x+7f(x)=3x+7, find the limit of the difference quotient for its derivative and compute f(12)f^{\prime}(12).

See Solution

Problem 4496

A ball is dropped from a height of 230 m230 \mathrm{~m}. Find average velocity for 6t76 \leq t \leq 7 and others. Instantaneous velocity at t=6 st=6 \mathrm{~s}?

See Solution

Problem 4497

Find the derivative dydx\frac{d y}{d x} of the function y=5x3xsinxy=5 x^{3}-x \sin x.

See Solution

Problem 4498

A ball is dropped from a 200 m200 \mathrm{~m} building. Find average velocity d(t)=4.9t2d(t)=4.9 t^{2} for 4t54 \leq t \leq 5 and t=4t=4. What is the instantaneous velocity at t=4 st=4 \mathrm{~s}?

See Solution

Problem 4499

Find the limit: limh0(1+h)21h\lim _{h \rightarrow 0} \frac{(1+h)^{2}-1}{h}. What is the result?

See Solution

Problem 4500

Find the limit as xx approaches -3 for the expression (x+3)(x+1)(x+3)(x+6)\frac{(x+3)(x+1)}{(x+3)(x+6)}.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord