Calculus

Problem 9401

Change the order of integration and evaluate 08x28eyydydx\int_{0}^{\sqrt{8}} \int_{x^{2}}^{8} \frac{e^{y}}{\sqrt{y}} d y d x.

See Solution

Problem 9402

Find where the function f(x)=x44+x32x2+9f(x)=\frac{x^{4}}{4}+x^{3}-2 x^{2}+9 has a horizontal tangent line.

See Solution

Problem 9403

Given the function f(t)=2tf(t)=\frac{2}{t}, find the net change and average rate of change from t=at=a to t=a+ht=a+h.

See Solution

Problem 9404

Find the derivative of the function f(x)=a2xf(x) = a^{2} x. What is f(x)f'(x)?

See Solution

Problem 9405

A 17 ft ladder leans against a wall. If the top slips down at 4ft/s4 \mathrm{ft/s}, how fast does the base move when the top is 16 ft high?

See Solution

Problem 9406

Calculate the integral from 2 to 4 of 2x+4\sqrt{2x+4}.

See Solution

Problem 9407

Find the absolute minimum and maximum of f(x)=2x3+3x2120x+8f(x)=2 x^{3}+3 x^{2}-120 x+8 for 5x5-5 \leq x \leq 5.

See Solution

Problem 9408

Gravel is dumped at 10ft3/min10 \mathrm{ft}^{3} / \mathrm{min}. How fast is the height increasing when it's 15ft15 \mathrm{ft} high?

See Solution

Problem 9409

Calculate the integral: 10.56e4x1e2xdx\int_{-1}^{0.5} 6 \cdot e^{4x-1} \cdot e^{2x} \, dx

See Solution

Problem 9410

Gegeben ist die Funktion y=f1(x)=(x+1t)etxy=f_{1}(x)=\left(x+\frac{1}{t}\right) \cdot e^{-t x}.
a) Untersuchen Sie Nullstellen, Extrempunkte und Wendepunkte. b) Bestimmen Sie die Gleichung für Wendepunkte. c) Zeichnen Sie f1f_{-1} und f0,5f_{0,5}. d) Berechnen Sie den Flächeninhalt A(k)A(k) für k>0k>0 und limkA(k)\lim_{k \rightarrow \infty} A(k).

See Solution

Problem 9411

Evaluate the integral: 45(2t2+2t)dt\int_{4}^{5}\left(\frac{2}{t^{2}}+\frac{2}{t}\right) d t

See Solution

Problem 9412

Find the extreme values of f(x)=9excosxf(x)=-9 e^{x} \cos x on [0,π][0, \pi]. State the xx-values or DNE if none exist.

See Solution

Problem 9413

Determine the vertical, horizontal, and oblique asymptotes of the function T(x)=x2x416T(x)=\frac{x^{2}}{x^{4}-16}.

See Solution

Problem 9414

Determine the vertical, horizontal, and oblique asymptotes for the function T(x)=x2x41T(x)=\frac{x^{2}}{x^{4}-1}.

See Solution

Problem 9415

Estimate the limit as x approaches 4 for x2+14x+49\sqrt{x^{2}+14 x+49}.

See Solution

Problem 9416

Check if the Mean Value Theorem applies to f(x)=4x2f(x)=\sqrt{4-x^{2}} on [0,2][0,2]. If yes, find cc in [0,2][0,2]. If no, enter DNE.

See Solution

Problem 9417

Find the limit as ss approaches 4 for P(s)=97+41ss+5P(s)=\frac{97+41s}{s+5}. A. 65 B. 29 C. Does not exist D. 52

See Solution

Problem 9418

Evaluate the limit: limx1x41x1\lim _{x \rightarrow 1} \frac{x^{4}-1}{x-1}. Does it exist?

See Solution

Problem 9419

Find the average slope of the function f(x)=2x39x2108x+2f(x)=2 x^{3}-9 x^{2}-108 x+2 on the interval [5,7][-5,7].

See Solution

Problem 9420

Find the limit as xx approaches 5 from the left: limx5x2+25x+5\lim _{x \rightarrow 5^{-}} \frac{x^{2}+25}{x+5}

See Solution

Problem 9421

Find the limit: limx5x2+25x+5\lim _{x \rightarrow 5^{-}} \frac{x^{2}+25}{x+5}. Options: A. 10 B. 5 C. 0 D. Does not exist.

See Solution

Problem 9422

Find the limit: limx4+x2+6x+9\lim _{x \rightarrow 4^{+}} \sqrt{x^{2}+6 x+9}.

See Solution

Problem 9423

Find the limit: limxx28x+6x39x2+11\lim _{x \rightarrow-\infty} \frac{x^{2}-8 x+6}{x^{3}-9 x^{2}+11}. Options: A. 1 B. 0 C. \infty D. 611\frac{6}{11}

See Solution

Problem 9424

Find the limit: limx4+x2+6x+9\lim _{x \rightarrow 4^{+}} \sqrt{x^{2}+6 x+9}. Options: A. \pm 7 B. 49 C. 7 D. Does not exist.

See Solution

Problem 9425

Calculate the work done in moving an object from x=1x=1 ft to x=14x=14 ft with a force of 3x23 x^{-2} pounds.

See Solution

Problem 9426

Find the limit as ss approaches \infty for P(s)=84+46ss+5P(s)=\frac{84+46 s}{s+5}. What is limsP(s)\lim_{s \to \infty} P(s)? A. 84 B. 22 C. 46 D. Does not exist

See Solution

Problem 9427

Find the tangent line equation for g(x)=xg(x)=\sqrt{x} at x=16x=16, using g(x)=12xg^{\prime}(x)=\frac{1}{2\sqrt{x}}. y=y=

See Solution

Problem 9428

Find the derivative f(2)f^{\prime}(2) for the function f(x)=(ln(x))4f(x)=(\ln (x))^{4}.

See Solution

Problem 9429

Find lower and upper estimates for 1030f(x)dx\int_{10}^{30} f(x) \, dx using the table values and five equal subintervals.

See Solution

Problem 9430

Evaluate the integral: y(y+2)(5y1)dy\int \frac{y}{(y+2)(5 y-1)} d y (include absolute values and use CC for the constant).

See Solution

Problem 9431

A spring requires 5 J5 \mathrm{~J} to stretch from 34 cm34 \mathrm{~cm} to 43 cm43 \mathrm{~cm}. Find kk in N/m\mathrm{N}/\mathrm{m}.
Then, (a) how much work to stretch from 39 cm39 \mathrm{~cm} to 41 cm41 \mathrm{~cm}? (b) How far can a 25 N25 \mathrm{~N} force stretch it?

See Solution

Problem 9432

Evaluate the integral: 1x(xa)dx\int \frac{1}{x(x-a)} d x (Use absolute values and CC for the constant.)

See Solution

Problem 9433

Find the derivative of the function w(r)=r6+7w(r)=\sqrt{r^{6}+7}.

See Solution

Problem 9434

Differentiate y=exx2arctanxy=e^{x}-x^{2} \arctan x. What is yy'?

See Solution

Problem 9435

Find the derivative of w(r)=r6+7w(r)=\sqrt{r^{6}+7}. What is dwdr\frac{d w}{d r}?

See Solution

Problem 9436

Find the limit of the function ff as xx approaches 2 from the right, given points at (2,2)(2,2) and (2,4)(2,4). Calculate: limx2+f(x) \lim _{x \rightarrow 2^{+}} f(x)

See Solution

Problem 9437

Differentiate y=xcosxy=\frac{x}{\cos x}.

See Solution

Problem 9438

Find the derivative of y=tan1(3x21)y = \tan^{-1}(\sqrt{3x^2 - 1}) with respect to xx.

See Solution

Problem 9439

Calculate the average rate of change for f(x)=3x2f(x)=\sqrt{3x-2} from x=1x=1 to x=2x=2. What expression gives this?

See Solution

Problem 9440

Find critical numbers of f(x)=5sin(x)cos(x)f(x)=-5 \sin (x) \cos (x) on (π,π)(-\pi, \pi). Where is ff increasing and decreasing?

See Solution

Problem 9441

You have a \150,000mortgage.Interpret150,000 mortgage. Interpret P(2)=554.43and and P'(2)=75.01$. What do these values mean?

See Solution

Problem 9442

Minimize the surface area of a cylindrical can with volume 60 cm360 \mathrm{~cm}^{3}, height 1 cm\geq 1 \mathrm{~cm}, diameter 4 cm\geq 4 \mathrm{~cm}. Find optimal dimensions.

See Solution

Problem 9443

Sketch the graph of a function gg where g(x)>0g^{\prime}(x)>0 for x<3x<3 and g(x)<0g^{\prime}(x)<0 for x>3x>3.

See Solution

Problem 9444

What does s(7)=224s^{\prime}(7)=-224 mean?
A. 7 seconds after drop, velocity is 224ft/s-224 \mathrm{ft} / \mathrm{s}. B. Dropped from 224 feet, velocity is 7ft/s7 \mathrm{ft} / \mathrm{s}. C. 7 seconds after drop, 224 feet above ocean. D. Dropped from 7 feet, velocity is 224ft/s-224 \mathrm{ft} / \mathrm{s} at ocean.

See Solution

Problem 9445

Find limx42f(x)g(x)\lim _{x \rightarrow 4} 2 f(x) g(x) given limx4f(x)=5\lim _{x \rightarrow 4} f(x)=5 and limx4g(x)=3\lim _{x \rightarrow 4} g(x)=-3.

See Solution

Problem 9446

Find the average rate of change of the function y=3xy=3^{x} from x=0x=0 to x=1x=1.

See Solution

Problem 9447

Find the limits: (a) limx42f(x)g(x)\lim _{x \rightarrow 4} 2 f(x) g(x) and (b) limx4x2f(x)\lim _{x \rightarrow 4} \frac{x^{2}}{f(x)} given limx4f(x)=5\lim _{x \rightarrow 4} f(x)=5 and limx4g(x)=3\lim _{x \rightarrow 4} g(x)=-3.

See Solution

Problem 9448

Find the average velocity of a TV dropped from a building, where h(t)=16t2+48t+340h(t)=-16 t^{2}+48 t+340, over [1,3.2][1,3.2].

See Solution

Problem 9449

Find the wind speed vv (0 ≤ vv ≤ 45) that minimizes the wind chill factor W(v)=0.17v3+18.4v2584v239W(v)=-0.17 v^{3}+18.4 v^{2}-584 v-239.

See Solution

Problem 9450

Find the limits: (a) limx42f(x)g(x)\lim _{x \rightarrow 4} 2 f(x) g(x), (b) limx4x2f(x)\lim _{x \rightarrow 4} \frac{x^{2}}{f(x)}, (c) limx4g(x)2f(x)\lim _{x \rightarrow 4^{-}} g(x)^{2}-f(x) given limx4f(x)=5\lim _{x \rightarrow 4} f(x)=5 and limx4g(x)=3\lim _{x \rightarrow 4} g(x)=-3.

See Solution

Problem 9451

Evaluate if the following statements about a continuous function ff on [a,b][a, b] are true or false, and explain why:
a) ff has an absolute max f(c)f(c) and min f(d)f(d) in [a,b][a, b] b) f(c)f^{\prime}(c) exists for all cc in [a,b][a, b] c) ff takes every value between f(a)f(a) and f(b)f(b)

See Solution

Problem 9452

Find the fourth derivative of f(x)=12x1xf(x)=\frac{12x}{1-x}, denoted as f(4)(x)f^{(4)}(x).

See Solution

Problem 9453

Given limx4f(x)=5\lim _{x \rightarrow 4} f(x)=5 and limx4g(x)=3\lim _{x \rightarrow 4} g(x)=-3, find these limits: (a) limx42f(x)g(x)\lim _{x \rightarrow 4} 2 f(x) g(x), (b) limx4x2f(x)\lim _{x \rightarrow 4} \frac{x^{2}}{f(x)}, (c) limx4g(x)2f(x)\lim _{x \rightarrow 4^{-}} g(x)^{2}-f(x), (d) limx4+g(x)\lim _{x \rightarrow 4^{+}} \sqrt{-g(x)}, (e) limx4f(x)f(x)+12g(x)\lim _{x \rightarrow 4} \frac{f(x)}{f(x)+12 g(x)}.

See Solution

Problem 9454

Find the limit of f(x)=3xx2f(x)=\frac{3x}{x-2} as xx approaches 2.

See Solution

Problem 9455

Find values of xx in [0,2π][0, 2\pi] where the graph of y=cosx2+sinxy=\frac{\cos x}{2+\sin x} has a horizontal tangent. x=x= x=\| x=

See Solution

Problem 9456

Determine if the following statements are true or false, and explain your reasoning: a) If ff and gg are increasing on II, then f+gf+g is increasing on II. b) If ff and gg are positive, increasing on II, then fgf g is increasing on II. c) If f(2)=0f^{\prime \prime}(2)=0, then ff has an inflection point at x=2x=2.

See Solution

Problem 9457

Given f(1)=6f(1)=6 and f(x)2f^{\prime}(x) \geq 2 for 1x31 \leq x \leq 3, prove that f(3)10f(3) \geq 10.

See Solution

Problem 9458

Check if the Mean Value Theorem applies to f(x)=x+4x21f(x)=\frac{x+4}{x^{2}-1} on [4,0][-4,0] and find values of cc.

See Solution

Problem 9459

Find the tangent line equation for y(x)=7cot6(x)y(x) = 7 \cot^{6}(x) at x=π4x = \frac{\pi}{4}.

See Solution

Problem 9460

Find the derivative of the function f(x)=tan2(x4)f(x)=\tan^{2}(x^{4}). What is f(x)f^{\prime}(x)?

See Solution

Problem 9461

Compute the limits using conjugates: (a) limx1x1x+32\lim _{x \rightarrow 1} \frac{x-1}{\sqrt{x+3}-2}, (b) limx44x5x2+9\lim _{x \rightarrow 4} \frac{4-x}{5-\sqrt{x^{2}+9}}.

See Solution

Problem 9462

The graph of the derivative ff^{\prime} of a function ff crosses the x-axis at -2, 0, 2, 4.
a) Where is ff increasing? b) Where is ff decreasing? c) Find critical values of ff. d) Classify critical values as min, max, or neither.

See Solution

Problem 9463

Find the derivative f(x)f'(x) for f(x)=2sinx6sinx+4cosxf(x)=\frac{2 \sin x}{6 \sin x+4 \cos x}. Then, determine the tangent line at a=0a=0: y=mx+by=mx+b with m=m= and b=b=.

See Solution

Problem 9464

Find the curvature of the curve r(t)=5cos(3t),5sin(3t),t\vec{r}(t)=\langle 5 \cos (3 t), 5 \sin (3 t), t\rangle at t=0t=0. Round to two decimal places.

See Solution

Problem 9465

A company's revenue is R(q)=q3+250q2R(q)=-q^{3}+250 q^{2} and cost is C(q)=300+16qC(q)=300+16 q.
A) Find the marginal profit function MP(q)M P(q).
B) Determine the quantity (in hundreds) to maximize profits. Round to two decimal places.

See Solution

Problem 9466

A company's revenue is R(q)=q3+370q2R(q)=-q^{3}+370 q^{2} and cost is C(q)=400+20qC(q)=400+20 q. Find the marginal profit MP(q)M P(q) and max profit quantity.

See Solution

Problem 9467

Find the derivative of f(x)=x10(x2+7)3f(x)=x^{10}(x^{2}+7)^{3} without simplifying.

See Solution

Problem 9468

Find the derivative of f(x)=9xf(x) = 9 \sqrt{x}.

See Solution

Problem 9469

Find the derivative of f(x)=5x22x3f(x)=\sqrt[3]{5 x^{2}-2 x}.

See Solution

Problem 9470

Find the derivative of f(x)=ex(lnx)f(x)=e^{-x}(\ln x).

See Solution

Problem 9471

Find the derivative of g(t)=lntt2g(t)=\frac{\ln t}{t^{2}} using the quotient rule: (gffg)/g²(g * f' - f * g') / g². Here, f(t)=ln(t)f(t) = \ln(t) and g(t)=t²g(t) = t².

See Solution

Problem 9472

Find the limit using I'Hospital's Rule: limxx2e4x\lim _{x \rightarrow-\infty} x^{2} e^{4 x}.

See Solution

Problem 9473

Find the derivative of y=lnx+1x1y=\ln \sqrt{\frac{x+1}{x-1}}.

See Solution

Problem 9474

Find the rate of change of the function y=32x+4y=\frac{3}{2}x+4.

See Solution

Problem 9475

Find the xx in [2,1][-2,1] for y=3x2+2x+1y=3x^{2}+2x+1 where the derivative equals the secant slope.

See Solution

Problem 9476

Prove that the derivative of csc(x)\csc(x) is csc(x)cot(x)-\csc(x) \cot(x).

See Solution

Problem 9477

Find the derivative of f(x)=sec(x)xf(x)=\sec (x)-x. What is f(x)f^{\prime}(x)?

See Solution

Problem 9478

Find the tangent line equation for y=6xsin(x)y=6 x \sin (x) at (π2,3π)\left(\frac{\pi}{2}, 3 \pi\right). y=y=

See Solution

Problem 9479

Find the values of xx where the graph of f(x)=x2sin(x)f(x) = x - 2 \sin(x) has a horizontal tangent. List answers as comma-separated values.

See Solution

Problem 9480

Differentiate the function y=106x2y=10^{6-x^{2}}. Find yy^{\prime}.

See Solution

Problem 9481

Find the limit as θ\theta approaches 0: limθ0sin(θ)5θ+tan(θ)\lim _{\theta \rightarrow 0} \frac{\sin (\theta)}{5 \theta+\tan (\theta)}

See Solution

Problem 9482

Find the one-sided limit limx5+f(x)\lim _{x \rightarrow 5^{+}} f(x) for the piecewise function f(x)={2x3 if x5;x2+1 if x>5}f(x)=\{2x-3 \text{ if } x \leq 5; x^2+1 \text{ if } x>5\}.

See Solution

Problem 9483

Calculate the limit: limx0sin(3x)5x\lim _{x \rightarrow 0} \frac{\sin (3 x)}{5 x}.

See Solution

Problem 9484

Find the derivative f(x)f^{\prime}(x) for f(x)=14sec(x)5(1+3tan(x))f(x)=\frac{14 \sec (x)}{5(1+3 \tan (x))}.

See Solution

Problem 9485

Estimate the root of x32x5=0x^{3}-2 x-5=0 using Newton's method with initial guess x0=2x_{0}=2 for one iteration.

See Solution

Problem 9486

Find the derivative of the function f(x)=8x3arctan(9x3)f(x)=8 x^{3} \arctan(9 x^{3}). What is f(x)f^{\prime}(x)?

See Solution

Problem 9487

Find the exact value of limx0g(x)\lim_{x \rightarrow 0} g(x) given 6x2+3x+4<g(x)<10x23x+46x^{2}+3x+4 < g(x) < 10x^{2}-3x+4 for all x0x \neq 0.

See Solution

Problem 9488

Differentiate R(t)=(3t+et)(3t)R(t)=(3t+e^{t})(3-\sqrt{t}). Find R(t)R^{\prime}(t).

See Solution

Problem 9489

Find the value of limx3(fg)(x)\lim _{x \rightarrow 3}(f g)(x) given that limx3f(x)=3\lim _{x \rightarrow 3} f(x)=3 and limx3g(x)=5\lim _{x \rightarrow 3} g(x)=5.

See Solution

Problem 9490

Find the next approximation x1x_{1} using Newton's method for f(x)=0f(x)=0 with initial guess x0=4x_{0}=4 where y=5x1y=5x-1 is tangent at (4,19)(4,19).

See Solution

Problem 9491

True or false: The graph of y=f(x)y=f(x) has a vertical asymptote at x=ax=a if limxa+f(x)=\lim _{x \rightarrow a^{+}} f(x)=-\infty.

See Solution

Problem 9492

Find (f1)(5)\left(f^{-1}\right)^{\prime}(-5) given f(4)=8f^{\prime}(-4)=-8, f(5)=7f^{\prime}(-5)=7, f(6)=10f^{\prime}(6)=-10.

See Solution

Problem 9493

True or false: If limxa+f(x)=L\lim_{x \rightarrow a^{+}} f(x)=L and limxaf(x)=L\lim_{x \rightarrow a^{-}} f(x)=L, is ff continuous at x=ax=a?

See Solution

Problem 9494

Find the limit as xx approaches -\infty: limxx2+x6x\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}+x}}{-6 x}.

See Solution

Problem 9495

Find the limit as xx approaches infinity: limx(5+1x)\lim_{x \rightarrow \infty}\left(5+\frac{1}{x}\right).

See Solution

Problem 9496

Identify which integrals are improper and explain why for each: (a) 108x4x21dx\int_{-1}^{0} \frac{8 x}{4 x^{2}-1} d x (b) 218x4x21dx\int_{-2}^{-1} \frac{8 x}{4 x^{2}-1} d x (c) 1/21sin(x)xdx\int_{1/2}^{1} \frac{\sin(x)}{x} d x

See Solution

Problem 9497

Find the value of limx0g(x)\lim_{x \rightarrow 0} g(x) given that 10x2+10x+4<g(x)<9x22x+410 x^{2}+10 x+4<g(x)<9 x^{2}-2 x+4 for x0x \neq 0.

See Solution

Problem 9498

Find the value of limx2x+f(x)\lim _{x \rightarrow 2} \sqrt{x+f(x)} given that limx2f(x)=5\lim _{x \rightarrow 2} f(x)=5. Round to three decimal places.

See Solution

Problem 9499

Sketch a function ff with these features: f(0)=f(6)=0f(0)=f(6)=0, f(3)=f(5)=0f'(3)=f'(5)=0, ff' positive for x<3x<3 and 3<x<53<x<5, negative for x>5x>5, f<0f''<0 for x<3x<3 or x>4x>4, and f>0f''>0 for 3<x<43<x<4.

See Solution

Problem 9500

Find critical numbers of f(x)=x28x+3f(x)=x^{2}-8x+3, intervals of increase/decrease, and relative extrema using the First Derivative Test.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord