Calculus

Problem 20701

Find how many people were ill at the start of the epidemic using N(0)=20,0001+20e2.50N(0)=\frac{20,000}{1+20 e^{-2.5\cdot 0}}.

See Solution

Problem 20702

Find the slope of y=2cosxsin2xy=2 \cos x \sin 2 x at x=π2x=\frac{\pi}{2} and the tangent line to y=x2sin(2x)y=x^{2} \sin (2 x) at x=πx=-\pi.

See Solution

Problem 20703

Given y=x3+px2y=x^{3}+p x^{2}, show the origin is stationary, find other points in terms of pp, and determine their nature. For y=x3+px2+pxy=x^{3}+p x^{2}+p x, find pp values with no stationary points.

See Solution

Problem 20704

Find the second derivatives of z=(x3+2xy)(yx2)z=(x^{3}+2xy)(y-x^{2}) at (x=2,y=1)(x=2, y=1): (a) 2zx2\frac{\partial^{2} z}{\partial x^{2}}; (b) 2zyx\frac{\partial^{2} z}{\partial y \partial x}.

See Solution

Problem 20705

Find the second derivatives of the function z=(x3+2xy)(yx2)z=(x^{3}+2xy)(y-x^{2}) at x=2x=2, y=1y=1. Round to two decimals. (a) 2zx2=\frac{\partial^{2} z}{\partial x^{2}}= (b) 2zyx=\frac{\partial^{2} z}{\partial y \partial x}=

See Solution

Problem 20706

Find the integral of the function 13x\frac{1}{3} x.

See Solution

Problem 20707

Evaluate the limits using L'Hôpital's Rule:
1) limx0sin(14x)sin(8x)=\lim _{x \rightarrow 0} \frac{\sin (14 x)}{\sin (8 x)}= 2) limx0sin(ax)sin(bx)=\lim _{x \rightarrow 0} \frac{\sin (a x)}{\sin (b x)}=\square (with b0b \neq 0)

See Solution

Problem 20708

Evaluate the limit using L'Hôpital's Rule: limx(1+x5)1/x=\lim _{x \rightarrow \infty}\left(1+x^{5}\right)^{1 / x}=\square. Enter INF, -INF, or DNE.

See Solution

Problem 20709

Calculate the area between f(x)=9x+8f(x)=9 x+8 and g(x)=x2+6x+2g(x)=x^{2}+6 x+2 from x=0x=0 to x=2x=2.

See Solution

Problem 20710

Berechnen Sie die Integrale:
1) 02(2+x)3dx\int_{0}^{2}(2+x)^{3} d x 2) 23(1+1x2)dx\int_{2}^{3}\left(1+\frac{1}{x^{2}}\right) d x 3) 241x3dx\int_{2}^{4} \frac{-1}{x^{3}} d x 4) 0925xdx\int_{0}^{9} \frac{2}{5} \sqrt{x} d x
Verwenden Sie den Hauptsatz.

See Solution

Problem 20711

Bestimmen Sie die Ableitung von f(x)=3xex22f(x)=3 x \cdot e^{-\frac{x^{2}}{2}}.

See Solution

Problem 20712

Find dxdt\frac{d x}{d t}, dydt\frac{d y}{d t}, and dydx\frac{d y}{d x} for x=4t3+3tx=4 t^{3}+3 t, y=6t5t2y=6 t-5 t^{2}.

See Solution

Problem 20713

Find dydx\frac{d y}{d x} and d2ydx2\frac{d^{2} y}{d x^{2}} for x=t2+7x=t^{2}+7, y=t2+7ty=t^{2}+7t. When is the curve concave upward?

See Solution

Problem 20714

Evaluate the limits using L'Hôpital's Rule. Enter INF for \infty, -INF for -\infty, or DNE if it doesn't exist. a) limxπ/25tanxcosx=\lim _{x \rightarrow \pi / 2} 5 \tan x \cos x=\square b) limxπ/24tanxsin(2x)=\lim _{x \rightarrow \pi / 2} 4 \tan x \sin (2 x)=\square

See Solution

Problem 20715

Vereinfachen Sie die Funktion: f(x)=3ex22+3xex22(x)f^{\prime}(x)=3 \cdot e^{-\frac{x^{2}}{2}} + 3x \cdot e^{-\frac{x^{2}}{2}} \cdot (-x)

See Solution

Problem 20716

Find the area between the curve y=9x2y=9x^2 and the xx-axis on the interval [0,b][0, b] using a definite integral.

See Solution

Problem 20717

Find the area between the curve defined by x=sin2(t)x=\sin ^{2}(t) and y=8cos(t)y=8 \cos (t) and the yy-axis.

See Solution

Problem 20718

Berechne die Integrale: b) 23(1+1x2)dx\int_{2}^{3}\left(1+\frac{1}{x^{2}}\right) d x, c) 241x3dx\int_{2}^{4} \frac{-1}{x^{3}} d x.

See Solution

Problem 20719

Calculate the area between y=sin(x)y=\sin(x) and y=cos(x)y=\cos(x) from x=π3x=\frac{\pi}{3} to x=3π4x=\frac{3\pi}{4}.

See Solution

Problem 20720

Find the Riemann sum formula for f(x)=5x2f(x)=5 x^{2} on [0,3][0,3]: Sn=S_{n}=\square (Use nn as the variable.)

See Solution

Problem 20721

Determine which statement about the piecewise function f(x)f(x) is false: (A) ff is continuous at x=1x=1. (B) ff is continuous at x=2x=2. (C) ff is continuous at x=3x=3.

See Solution

Problem 20722

Identify the first error in confirming the continuity of f(x)=x25x+4x26x+8f(x)=\frac{x^{2}-5 x+4}{x^{2}-6 x+8} at x=4x=4. Steps provided.

See Solution

Problem 20723

Express the limit limP0k=1n(ck53ck)Δxk\lim _{\|P\| \rightarrow 0} \sum_{k=1}^{n}\left(c_{k}^{5}-3 c_{k}\right) \Delta x_{k} as a definite integral.

See Solution

Problem 20724

Find the Riemann sum formula for f(x)=5x2f(x)=5 x^{2} on [0,3][0,3] using right endpoints, then take the limit as nn \to \infty.

See Solution

Problem 20725

Evaluate the limits using L'Hôpital's Rule. Enter INF for \infty, -INF for -\infty, or DNE if it doesn't exist. a) limxπ/25tanxcosx=5\lim _{x \rightarrow \pi / 2} 5 \tan x \cos x=5 b) limxπ/24tanxsin(2x)=\lim _{x \rightarrow \pi / 2} 4 \tan x \sin (2 x)=\square

See Solution

Problem 20726

Given the piecewise function f(x)f(x), which statement is false about its continuity at the specified points? (A) x=1x=1, (B) x=2x=2, (C) x=3x=3, (D) x=4x=4.

See Solution

Problem 20727

Given the function f(x)=x2+2x128cos(π2x)+2x2f(x)=\frac{x^{2}+2 x-12}{8 \cos \left(\frac{\pi}{2} x\right)+2 x^{2}}, why is ff not continuous at x=2x=2?

See Solution

Problem 20728

Identify the first error in confirming the continuity of f(x)=x25x+4x26x+8f(x)=\frac{x^{2}-5 x+4}{x^{2}-6 x+8} at x=4x=4. Steps given.

See Solution

Problem 20729

Calculate the area between y=sin(x)y=\sin (x) and y=cos(x)y=\cos (x) from x=π3x=\frac{\pi}{3} to x=3π4x=\frac{3 \pi}{4}.

See Solution

Problem 20730

Write a Riemann sum formula for f(x)=5x2f(x)=5 x^{2} on [0,4][0,4]: sn=i=1nf(4in)4ns_{n}=\sum_{i=1}^{n} f\left(\frac{4i}{n}\right) \cdot \frac{4}{n}

See Solution

Problem 20731

A pebble creates ripples with an area increasing at 21 cm2/s21 \mathrm{~cm}^{2} / \mathrm{s}. Find the radius change rate at 6 cm6 \mathrm{~cm}.

See Solution

Problem 20732

Find the limit using L'Hôpital's Rule: limx0+(10x)x=\lim _{x \rightarrow 0^{+}}(10 x)^{x}=\square. Enter INF, -INF, or DNE.

See Solution

Problem 20733

An airplane is 10,000ft10,000 \mathrm{ft} high, moving at 700ft/s700 \mathrm{ft/s}. Find the rate the angle to an observer decreases when 40,000ft40,000 \mathrm{ft} away.

See Solution

Problem 20734

Find the Riemann sum formula for f(x)=5x2f(x)=5 x^{2} on [0,4][0,4] using right endpoints. Then, find the limit as nn \to \infty.

See Solution

Problem 20735

Evaluate the integral (5x4)4dx\int(5 x-4)^{4} d x using the substitution u=5x4u=5 x-4.

See Solution

Problem 20736

Bestimme die Stammfunktionen für die folgenden Funktionen mit gegebenen Bedingungen: a) f(x)=x2f(x)=x^{2} durch P(11)P(1 \mid 1). b) f(x)=1x2f(x)=1-x^{2} bei y=4y=4. c) f(x)=2+xf(x)=2+x mit Nullstelle bei x=1x=1.

See Solution

Problem 20737

Find the area between the curves f(x)=260+13x13x2f(x)=260+13x-13x^2 and g(x)=13x265xg(x)=13x^2-65x.

See Solution

Problem 20738

Estimez 25f(x)dx\int_{2}^{5} f(x) \, dx avec trois méthodes : (a) points médians, (b) trapèzes, (c) Simpson. Donnez les résultats.

See Solution

Problem 20739

Find the max and min points of y=sin(x)y=\sin(x) on the interval [0,2π][0, 2\pi].

See Solution

Problem 20740

Use substitution to solve the integral: 4.4e(3x+4)dx\int 4.4 e^{(-3 x+4)} d x.

See Solution

Problem 20741

Find the integral: x(x2+5)1.3dx\int \frac{x}{(x^{2}+5)^{1.3}} \, dx

See Solution

Problem 20742

Find the number cc that satisfies the Mean Value Theorem for f(x)=4x3f(x)=\sqrt{4x-3} on 1x31 \leq x \leq 3. What is cc? (A) 1.5 (B) 1.75 (C) 2 (D) 2.25

See Solution

Problem 20743

Determine if the sequence an=4nn+3a_{n}=\frac{4 \sqrt{n}}{\sqrt{n}+3} converges or diverges. Find the limit if it converges.

See Solution

Problem 20744

Find the number cc that satisfies the Mean Value Theorem for g(x)=x3+12x2+36xg(x)=x^{3}+12x^{2}+36x on [8,2][-8, -2]. What is cc?
Choose 1 answer: (A) -7 (B) -6 (C) -3 (D) -1

See Solution

Problem 20745

Find the sum of the series given the partial sums sn=83(0.8)ns_{n}=8-3(0.8)^{n}.

See Solution

Problem 20746

Find h(1)h^{\prime}(1) for h(x)=ln[(f(x))2+1]h(x)=\ln \left[(f(x))^{2}+1\right] given f(1)=1f(1)=-1 and f(1)=1f^{\prime}(1)=1.

See Solution

Problem 20747

Given f(x)=x+7xf(x)=\frac{x+7}{x}: a) Show why it has an inverse using the derivative. b) Find f1f^{-1}. c) Determine domains and ranges of ff and f1f^{-1}.

See Solution

Problem 20748

Find the vertical asymptotes of f(x)=5cos(3π2x)f(x)=\frac{-5}{\cos \left(\frac{3 \pi}{2} x\right)} from the options given.

See Solution

Problem 20749

A 2.5 kg object is dropped from 10.0 m. Find its speed when it hits the ground.

See Solution

Problem 20750

A 10-foot ladder leans against a wall. If the bottom slides away at 4 ft/sec, how fast is the top sliding down when it's 8 ft from the wall?

See Solution

Problem 20751

Find the indefinite integral: e4xe2x+1exdx\int \frac{e^{4 x}-e^{2 x}+1}{e^{x}} d x (Use CC for the constant of integration).

See Solution

Problem 20752

Calculate the maximum height of a projectile launched upward at 128 ft/s, ignoring air resistance.

See Solution

Problem 20753

Find the tangent line equation for h(x)=xe9xh(x)=-x e^{9-x} at the point (9,9)(9,-9).

See Solution

Problem 20754

Solve the equation: (4x+6)dx=8x+4\int(4 x+6)dx = 8 x + 4.

See Solution

Problem 20755

Bestimme die Ableitung der Funktion f(x)=x2xf(x)=\frac{x}{2 \cdot \sqrt{x}}.

See Solution

Problem 20756

Can the Mean Value Theorem apply to f(x)=x2/3f(x)=x^{2/3} on [1,27][1, 27]? Select all that apply.

See Solution

Problem 20757

Given the function f(x)=x22x+9f(x)=x^{2}-2x+9, find critical numbers, intervals of increase/decrease, and relative extrema.

See Solution

Problem 20758

Find the car's velocity when s(t)=0s(t)=0 and s(t)=14s(t)=14 for s(t)=t23t4s(t)=t^{2}-3t-4.

See Solution

Problem 20759

Find the inflection point of f(x)=x312x2f(x)=x^{3}-12 x^{2} and describe concavity in interval notation.

See Solution

Problem 20760

A hummingbird's position is s(t)=3t37ts(t)=3 t^{3}-7 t. Find velocity at t=1t=1 sec, acceleration at t=1t=1 sec, and when velocity=0.

See Solution

Problem 20761

Given functions for a particle's position, find velocity and acceleration, then identify intervals for speeding up or slowing down.
1. s(t)=2t33t212t+8s(t)=2 t^{3}-3 t^{2}-12 t+8
2. s(t)=2t315t2+36t10s(t)=2 t^{3}-15 t^{2}+36 t-10

See Solution

Problem 20762

Bacteria grow exponentially at 3.8/hour. How many hours until the population doubles?

See Solution

Problem 20763

Find the specific solution for the equation f(x)=3cos(x)f^{\prime \prime}(x)=3 \cos (x) with f(0)=4f^{\prime}(0)=4, f(0)=5f(0)=-5.

See Solution

Problem 20764

Finde die Tangentengleichung von ff, die parallel zu gg ist. Wähle aus: a) bis f) mit verschiedenen ff und gg.

See Solution

Problem 20765

Bestimme den Wert der Reihe k=01((1)k+4)k.\sum_{k=0}^{\infty} \frac{1}{\left((-1)^{k}+4\right)^{k}}.

See Solution

Problem 20766

Determine if the series k=1(1)k+1(7k3+k3k3+k+1)k\sum_{k=1}^{\infty}(-1)^{k+1}\left(\frac{7 k^{3}+k}{3 k^{3}+k+1}\right)^{k} converges or diverges using tests.

See Solution

Problem 20767

Calculate the sum k=1n5(4kn)24n\sum_{k=1}^{n} 5\left(\frac{4 k}{n}\right)^{2} \frac{4}{n}.

See Solution

Problem 20768

Bacteria growth is modeled by n(t)=925e0.4tn(t)=925 e^{0.4 t}. Find (a) relative growth rate, (b) initial population, (c) population at t=5t=5.

See Solution

Problem 20769

Use the Root Test to check if the series k=1(7k+66k)k\sum_{k=1}^{\infty}\left(-\frac{7 k+6}{6 k}\right)^{k} converges or diverges.

See Solution

Problem 20770

Use the Root Test to check if the series k=1(1+17k)k2\sum_{k=1}^{\infty}\left(1+\frac{17}{k}\right)^{k^{2}} converges or diverges.

See Solution

Problem 20771

Untersuche die Funktionen fk(x)=x4kx2f_{k}(x)=x^{4}-k x^{2} auf Extrem- und Wendepunkte für k=2k=-2 und k=2k=2. Bestimme die Tiefpunkte für k>0k>0 und zeige, dass xexw\frac{x_{e}}{x_{w}} unabhängig von kk ist.

See Solution

Problem 20772

Find the intervals where the function f(x)=x2x3f(x)=\frac{x^{2}}{x-3} is decreasing.

See Solution

Problem 20773

Use the Ratio Test to check if the series k=12kk149\sum_{k=1}^{\infty} \frac{2^{k}}{k^{149}} converges or diverges.

See Solution

Problem 20774

Bestimme die Ableitung von f(x)=72x3xf(x)=7^{2 x}-3^{x}.

See Solution

Problem 20775

Use the Ratio Test to check if the series k=18(k!)2(2k)!\sum_{k=1}^{\infty} \frac{8(k !)^{2}}{(2 k) !} converges or diverges.

See Solution

Problem 20776

Determine if the series k=1(4k35k3+1)k\sum_{k=1}^{\infty}\left(\frac{4 k^{3}}{5 k^{3}+1}\right)^{k} converges absolutely, conditionally, or diverges.

See Solution

Problem 20777

Find values of pp for which the series k=2(lnk)2kp\sum_{k=2}^{\infty} \frac{(\ln k)^{2}}{k^{p}} converges.

See Solution

Problem 20778

Use the Ratio Test to check if the series k=1ke6k\sum_{k=1}^{\infty} k e^{-6 k} converges or diverges. Choose A, B, or C.

See Solution

Problem 20779

Determine if the series k=1k!(2k+2)!\sum_{k=1}^{\infty} \frac{k !}{(2 k+2) !} converges absolutely, conditionally, or diverges.

See Solution

Problem 20780

Ein Körper bewegt sich mit s(t)=4t2s(t)=4 t^{2}. Bestimmen Sie die Änderungsrate von ss für t0=1t_{0}=1 und t1=5t_{1}=5. Was bedeutet diese Rate?

See Solution

Problem 20781

Lamar's blood pressure is modeled by p(t)=87+16cos(113πt)p(t)=87+16 \cos (113 \pi t). Find heartbeats/min, min BP, and cycle time.

See Solution

Problem 20782

Determine the values of xx for which the series k=1xkk!\sum_{k=1}^{\infty} \frac{x^{k}}{k !} converges using the Ratio or Root Test.

See Solution

Problem 20783

Find the Gini coefficient for countries A and B using their income functions: fA(x)=0.7x+0.27x2+0.03x3f_A(x)=0.7x+0.27x^2+0.03x^3 and fB(x)=0.6x+0.05x2+0.35x3f_B(x)=0.6x+0.05x^2+0.35x^3. Round to three decimal places.

See Solution

Problem 20784

Gegeben sind die Funktionen f(x)=0,5x2f(x)=0,5 x^{2} und g(x)=3x3+1g(x)=3 x^{3}+1. Bestimme den Differenzenquotienten für die Intervalle: a) I=[0;2]I=[0 ; 2], b) I=[1;3]I=[-1 ; 3], c) I=[1;1]I=[-1 ; 1], d) I=[2;1]I=[-2 ;-1].

See Solution

Problem 20785

Calculate the consumers' surplus for the demand function D(x)=750x+10D(x)=\frac{750}{x+10} at xE=16x_{E}=16 units, rounding to the nearest cent.

See Solution

Problem 20786

Calculate the consumers' surplus for the demand function D(x)=7506+xD(x)=\frac{750}{6+x} at xE=1x_{E}=1 units, rounded to the nearest cent.

See Solution

Problem 20787

Find the distance between the tortoise and hare from when they match speeds to one hour later using H(t)=8t2+35tH(t)=-8 t^{2}+35 t and T(t)=3tT(t)=3 t.

See Solution

Problem 20788

Bestimmen Sie die Ableitungen der Funktionen a) f(x)=4xf(x)=4^{x}, b) f(x)=32x5f(x)=3 \cdot 2^{x}-5, c) f(x)=72x3xf(x)=7^{2x}-3^{x}, d) f(x)=2x+2xf(x)=2^{-x}+2^{x}.

See Solution

Problem 20789

Find the consumers' surplus for the demand function D(x)=29x2+324D(x)=\frac{-2}{9} x^{2}+324 at xE=27x_{E}=27 units.

See Solution

Problem 20790

Find the consumers' surplus for the demand function D(x)=13x2+300D(x)=\frac{-1}{3} x^{2}+300 at xK=15x_{K}=15 units.

See Solution

Problem 20791

Determine if the integral 62(x+4)3/2dx\int_{6}^{\infty} \frac{2}{(x+4)^{3 / 2}} d x is convergent or divergent and evaluate if convergent.

See Solution

Problem 20792

Untersuchen Sie f(x)=e0,5x2f(x)=e^{-0,5x^2} auf Achsenschnittpunkte, Extrema, Wendepunkte und Symmetrie. Skizzieren Sie ff für 3x3-3 \leq x \leq 3. Bestimmen Sie Tangente und Normale im Punkt P(1f(1))P(1|f(1)) und berechnen Sie den Flächeninhalt und Umfang des Dreiecks.

See Solution

Problem 20793

Evaluate the integral: 14lnx3dx\int 14 \ln \sqrt[3]{x} \, dx (Include constant CC)

See Solution

Problem 20794

Evaluate the integral: 17lnx3dx\int 17 \ln \sqrt[3]{x} \, dx

See Solution

Problem 20795

Untersuchen Sie die Funktion f(x)=e0.5x2f(x)=e^{-0.5x^2} auf Schnittpunkte, Extrema, Wendepunkte und Symmetrie. Skizzieren Sie ff für 3x3-3 \leq x \leq 3. Bestimmen Sie die Tangente tt und Normale nn in P(1f(1))P(1|f(1)) und berechnen Sie den Flächeninhalt und Umfang des Dreiecks, das von tt, nn und der yy-Achse gebildet wird.

See Solution

Problem 20796

Determine if the function f(x)f(x) is continuous and differentiable at x=1x=1 where f(x)={7x212xif x1x26if x<1f(x)=\begin{cases} 7x^2-12x & \text{if } x \geq 1 \\ x^2-6 & \text{if } x < 1 \end{cases}.

See Solution

Problem 20797

A space station with a radius of 2400 m2400 \mathrm{~m} needs to create 1 g1 \mathrm{~g} of centripetal acceleration. Find the tangential velocity and rotation time.

See Solution

Problem 20798

Evaluate the integral: x9(x+6)(x3)dx\int \frac{x-9}{(x+6)(x-3)} d x

See Solution

Problem 20799

Zeichnen Sie die Tangente an f(x)=x3+3x2f(x)=-x^{3}+3 x^{2} im Punkt P(12)\mathrm{P}(1 \mid 2) und bestimmen Sie die Steigung.

See Solution

Problem 20800

Find the tangent line to f(x)=3x1f(x) = \sqrt{3x - 1} parallel to g(x)=1.5x2g(x) = 1.5x - 2.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord