Calculus

Problem 27801

Differentiate the integral x2sinx(lnt+43dt)\int_{x^{2}}^{\sin x}(\sqrt[3]{\ln |t+4|} d t) with respect to xx.

See Solution

Problem 27802

Finde Werte für a,b,c,da, b, c, d in f(t)=a(tb)ect+df(t)=a \cdot(t-b) \cdot e^{-c t}+d für die Aussagen (1)-(5) zur Übernachtungszahlen.

See Solution

Problem 27803

Sophie hat Fieber, beschrieben durch f(t)=1,5te0,5t+1+37f(t)=1,5 \cdot t \cdot e^{-0,5 t+1}+37. Bestimme max. Temperatur, Abnahmezeit, langfristige Temp., und mehr.

See Solution

Problem 27804

Find the volume of the solid formed by revolving the area between y=secxy=\sec x, y=2y=\sqrt{2}, x=π4x=-\frac{\pi}{4}, x=π4x=\frac{\pi}{4} around y=2y=-\sqrt{2}.

See Solution

Problem 27805

Find the limit: limx23x2\lim _{x \rightarrow 2^{-}} \frac{3}{x-2}.

See Solution

Problem 27806

Find the distance a particle moves from t=0t=0 to t=3t=3 with velocity v(t)=etv(t)=e^{t}. Show your calculator input.

See Solution

Problem 27807

Evaluate the derivative: ddx3x23x(t1)2dt\frac{d}{d x} \int_{3}^{x^{2}-3 x}(t-1)^{2} d t

See Solution

Problem 27808

Find the function F(x)=3x+5dxF(x)=\int \frac{3}{x+5} dx given F(4)=7F(-4)=-7.

See Solution

Problem 27809

Estimate the velocity after 5 seconds using the trapezoid rule with acceleration a(t)a(t) values at t=0,1,2,3,4,5t = 0, 1, 2, 3, 4, 5.

See Solution

Problem 27810

Find f(5)f(5) if ff is the antiderivative of x3x2+3\frac{x^{3}}{x^{2}+3} and f(1)=7f(1)=7. Show your calculator input.

See Solution

Problem 27811

Object has acceleration a(t)=2t8a(t)=2t-8. Given v(0)=15v(0)=15 and x(3)=12x(3)=12. Find v(t)v(t), when at rest, x(t)x(t), and displacement from [3,9][3,9].

See Solution

Problem 27812

Find the inhaled air volume from t=0t=0 to t=8t=8 using f(t)=12sin(2π5t)f(t)=\frac{1}{2} \sin \left(\frac{2 \pi}{5} t\right). Round to three decimals.

See Solution

Problem 27813

Find the average rate of change of the function f(x)=x23x+5f(x)=-x^{2}-3x+5 over the interval 3x4-3 \leq x \leq 4.

See Solution

Problem 27814

Deposit \1000atan8.51000 at an 8.5% interest rate, compounded continuously. Find the balance after 5 years using F=\1000e0.08551000e^{0.085 \cdot 5}. Round to the nearest cent.

See Solution

Problem 27815

Given continuous functions ff and gg, with 12f(x)dx=4\int_{1}^{2} f(x) d x=-4, 15f(x)dx=6\int_{1}^{5} f(x) d x=6, and 15g(x)dx=8\int_{1}^{5} g(x) d x=8, find:
a. 22g(x)dx\int_{2}^{2} g(x) d x b. 51g(x)dx\int_{5}^{1} g(x) d x c. 123f(x)dx\int_{1}^{2} 3 f(x) d x d. 25f(x)dx\int_{2}^{5} f(x) d x e. 15[f(x)g(x)]dx\int_{1}^{5}[f(x)-g(x)] d x f. 15[4f(x)g(x)]dx\int_{1}^{5}[4 f(x)-g(x)] d x

See Solution

Problem 27816

Find 34f(t)dt\int_{3}^{4} f(t) dt and 43f(t)dt\int_{4}^{3} f(t) dt given 03f(t)dt=3\int_{0}^{3} f(t) dt=3 and 04f(t)dt=7\int_{0}^{4} f(t) dt=7. Also, identify the false statement among: (A) 37h(x)k(x)dx=15\int_{3}^{7} h(x) k(x) dx=15, (B) 37[h(x)+k(x)]dx=8\int_{3}^{7}[h(x)+k(x)] dx=8, (C) 372h(x)dx=10\int_{3}^{7} 2 h(x) dx=10, (D) 37[h(x)k(x)]dx=3\int_{3}^{7}[h(x)-k(x)] dx=3, (E) 73[k(x)h(x)]dx=2\int_{7}^{3}[k(x)-h(x)] dx=2, (F) 33[h(x)+k(x)]dx=0\int_{3}^{3}[h(x)+k(x)] dx=0.

See Solution

Problem 27817

For a continuous function gg where 21g(x)dx=2\int_{-2}^{1} g(x) \, dx = 2 and 13g(x)dx=6\int_{1}^{3} g(x) \, dx = -6, find 32g(x)dx\int_{3}^{-2} g(x) \, dx.
For a graph of f(x)f(x) with areas of 3, calculate: (a) 42[4f(x)5]dx\int_{-4}^{2}[4 f(x)-5] \, dx, (b) 42f(x)dx\int_{-4}^{2}|f(x)| \, dx, (c) 24f(x)dx\int_{2}^{-4} f(x) \, dx, 22f(x)dx\int_{-2}^{2} f(|x|) \, dx, 42f(x)dx\left|\int_{-4}^{2} f(x) \, dx\right|, 24f(x)dx\int_{-2}^{4} f(-x) \, dx.

See Solution

Problem 27818

A bakery sells 640 bagels daily at RM 8.00. For every RM 0.20 price drop, sales increase by 40. Find the price for max revenue using differentiation.

See Solution

Problem 27819

Find the velocity v(t) v(t) and acceleration a(t) a(t) from the position function s(t)=t311t2+24t s(t) = t^{3} - 11t^{2} + 24t .

See Solution

Problem 27820

A roller coaster moves at 42.5ms42.5 \frac{m}{s} at 1.5m1.5 m high. Find: height at 8.3ms8.3 \frac{m}{s}, speed at lowest point, energy loss at 14ms14 \frac{m}{s}, and work to stop at 7.5m7.5 m.

See Solution

Problem 27821

Find the area between the curves y=xy=\sqrt{x} and y=x2y=x^{2}. What is the area? Options: none, 14\frac{1}{4}, 12\frac{1}{2}, 13\frac{1}{3}, 16\frac{1}{6}.

See Solution

Problem 27822

Find the volume of the solid of rotation (without evaluating) for these cases:
(a) Disk method for y=4x2y=4-x^2 about xx-axis. (b) Washer method for y=x2+1y=x^2 +1 and y=2y=2 about xx-axis. (c) Shell method for x=y2x=y^2 and x=9x=9 about xx-axis. (d) Shell method for x=6yx=6-y, x=y2x=y^2, and y=2y=2 about y=2y=2.

See Solution

Problem 27823

Find the volume of revolution for the region in the first quadrant between x=y2x=y^{2} and x=6yx=6-y.
(a) About the yy-axis using the washer method. (b) About x=1x=-1 using the washer method. (c) About the xx-axis using the shell method.

See Solution

Problem 27824

Find the volume of the solid of revolution for the region between y=x3+3y=x^{3}+3, y=4y=4, and the yy-axis using different methods.

See Solution

Problem 27825

Find the value of α\alpha if the differential of f(x)=αxf(x)=\alpha \sqrt{x} from 1 to 4 is 12. Choices: a. 0 b. None c. 4 d. 2x2x e. 8.

See Solution

Problem 27826

Determine where the graph of y=x3+x227xy=x^{3}+x^{2}-27 x is concave down: a. x13x \geq \frac{-1}{3}, b. x0x \leq 0, c. x0x \geq 0, d. 6x2-6 \geq x \geq 2, e. None.

See Solution

Problem 27827

Find the constant α\alpha if the differential of f(x)=αxf(x)=\alpha \sqrt{x} from 1 to 4 equals 12.

See Solution

Problem 27828

You and a friend bike to a restaurant; you ride east at 16mph16 \mathrm{mph} and your friend north at 12mph12 \mathrm{mph}. After 4mi4 \mathrm{mi}, find the rate of distance change between you.

See Solution

Problem 27829

Find the volume of the solid formed by revolving the area between y=x3+3y=x^{3}+3, y=4y=4, and the yy-axis:
1. (a) Around the yy-axis: V=34π(R2(y))dyV=\int_{3}^{4} \pi\left(R^{2}(y)\right) d y
(b) Around the xx-axis: V=01π[16(x3+3)2]dxV=\int_{0}^{1} \pi\left[16-(x^{3}+3)^{2}\right] d x
(c) Around the line y=1y=1: Use the shell method.

See Solution

Problem 27830

Minimize Marginal Cost: Given C(x)=0.0001x30.06x2+4x+100C(x) = 0.0001 x^{3} - 0.06 x^{2} + 4x + 100, is marginal cost at x=100x=100 increasing, decreasing, or constant? Find minimum marginal cost.

See Solution

Problem 27831

Identify which function is continuous: A) f(x)=4x3f(x)=\frac{4}{x^{3}}, B) g(x)=15xg(x)=\frac{1}{5-x}, C) h(x)=x211h(x)=\frac{x^{2}}{11}.

See Solution

Problem 27832

Find the singular solution of the equation dydx=(y3)2\frac{d y}{d x}=(y-3)^{2}.

See Solution

Problem 27833

Find the derivative of y=x22x3y = x^{2} \sqrt{2x - 3}.

See Solution

Problem 27834

Find the maximum height mm from which a camera can be dropped without exceeding a speed of 16.0 m/s16.0 \mathrm{~m/s}.

See Solution

Problem 27835

Find the area between the curves y=3xy=3 \sqrt{x} and y=3x2y=3 x^{2}.

See Solution

Problem 27836

Given the function f(x)=x4+1x2f(x)=\frac{x^{4}+1}{x^{2}}, determine which statement is true about its properties.

See Solution

Problem 27837

Find the critical points of the function f(x)=x3+3x2x3f(x) = x^{3} + 3x^{2} - x - 3 by calculating its derivative and solving f(x)=0f'(x) = 0.

See Solution

Problem 27838

A particle's position is given by s(t)=2t311t2+12t13s(t)=2 t^{3}-11 t^{2}+12 t-13. Find velocity, acceleration, rest times, and direction changes.

See Solution

Problem 27839

Find the average rate of change of the function f(x)=0.00186x30.0921x2+2.67x1.73f(x)=0.00186 x^{3}-0.0921 x^{2}+2.67 x-1.73 from 2005 to 2015.

See Solution

Problem 27840

Analyze the function f(x)=2x3+3x236xf(x)=2 x^{3}+3 x^{2}-36 x for increasing/decreasing intervals, local extrema, and concavity.

See Solution

Problem 27841

Analyze the function f(x)=x312x+2f(x)=x^{3}-12 x+2 for increase/decrease, max/min values, concavity, and sketch it. Also do the same for f(x)=36x+3x22f(x)=36 x+3 x^{2}-2.

See Solution

Problem 27842

Find intervals of increase/decrease, local max/min, concavity, inflection points, and sketch the graph for f(x)=36x+3x22x3f(x)=36 x+3 x^{2}-2 x^{3}.

See Solution

Problem 27843

Analyze f(x)=x312x+2f(x)=x^{3}-12 x+2 and f(x)=36x+3x22x3f(x)=36 x+3 x^{2}-2 x^{3} for increase/decrease, max/min, concavity, and sketch the graphs.

See Solution

Problem 27844

Find the dimension of dc/dwd c / d w and compute dc/dwd c / d w for c=i=1Nwi(xiyi)2c=\sum_{i=1}^{N} w_{i}(x_{i}-y_{i})^{2}.

See Solution

Problem 27845

Find the limit: limx4x216x1\lim _{x \rightarrow-4} \frac{x^{2}-16}{x-1}.

See Solution

Problem 27846

At noon, ship A is 180 km west of ship B. A sails east at 30 km/h, B sails north at 25 km/h. Find the distance change rate at 4 pm.

See Solution

Problem 27847

Find the derivative of the function y=x(x+1)(x+2)3y = \sqrt[3]{x(x+1)(x+2)}.

See Solution

Problem 27848

A cup of coffee cools from 95C95^{\circ} \mathrm{C} to 77C77^{\circ} \mathrm{C} at 1C1^{\circ} \mathrm{C} per minute. Find time to reach 77C77^{\circ} \mathrm{C}. Round to two decimal places.

See Solution

Problem 27849

Find the derivatives of these functions: (1) y=xlnxy=x \ln x, (2) y=sin(x2)y=\sin(x^{2}).

See Solution

Problem 27850

Prove that for x>0x>0, the inequalities xx22<ln(1+x)<xx-\frac{x^{2}}{2}<\ln (1+x)<x hold true.

See Solution

Problem 27851

Determine the global max and min of f(x)=x5+(1x)5f(x)=x^{5}+(1-x)^{5} for xx in the interval [0,1][0,1].

See Solution

Problem 27852

Find the limit: limn3n\lim _{n \rightarrow \infty} \sqrt[n]{3}.

See Solution

Problem 27853

Find the limit: limn(n+1n)\lim _{n \rightarrow \infty}(\sqrt{n+1}-\sqrt{n}).

See Solution

Problem 27854

Find the derivative of y=x(x+1)(x+2)3 y = \sqrt[3]{x(x+1)(x+2)} .

See Solution

Problem 27855

Find the limit: limn2nn!\lim _{n \rightarrow \infty} \frac{2^{n}}{n !}.

See Solution

Problem 27856

Find the limit: limx3x2+x6x2+4x+3\lim _{x \rightarrow-3} \frac{x^{2}+x-6}{x^{2}+4 x+3}.

See Solution

Problem 27857

Jeriel invested \72,000at72,000 at 7.25\%continuousinterest.Ameliainvested$72,000at continuous interest. Amelia invested \$72,000 at 6.75\%$ daily. How much longer for Amelia's money to double?

See Solution

Problem 27858

Find the tangent line approximation of f(x)=2cosx+1f(x)=2 \cos x + 1 at x=π2x=\frac{\pi}{2} to estimate f(1.5)f(1.5).

See Solution

Problem 27859

Find the limit as tt approaches 0 for the expression 1t1t2+t\frac{1}{t}-\frac{1}{t^{2}+t}.

See Solution

Problem 27860

Find the maximum acceleration for the velocity v(t)=23t34t2+8t2v(t)=\frac{2}{3} t^{3}-4 t^{2}+8 t-2 on 0t30 \leq t \leq 3.

See Solution

Problem 27861

Find the time tt when the particle at x(t)=etcostx(t)=e^{-t} \cos t is farthest right for 0t2π0 \leq t \leq 2 \pi.

See Solution

Problem 27862

Find critical numbers, increasing/decreasing intervals, local extrema, and concavity for f(x)=x36x2+9x+1f(x)=x^{3}-6x^{2}+9x+1.

See Solution

Problem 27863

Calculate the integral: 9x+2x2+x6dx\int \frac{9 x+2}{x^{2}+x-6} d x

See Solution

Problem 27864

Find the limit: limx9x4+1x23x+5\lim _{x \rightarrow \infty} \frac{\sqrt{9 x^{4}+1}}{x^{2}-3 x+5}.

See Solution

Problem 27865

Find the volume of the solid of revolution for the region between y=x3+3y=x^{3}+3, y=4y=4, and the yy-axis, using the disk method around the yy-axis.

See Solution

Problem 27866

Ein Dozent will den besten Weg von P1=(10,20)P_{1}=(10,20) nach P2=(10,0)P_{2}=(10,0) finden, indem er Fahrrad und S-Bahn kombiniert. Berechnen Sie den Punkt auf der Geraden g(x)=10xg(x)=10-x, der die kürzeste Reisezeit ergibt.

See Solution

Problem 27867

Ein Dozent plant seine Wege zur Hochschule. Bestimme den Punkt auf der Geraden g(x)=10xg(x)=10-x, der die Reisezeit minimiert.

See Solution

Problem 27868

Untersuchen Sie die Funktion f(x)=x2x24f(x)=\frac{x^{2}}{x^{2}-4} vollständig und skizzieren Sie den Graphen im passenden Intervall.

See Solution

Problem 27869

Find the volume of the solid formed by revolving the region in the first quadrant between y=x3+3y=x^{3}+3, y=4y=4, and the yy-axis around x=1x=-1 using the shell method.

See Solution

Problem 27870

Find the best linear approximation, gg, to the function f(x)=4xf(x)=4 \sqrt{x} on the interval [0,1][0,1].

See Solution

Problem 27871

Find the limit: limx2x+2x+31\lim _{x \rightarrow-2} \frac{x+2}{\sqrt{x+3}-1}.

See Solution

Problem 27872

Find the limit as xx approaches 4 from the left for 2x2x+5(x4)(x4)\frac{2x^2 - x + 5}{(x-4)(x-4)}.

See Solution

Problem 27873

Calculate the following integrals given that each area under f(x)f(x) is 3: a. 42[4f(x)5]dx\int_{-4}^{2}[4 f(x)-5] d x, b. 42f(x)dx\int_{-4}^{2}|f(x)| d x, c. 24f(x)dx\int_{2}^{-4} f(x) d x, d. 22f(x)dx\int_{-2}^{2} f(|x|) d x, e. 42f(x)dx\left|\int_{-4}^{2} f(x) d x\right|.

See Solution

Problem 27874

Find the derivative of f(x)=(x3+x+1)23f(x) = (x^{3} + x + 1)^{\frac{2}{3}}.

See Solution

Problem 27875

Given that 21g(x)dx=2\int_{-2}^{1} g(x) \, dx = 2 and 13g(x)dx=6\int_{1}^{3} g(x) \, dx = -6, find 32g(x)dx\int_{3}^{-2} g(x) \, dx.
For the areas, if each region under f(x)f(x) has area 3, find: a. 42[4f(x)5]dx\int_{-4}^{2}[4 f(x) - 5] \, dx b. 42f(x)dx\int_{-4}^{2}|f(x)| \, dx c. 24f(x)dx\int_{2}^{-4} f(x) \, dx d. 22f(x)dx\int_{-2}^{2} f(|x|) \, dx e. 42f(x)dx\left|\int_{-4}^{2} f(x) \, dx\right| f. 24f(x)dx\int_{-2}^{4} f(-x) \, dx

See Solution

Problem 27876

Investigate the convergence of these series: 1. n=1(2+(1)nπ)n\sum_{n=1}^{\infty}\left(\frac{2+(-1)^{n}}{\pi}\right)^{n}; 2. n=1(3n23n1)23\sum_{n=1}^{\infty}\left(\frac{3 n-2}{3 n-1}\right)^{2}-3.

See Solution

Problem 27877

1. Calculate 013xdx\int_{0}^{1} 3x \, dx.
2. Find 23(x5)dx\int_{-2}^{3}(x-5) \, dx.
3. Given g(x)=πx11+t4dtg(x)=\int_{\pi}^{x} \frac{1}{1+t^{4}} \, dt, determine g(2)g^{\prime}(2).
4. Evaluate 21(x1x2)dx\int_{-2}^{-1}\left(x-\frac{1}{x^{2}}\right) \, dx.
5. Solve 19(x2x)dx\int_{1}^{9}\left(\frac{x-2}{\sqrt{x}}\right) \, dx.

See Solution

Problem 27878

An 8-foot ladder leans against a wall. If the top slides down at 2 ft/s, how fast does the bottom move when it's 4 ft from the wall?

See Solution

Problem 27879

Find the value of the series: n=1(3n23n1)n23\sum_{n=1}^{\infty}\left(\frac{3n-2}{3n-1}\right)^{n^2-3}.

See Solution

Problem 27880

Let fm(x)=mx22x7x+2f_{m}(x)=\frac{m x^{2}-2 x-7}{x+2}.
Part A:
1. Show CmC_{m} passes through a fixed point FF.
2. Find mm for two extremums.

Part B (m=1m=1):
1. Find a,b,ca, b, c for f1(x)=ax+b+cx+2f_{1}(x)=a x+b+\frac{c}{x+2}.
2. Show I(2;6)I(-2;-6) is a symmetry center of C1C_{1}.
3. a) Calculate limits at domain bounds. b) Does C1C_{1} have a vertical asymptote? c) Show y=x4y=x-4 is an asymptote to C1C_{1}. d) Compare C1C_{1} and (Δ)(\Delta).
4. a) Calculate f1(x)f_{1}^{\prime}(x) and its sign. b) Create the variation table for f1f_{1}.
5. Find tangent (T)(T) to C1C_{1} at FF.
6. Plot (Δ)(\Delta), (T)(T), and C1C_{1}.
7. Find tangents to C1C_{1} parallel to y=34x+1y=\frac{3}{4} x+1.
8. a) Find hh for line (D)(D) cutting C1C_{1} at MM and NN. b) Find midpoint JJ of [MN][M N] and its locus.

See Solution

Problem 27881

Find the relative extrema of y=x44x33y=\frac{x^{4}}{4}-\frac{x^{3}}{3} using its derivative and critical points.

See Solution

Problem 27882

Find the relative extrema of the function y=x44x33y=\frac{x^{4}}{4}-\frac{x^{3}}{3}.

See Solution

Problem 27883

Evaluate the series n=1an2xn\sum_{n=1}^{\infty} a n^{2} x^{n} using the Cauchy product with ai=xia_{i}=x^{i} and bj=ajxjb_{j}=a j x^{j}.

See Solution

Problem 27884

Evaluate the series n=1an2xn\sum_{n=1}^{\infty} a n^{2} x^{n} using the Cauchy product for a0a \neq 0 and x<1|x|<1.

See Solution

Problem 27885

A rock is thrown up at 25.0 m/s25.0 \mathrm{~m/s} from 17.0 m17.0 \mathrm{~m}, landing in an 80.0 m80.0 \mathrm{~m} lake. Find time ss.

See Solution

Problem 27886

Investigate the absolute convergence and convergence of these series:
1. 1213+14+151617+-\frac{1}{2}-\frac{1}{3}+\frac{1}{4}+\frac{1}{5}-\frac{1}{6}-\frac{1}{7}+\ldots
2. 11214+131618+15110112+1-\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{6}-\frac{1}{8}+\frac{1}{5}-\frac{1}{10}-\frac{1}{12}+\ldots

See Solution

Problem 27887

Find the local extrema (max/min) of the function f(x)=x48x3+1f(x)=x^{4}-8x^{3}+1.

See Solution

Problem 27888

Find where the function f(x)=2x+6f(x)=|2x+6| is not differentiable.

See Solution

Problem 27889

Find (fg)(2)(f \circ g)^{\prime}(2) given f(x)=x4f(x)=x^{4}, g(2)=1g(2)=1, and g(2)=2g^{\prime}(2)=2.

See Solution

Problem 27890

Identify the horizontal asymptote of f(x)=7x27x+9f(x)=\frac{7}{x^{2}-7 x+9} and if it crosses it.

See Solution

Problem 27891

A cart of mass mm kg moves at 6 m/s in a circle with radius 3 m. Find the centripetal acceleration.

See Solution

Problem 27892

A fireworks shell is launched at 256ft/sec256 \mathrm{ft/sec}. Find s(t)s(t) and the time it's visible above 768ft768 \mathrm{ft}.

See Solution

Problem 27893

Estimate the area under hh from x=6x=-6 to x=14x=14 using left and right Riemann sums with 5 subdivisions. Order the areas:
Left Riemann sum, Right Riemann sum, Actual area.

See Solution

Problem 27894

Berechne die durchschnittliche Änderungsrate von f(x)=sin(x)+3xf(x)=\sin(x)+3x für x[1;5]x \in [1 ; 5].

See Solution

Problem 27895

Berechne die durchschnittliche Änderungsrate von f(x)=sin(x)+3xf(x)=\sin (x)+3 x für x[1;5]x \in[1 ; 5].

See Solution

Problem 27896

Find the integral of tan1xx2\frac{\tan^{-1} x}{x^{2}} with respect to xx.

See Solution

Problem 27897

Differentiate the function (1ex)\left(\frac{1}{e^{\sqrt{x}}}\right).

See Solution

Problem 27898

Finde die Stelle, an der der Graph von f(x)=14x4+x+5f(x)=\frac{1}{4} x^{4}+x+5 eine waagerechte Tangente hat.

See Solution

Problem 27899

Approximate f(x)=lnxf(x)=\ln x for x=9πx=9\pi and round to four decimal places. Choose the correct answer: a, b, c, or d.

See Solution

Problem 27900

Find the limits: (a) limx1(x2+x2x2+2x3)\lim _{x \rightarrow 1}\left(\frac{x^{2}+x-2}{x^{2}+2 x-3}\right), (b) limx2(x2+37x2)\lim _{x \rightarrow 2}\left(\frac{\sqrt{x^{2}+3}-\sqrt{7}}{x-2}\right), (c) limx515+1x5+x\lim _{x \rightarrow-5} \frac{\frac{1}{5}+\frac{1}{x}}{5+x}. Justify without graphs or tables.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord