Calculus

Problem 19101

Prove that 01sin(x2)dx\int_{0}^{1} \sin \left(x^{2}\right) d x cannot equal 2. Choose the correct reasoning.

See Solution

Problem 19102

Use the Integral Test to check if the series k=1e4k1+e8k\sum_{k=1}^{\infty} \frac{e^{4 k}}{1+e^{8 k}} converges. Identify conditions satisfied by f(x)=e4x1+e8xf(x)=\frac{e^{4 x}}{1+e^{8 x}}. Select A-F.

See Solution

Problem 19103

Solve the IVP: dydt=28t\frac{d y}{d t}=2-8 t, with y(0)=8y(0)=-8.

See Solution

Problem 19104

Use the Integral Test to check if the series k=1e4k1+e8k\sum_{k=1}^{\infty} \frac{e^{4 k}}{1+e^{8 k}} converges.

See Solution

Problem 19105

Solve dzdt=t3/2\frac{d z}{d t}=t^{-3 / 2} with z(64)=4z(64)=-4.

See Solution

Problem 19106

Use the Integral Test to check if the series k=1ke3k2\sum_{k=1}^{\infty} k e^{-3 k^{2}} converges. Which conditions apply to f(x)=xe3x2f(x)=x e^{-3 x^{2}}? A. ak=f(k)a_{k}=f(k) B. f(x)f(x) is decreasing for x1x \geq 1 C. f(x)f(x) is continuous for x1x \geq 1 D. f(x)f(x) is increasing for x1x \geq 1 E. f(x)f(x) is negative for x1x \geq 1 F. f(x)f(x) is positive for x1x \geq 1.

See Solution

Problem 19107

Use the Integral Test to check if the series k=1ke3k2\sum_{k=1}^{\infty} k e^{-3 k^{2}} converges. Select: A. Converges, B. Diverges, C. Test not applicable.

See Solution

Problem 19108

Use the Integral Test to check if the series converges: k=29k(lnk)2\sum_{k=2}^{\infty} \frac{9}{k(\ln k)^{2}}. Which conditions apply to f(x)=9x(lnx)2f(x)=\frac{9}{x(\ln x)^{2}}?

See Solution

Problem 19109

Prove that for the curve (2y+1)324x=3(2 y+1)^{3}-24 x=-3, the derivative is dydx=4(2y+1)2\frac{dy}{dx} = \frac{4}{(2y+1)^2}.

See Solution

Problem 19110

Use the Integral Test to check the convergence of k=22k(lnk)2\sum_{k=2}^{\infty} \frac{2}{k(\ln k)^{2}}. Which conditions apply? A. Positive for x2x \geq 2 B. Increasing for x2x \geq 2 C. Negative for x2x \geq 2 D. ak=f(k)a_{k}=f(k) for k=2,3,4k=2,3,4 E. Continuous for x2x \geq 2 F. Decreasing for x2x \geq 2.

See Solution

Problem 19111

A penny is flipped upward at 2.85 m/s2.85 \mathrm{~m/s}. Calculate the maximum height it reaches above your hand.

See Solution

Problem 19112

Find the derivative f(x)f'(x) for the function f(x)=ex7x2+1f(x)=\frac{e^{x}}{7 x^{2}+1}.

See Solution

Problem 19113

Calculate the derivative f(x)f'(x) for the function f(x)=8x26x5f(x)=\frac{8x^{2}}{6x-5}.

See Solution

Problem 19114

Find the derivative f(x)f'(x) for the function f(x)=ex3x2+8f(x)=\frac{e^{x}}{3 x^{2}+8}.

See Solution

Problem 19115

Find the derivative f(x)f^{\prime}(x) for the function f(x)=ex8x2+1f(x)=\frac{e^{x}}{8 x^{2}+1}.

See Solution

Problem 19116

Verify if the function P(x)=x53x3+1P(x)=x^{5}-3 x^{3}+1 has a zero between -1.8 and -1.7 using the intermediate value theorem.

See Solution

Problem 19117

Show that P(x)=4x22x5P(x)=4 x^{2}-2 x-5 has a zero between 1 and 2 using the intermediate value theorem. Approximate the zero.

See Solution

Problem 19118

Verify if the function P(x)=x54x3+1P(x)=x^{5}-4 x^{3}+1 has a real zero between -2.04 and -2.02 using the intermediate value theorem.

See Solution

Problem 19119

Verify if P(x)=x53x3+1P(x)=x^{5}-3 x^{3}+1 has a zero between -1.8 and -1.7 using the intermediate value theorem. Approximate the zero to the nearest hundredth: x=x=\square.

See Solution

Problem 19120

Verify if the function P(x)=x54x3+1P(x)=x^{5}-4x^{3}+1 has a zero between -2.04 and -2.02 using the intermediate value theorem. Approximate the zero to the nearest hundredth: x=x=\square.

See Solution

Problem 19121

Use the intermediate value theorem to show there's a zero for P(x)=8x412x2+16x20P(x)=8x^4-12x^2+16x-20 between 1 and 1.5. Evaluate P(1)P(1) and P(1.5)P(1.5). Why do they indicate a zero exists? A. Opposite signs, B. Same sign, C. P(1)P(1.5)P(1) \neq P(1.5), D. P(1)<P(1.5)P(1)<P(1.5).

See Solution

Problem 19122

Verify if P(x)=x53x3+1P(x) = x^{5} - 3x^{3} + 1 has a zero between -1.8 and -1.7 using the intermediate value theorem.

See Solution

Problem 19123

Find the differential dyd y for y=ln(1+x2)y=\ln(1+x^{2}) at x=2.6x=2.6 and dx=0.3d x=0.3. Round to three decimal places.

See Solution

Problem 19124

Find the speed of a penny just before it hits the ground, falling from 1.26 m1.26 \mathrm{~m}. Use energy concepts.

See Solution

Problem 19125

Find the derivative f(x)f'(x) for the function f(x)=9x26x7f(x)=\frac{9 x^{2}}{6 x-7}. What is f(x)f'(x)?

See Solution

Problem 19126

Determine the vertical and horizontal asymptotes for the function f(x)=1x+3f(x)=\frac{1}{x+3}.

See Solution

Problem 19127

Determine if the series k=1kk2+6\sum_{k=1}^{\infty} \frac{k}{k^{2}+6} converges or diverges. Choose A-F and fill in the box.

See Solution

Problem 19128

Evaluate the integral I=3dxx+2I=\int_{-\infty}^{-3} \frac{d x}{|x+2|}.

See Solution

Problem 19129

Determine if the series k=2k6k2π\sum_{k=2}^{\infty} \frac{k^{6}}{k^{2 \pi}} converges or diverges using relevant tests.

See Solution

Problem 19130

Determine if the series k=2kπk4\sum_{k=2}^{\infty} \frac{k^{\pi}}{k^{4}} converges using the Divergence, Integral, or p-series test.

See Solution

Problem 19131

Find G(2)G(2) and G(2)G^{\prime}(2) for G(x)=2xt3+1dtG(x)=\int_{2}^{x} \sqrt{t^{3}+1} d t.

See Solution

Problem 19132

Determine if the series k=14k2+11k\sum_{k=1}^{\infty} \frac{\sqrt{4 k^{2}+11}}{k} converges or diverges.

See Solution

Problem 19133

Check if the series converges or diverges: n=04n2n9n\sum_{n=0}^{\infty} \frac{4^{n}-2^{n}}{9^{n}}.

See Solution

Problem 19134

Determine if the series k=21(k1)4\sum_{k=2}^{\infty} \frac{1}{(k-1)^{4}} converges or diverges. What is pp?

See Solution

Problem 19135

Find the subinterval length Δx\Delta x for [0,2][0,2] with n=4n=4. List grid points x0\mathrm{x}_{0} to x4\mathrm{x}_{4}. Identify points for left, right, and midpoint Riemann sums.

See Solution

Problem 19136

Determine if the series k=14k+6k11k\sum_{k=1}^{\infty} \frac{4^{k}+6^{k}}{11^{k}} converges or diverges.

See Solution

Problem 19137

Determine if the series k=14k+7k11k\sum_{k=1}^{\infty} \frac{4^{k}+7^{k}}{11^{k}} converges or diverges.

See Solution

Problem 19138

Find the differential dyd y for y=ln(1+x2)y=\ln(1+x^{2}) at x=2.2x=2.2 and dx=0.6d x=0.6. Round to three decimal places.

See Solution

Problem 19139

Solve the differential equation: 5dydθ=eysin2(θ)ysec(θ)5 \frac{d y}{d \theta}=\frac{\mathrm{e}^{y} \sin ^{2}(\theta)}{y \sec (\theta)}. Use CC as a constant.

See Solution

Problem 19140

Estimate f(5.2)f(5.2) using the linear approximation given f(5)=5.1f(5)=5.1 and f(5)=3.2f'(5)=3.2. Provide your answer to three decimal places.

See Solution

Problem 19141

Determine if the series converges:
k=08(1)k9k+7\sum_{k=0}^{\infty} \frac{8(-1)^{k}}{9 k+7}
Evaluate limkak\lim_{k \rightarrow \infty} a_k where ak=89k+7a_k = \frac{8}{9k+7}.

See Solution

Problem 19142

Determine if the series k=09(1)k8k+5\sum_{k=0}^{\infty} \frac{9(-1)^{k}}{8 k+5} converges. Define aka_{k}. Choose A, B, or C.

See Solution

Problem 19143

Find the indefinite integral: ex1exdx\int e^{x} \sqrt{1-e^{x}} \, dx

See Solution

Problem 19144

Determine if the series k=08(1)k9k+7\sum_{k=0}^{\infty} \frac{8(-1)^{k}}{9 k+7} converges. Define aka_{k} and choose its behavior: A, B, or C.

See Solution

Problem 19145

Calculate the indefinite integral: ln(e6x9)dx\int \ln \left(e^{6 x-9}\right) d x.

See Solution

Problem 19146

Calculate the integral from 0 to 1 for xe7x2x e^{-7 x^{2}}.

See Solution

Problem 19147

Calculate the left and right Riemann sums for f(x)=2x+2f(x)=\frac{2}{x}+2 on [1,5][1,5] with n=4n=4.

See Solution

Problem 19148

Find critical numbers of f(x)f(x), intervals of increase/decrease, and all relative extrema for f(x)=x23x4x2f(x)=\frac{x^{2}-3 x-4}{x-2}.

See Solution

Problem 19149

Evaluate the integral: 0π/2esin5πxcos5πxdx\int_{0}^{\pi / 2} e^{\sin 5 \pi x} \cos 5 \pi x \, dx.

See Solution

Problem 19150

Find the positive critical number of the function f(x)=(x29)3f(x)=(x^{2}-9)^{3}. Round your answer to three decimal places.

See Solution

Problem 19151

Estimate f(9.3)f(9.3) using linear approximation given f(9)=1.7f(9)=1.7 and f(9)=4f'(9)=4. Round to three decimal places.

See Solution

Problem 19152

Find the integral of sin2θcosθ\sin^{2} \theta \cos \theta with respect to θ\theta.

See Solution

Problem 19153

Determine if the series k=09(1)k8k+5\sum_{k=0}^{\infty} \frac{9(-1)^{k}}{8 k+5} converges. Evaluate limkak\lim_{k \to \infty} a_{k}.

See Solution

Problem 19154

Calculate the left and right Riemann sums for f(x)=2x+5f(x)=\frac{2}{x}+5 on [1,5][1,5] with n=4n=4. Left sum: \square.

See Solution

Problem 19155

Evaluate the integral from 0 to π2\frac{\pi}{2}: 0π/2esin5πxcos5πxdx\int_{0}^{\pi / 2} e^{\sin 5 \pi x} \cos 5 \pi x \, dx. Use a graphing tool to check your answer.

See Solution

Problem 19156

Find dydx\frac{dy}{dx} from the equation V=4.7x1.5ln(x)+1.8y1.3ln(y)V=-4.7x-1.5\ln(x)+1.8y-1.3\ln(y), then evaluate at x=3x=3, y=8y=8. Round to three decimal places.

See Solution

Problem 19157

Find the derivative of f(x)=9+2.6tan1(4.6ln(x))f(x)=9+2.6 \tan ^{-1}(4.6 \ln (x)) and evaluate it at x=6x=6. Round to three decimal places.

See Solution

Problem 19158

Find the positive value of xx where f(x)=0f''(x)=0 for f(x)=xexp(x2/5)f(x)=x \exp(-x^{2}/5). Round to three decimal places.

See Solution

Problem 19159

A bacteria culture starts with 740 and grows proportionally. After 3 hours, it has 2220. Find P(t)P(t), P(5)P(5), and time for 2250.

See Solution

Problem 19160

Find the positive value of xx where the second derivative f(x)=0f''(x)=0 for the function f(x)=xexp(x2/3)f(x)=x \exp(-x^{2}/3). Round to three decimal places.

See Solution

Problem 19161

Calculate the integral: 4x16x2dx\int \frac{4 x}{\sqrt{16-x^{2}}} d x

See Solution

Problem 19162

A bacteria culture starts with 1000 and grows to 5000 in 5 hours. Find P(t)P(t), P(6)P(6), and time to reach 1790.

See Solution

Problem 19163

A bacteria culture starts with 660 and grows proportionally. Find P(t)P(t), population after 7 hours, and time to reach 2770.

See Solution

Problem 19164

Find the tangent line equation for y=xsin(x)y=x^{\sin (x)} at the point (π2,π2)\left(\frac{\pi}{2}, \frac{\pi}{2}\right).

See Solution

Problem 19165

Find the tangent line equation to the function at the point (7,1)(7,1) for y=9x7y=9^{x-7}.

See Solution

Problem 19166

A bacteria culture starts with 1000 and grows proportionally. Find P(t)P(t) after tt hours, P(8)P(8), and time to reach 1010.

See Solution

Problem 19167

Find dydx\frac{d y}{d x} from the equation V=3.7x2.2ln(x)+2y1.4ln(y)V=-3.7 x-2.2 \ln (x)+2 y-1.4 \ln (y) and evaluate at x=4x=4, y=10y=10. Round to three decimal places.

See Solution

Problem 19168

Find the derivative of f(x)=3+3.4tan1(3.6ln(x))f(x)=3+3.4 \tan^{-1}(3.6 \ln(x)) and calculate f(8)f'(8) rounded to three decimal places.

See Solution

Problem 19169

Find dy/dxd y / d x using logarithmic differentiation for y=(9+x)4/xy=(9+x)^{4/x}. dydx=\frac{d y}{d x}=\square

See Solution

Problem 19170

Solve the differential equation dPdt=5Pt\frac{d P}{d t}=5 \sqrt{P t} with the initial condition P(1)=5P(1)=5.

See Solution

Problem 19171

Find the derivative of the integral: ddx0sinx2t23t5dt\frac{d}{d x} \int_{0}^{\sin x} \sqrt{\frac{2}{t^{2}-3 t-5}} d t

See Solution

Problem 19172

Determine if the series k=1(1)k+1k14k+1\sum_{k=1}^{\infty}(-1)^{k+1} \frac{k}{14 k+1} converges or diverges.

See Solution

Problem 19173

Determine if the series k=18(1)k+1k7\sum_{k=1}^{\infty} \frac{8(-1)^{k+1}}{k^{7}} converges. Identify aka_{k}.

See Solution

Problem 19174

Berechnen Sie die Fläche zwischen den Graphen der Funktionen und der xx-Achse im Intervall [1; 5]. Funktionen: a) f(x)=x+5f(x)=-x+5 b) f(x)=0,2x2+2f(x)=0,2 x^{2}+2 c) f(x)=x3+1f(x)=x^{3}+1 d) f(x)=37x2+27f(x)=-\frac{3}{7} x^{2}+27 Skizzieren Sie die Graphen und erstellen Sie eine Wertetabelle mit drei Punkten.

See Solution

Problem 19175

Determine if the series k=17(1)k+1k4\sum_{k=1}^{\infty} \frac{7(-1)^{k+1}}{k^{4}} converges or diverges.

See Solution

Problem 19176

Ein Körper bewegt sich mit dem Weg s(t)=4t2s(t)=4 t^{2}.
a) Finde die momentane Änderungsrate von ss bei t0=1t_{0}=1 und t1=5t_{1}=5. b) Was bedeutet die momentane Änderungsrate von ss?

See Solution

Problem 19177

Determine if the series k=1(1)k+1k4k3+1\sum_{k=1}^{\infty}(-1)^{k+1} \frac{k}{4 k^{3}+1} converges using the Alternating Series Test. Are the terms nonincreasing?

See Solution

Problem 19178

Find the displacement and total distance traveled for v(t)=5t7v(t)=5t-7 from t=0t=0 to t=2t=2. Show your work using integrals.

See Solution

Problem 19179

Determine if the series k=0(34)k\sum_{k=0}^{\infty}\left(-\frac{3}{4}\right)^{k} converges. Describe ak>0a_{k}>0. Choose A, B, or C.

See Solution

Problem 19180

Does the series k=1(1)k+1k6+4k3+1k(k5+1)\sum_{k=1}^{\infty}(-1)^{k+1} \frac{k^{6}+4 k^{3}+1}{k\left(k^{5}+1\right)} converge? Define aka_{k}.

See Solution

Problem 19181

Find how many terms of the series k=1(1)kk4\sum_{k=1}^{\infty} \frac{(-1)^{k}}{k^{4}} must be summed for the remainder to be < 10510^{-5}. The answer is \square.

See Solution

Problem 19182

Determine if the series converges: k=0(35)k\sum_{k=0}^{\infty}\left(-\frac{3}{5}\right)^{k}. Choose A, B, C, D, or E and fill in the blanks.

See Solution

Problem 19183

Find the number of terms needed for the series k=1(1)k+1k2\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^{2}} so that the remainder is < 10310^{-3}.

See Solution

Problem 19184

Determine if the series converges: k=1(1)k+1k18+4k9+1k(k17+1)\sum_{k=1}^{\infty}(-1)^{k+1} \frac{k^{18}+4 k^{9}+1}{k(k^{17}+1)}. Find aka_{k} where ak>0a_{k}>0. What is ak=a_{k}=\square?

See Solution

Problem 19185

Determine if the series converges: k=1(1)k+1k6+3k3+10k(k5+10)\sum_{k=1}^{\infty}(-1)^{k+1} \frac{k^{6}+3 k^{3}+10}{k(k^{5}+10)}. Find ak=a_{k} = \square.

See Solution

Problem 19186

Determine if the series k=0(37)k\sum_{k=0}^{\infty}\left(-\frac{3}{7}\right)^{k} converges or diverges.

See Solution

Problem 19187

Determine if the series converges: k=1cosπkk2\sum_{k=1}^{\infty} \frac{\cos \pi k}{k^{2}}. Describe ak=cosπkk2a_{k} = \frac{|\cos \pi k|}{k^{2}}. Choose A, B, or C.

See Solution

Problem 19188

Determine if the series k=1(1)k+1k6+3k3+10k(k5+10)\sum_{k=1}^{\infty}(-1)^{k+1} \frac{k^{6}+3 k^{3}+10}{k(k^{5}+10)} converges. Define ak=k5+3k2+10kk5+10a_{k}=\frac{k^{5}+3 k^{2}+\frac{10}{k}}{k^{5}+10}. Is aka_{k} increasing, nonincreasing, or neither for k>Nk > N? Choose A, B, or C.

See Solution

Problem 19189

Determine if the series converges using the Alternating Series Test:
k=1(1)k+1k8k5+1\sum_{k=1}^{\infty}(-1)^{k+1} \frac{k}{8 k^{5}+1}
Are the terms nonincreasing in magnitude? Choose A or B.

See Solution

Problem 19190

Bestimme die Ableitung f(x)f^{\prime}(x) für folgende Funktionen: a) f(x)=3x2f(x)=3 x^{2}, b) f(x)=5x3f(x)=5 x^{3}, c) f(x)=12x4f(x)=\frac{1}{2} x^{4}, d) f(x)=2x7f(x)=-2 x^{7}, e) f(x)=12x2f(x)=\frac{1}{2} x^{-2}, f) f(x)=5x3f(x)=-5 x^{-3}, g) f(x)=0,2x5f(x)=-0,2 x^{5}, h) f(x)=4x12f(x)=4 x^{\frac{1}{2}}.

See Solution

Problem 19191

Leiten Sie die Funktionen ff ab: a) f(x)=2x3+5x2f(x)=2 x^{3}+5 x^{2}, b) f(x)=4x53xf(x)=4 x^{5}-3 x, c) f(x)=2x73x4f(x)=2 x^{7}-3 x^{4}, d) f(x)=0,25x4x3f(x)=0,25 x^{4}-x^{3}, e) f(t)=5t44t3+tf(t)=-5 t^{4}-4 t^{3}+t, f) f(z)=23z3+2z2+3f(z)=-\frac{2}{3} z^{3}+2 z^{2}+3, g) f(a)=a216a+5f(a)=a^{2}-16 a+5, h) f(x)=15x53x32f(x)=\frac{1}{5} x^{5}-3 x^{3}-2, i) f(t)=t42t3+14t2tf(t)=t^{4}-2 t^{3}+\frac{1}{4} t^{2}-t.

See Solution

Problem 19192

Berechnen Sie die Integrale von f(x)=5x32xxf(x)=\frac{5 x^{3}-2 x}{x}, g(x)=x2+xg(x)=x^{2}+\sqrt{x} und h(x)=2x5+3h(x)=\frac{2}{x^{5}}+3.

See Solution

Problem 19193

Bestimme f(x)f^{\prime}(x) für die Funktionen: 1a) f(x)=x3+x2f(x)=x^{3}+x^{2}, 1b) f(x)=x4+x2f(x)=x^{4}+x^{2}, 1c) f(x)=x5+x4f(x)=x^{5}+x^{4}, 1d) f(x)=x4+1f(x)=x^{4}+1, 1e) f(x)=x7+x4+x2f(x)=x^{7}+x^{4}+x^{2}, 1f) f(x)=x8+x3+5f(x)=x^{8}+x^{3}+5, 1g) f(x)=x5+x+3f(x)=x^{5}+x+3, 1h) f(x)=x11+x7+x3f(x)=x^{11}+x^{7}+x^{3}, 1i) f(x)=x5+x4+x3+x2f(x)=x^{5}+x^{4}+x^{3}+x^{2}. 2a) f(x)=3x2f(x)=3 x^{2}, 2b) f(x)=5x3f(x)=5 x^{3}, 2c) f(x)=12x4f(x)=\frac{1}{2} x^{4}, 2d) f(x)=2x7f(x)=-2 x^{7}, 2e) f(x)=12x2f(x)=\frac{1}{2} x^{-2}, 2f) f(x)=5x3f(x)=-5 x^{-3}, 2g) f(x)=0,2x5f(x)=-0,2 x^{5}, 2h) f(x)=4x12f(x)=4 x^{\frac{1}{2}}. 3a) f(x)=2x3+5x2f(x)=2 x^{3}+5 x^{2}, 3b) f(x)=4x53xf(x)=4 x^{5}-3 x, 3c) f(x)=2x73x4f(x)=2 x^{7}-3 x^{4}, 3d) f(x)=0,25x4x3f(x)=0,25 x^{4}-x^{3}, 3e) f(t)=5t44t3+tf(t)=-5 t^{4}-4 t^{3}+t, 3f) f(z)=23z3+2z2+3f(z)=-\frac{2}{3} z^{3}+2 z^{2}+3, 3g) f(a)=a216a+5f(a)=a^{2}-16 a+5, 3h) f(x)=15x53x32f(x)=\frac{1}{5} x^{5}-3 x^{3}-2, 3i) f(t)=t42t3+14t2tf(t)=t^{4}-2 t^{3}+\frac{1}{4} t^{2}-t.

See Solution

Problem 19194

Find the derivative of y=sinxcosxy=\sin x \cos x. What is yy^{\prime}? A. 12sin2x\frac{1}{2} \sin 2 x B. 14cos2x\frac{1}{4} \cos 2 x C. cos2x\cos 2 x D. None

See Solution

Problem 19195

Solve the IVP: dydx=(9x+2)3\frac{d y}{d x}=(9 x+2)^{3} with y(0)=5y(0)=5.

See Solution

Problem 19196

Determine the derivative f(x)f'(x) of the function f(x)=23sin32x27sin72xf(x)=\frac{2}{3} \sin^{\frac{3}{2}} x - \frac{2}{7} \sin^{\frac{7}{2}} x. Choose the correct option: A, B, C, or D.

See Solution

Problem 19197

Untersuchen Sie die Medikamentenkonzentration f(t)=0,015t30,6t2+6tf(t)=0,015 t^{3}-0,6 t^{2}+6 t im Blut.
a) Bestimmen Sie f(1)f(1). b) Finden Sie tt, wenn f(t)=0f(t)=0. c) Analysieren Sie das Verhalten von f(t)f(t) für tt \rightarrow \infty.

See Solution

Problem 19198

Untersuche das Verhalten der Funktion g(x)=6xx21g(x)=\frac{6 x}{x^{2}-1} für große x|x| und finde die Asymptoten.

See Solution

Problem 19199

Bestimme eine Stammfunktion für ff: a) f(x)=4x3+2x21f(x)=4 x^{3}+2 x^{2}-1, d) f(x)=34x2+87x3f(x)=\frac{3}{4} x^{2}+\frac{8}{7} x^{3}.

See Solution

Problem 19200

1. Given the utility function U(x1,x2)=x13x23U(x_{1}, x_{2})=x_{1}^{3} x_{2}^{3}, with prices \$15 and \$30 and a budget of \$900, find:
a) The budget constraint equation. b) The optimal bundle where MRSMRS equals the price ratio. c) The expression ln[U(x1,x2)]\ln[U(x_{1}, x_{2})]. d) The optimal bundle using Lagrange method. Is it the same as in (b)?

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord