Calculus

Problem 33101

Find the limit: limx+76x5x+3\lim _{x \rightarrow+\infty} \frac{7-6 x^{5}}{x+3}.

See Solution

Problem 33102

Find dydt\frac{d y}{d t} at x=5x=5 for y=x2+5y=x^{2}+5 given dxdt=30\frac{d x}{d t}=30.

See Solution

Problem 33103

Find the limit as tt approaches infinity for the expression 6t37t3+3\frac{6-t^{3}}{7 t^{3}+3}.

See Solution

Problem 33104

Find the limit: limx(x2+10x210)\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+10}-\sqrt{x^{2}-10}\right).

See Solution

Problem 33105

Find the area under the curve from -5 to 5 for 5x5 - |x|. Compute the integral: 55(5x)dx\int_{-5}^{5}(5-|x|) d x

See Solution

Problem 33106

Find the limit: limx+2+3x5x21+8x23\lim _{x \rightarrow+\infty} \sqrt[3]{\frac{2+3 x-5 x^{2}}{1+8 x^{2}}}.

See Solution

Problem 33107

Find the limit: limx5x22x+3\lim _{x \rightarrow-\infty} \frac{\sqrt{5 x^{2}-2}}{x+3}.

See Solution

Problem 33108

A student kicks a football to a max height of 50.0 m50.0 \mathrm{~m}. Find the kick speed and total flight time.

See Solution

Problem 33109

Find the horizontal asymptotes of f(x)=7x2+89x+7f(x)=\frac{\sqrt{7 x^{2}+8}}{9 x+7}. Provide answers as a comma-separated list.

See Solution

Problem 33110

Find the limit: limx8x4+7x+77x3+1=\lim _{x \rightarrow \infty} \frac{\sqrt{8 x^{4}+7 x+7}}{7 x^{3}+1}=\square

See Solution

Problem 33111

Find all numbers xx in (1,3)(-1,3) where f(x)=3x2+6x1f'(x)=3x^2+6x-1 equals the average rate of change of f(x)=x3+3x2x+7f(x)=x^3+3x^2-x+7.

See Solution

Problem 33112

Find the tangent line equation at (2,-10) for f(x)=62x3f(x)=6-2x^3 using the limit definition of the derivative: y=mx+by=mx+b.

See Solution

Problem 33113

Given the piecewise function
f(x)={2x2+5,x<035x31+4x+x3,x0 f(x)=\left\{\begin{array}{ll} 2 x^{2}+5, & x<0 \\ \frac{3-5 x^{3}}{1+4 x+x^{3}}, & x \geq 0 \end{array}\right.
find: a. limxf(x)\lim _{x \rightarrow-\infty} f(x) b. limx+f(x)\lim _{x \rightarrow+\infty} f(x).

See Solution

Problem 33114

Find the truncated Taylor series for ln(y)\ln(y) at y=1y=1 for n=0n=0, n=1n=1, and n=2n=2. Compare errors at y=1.1y=1.1 and y=1.75y=1.75.

See Solution

Problem 33115

An artillery shell is fired at 29.929.9^{\circ} with a speed of 1560 m/s1560 \mathrm{~m/s}. Find the flight time in minutes, ignoring air resistance.

See Solution

Problem 33116

Complete the table and estimate the limit: f(x)=x2+xx+1;limx+f(x)f(x)=\frac{\sqrt{x^{2}+x}}{x+1} ; \quad \lim _{x \rightarrow+\infty} f(x)

See Solution

Problem 33117

Calculate the average rate of change of R(t)R(t) from t=2t=2 to t=6t=6 where R(2)=20.7R(2)=20.7, R(6)=19.9R(6)=19.9.

See Solution

Problem 33118

Define the piecewise function f(x)f(x) and find where it is discontinuous and not differentiable. Sketch the graph.

See Solution

Problem 33119

Evaluate the limits for f(x)=x2f(x)=|x-2|:
1. limx2f(x)f(2)x2=\lim _{x \rightarrow 2^{-}} \frac{f(x)-f(2)}{x-2}=\square
2. limx2+f(x)f(2)x2=\lim _{x \rightarrow 2^{+}} \frac{f(x)-f(2)}{x-2}=\square
Is f(x)f(x) differentiable at 2?

See Solution

Problem 33120

Find the limit as tt approaches 0 for the expression cottcsct\frac{\cot t}{\csc t}.

See Solution

Problem 33121

Find the total oil leaked in the first 10 hours after the tanker breaks apart, given R(t)=0.61+t2R(t)=\frac{0.6}{1+t^{2}}.

See Solution

Problem 33122

Evaluate the integral: 78x3dx=C\int \frac{78}{\sqrt[3]{x}} dx = C

See Solution

Problem 33123

Given f(x)=4xf(x)=\frac{4}{x}, find AA in f(x+h)f(x)h=Ax(x+h)\frac{f(x+h)-f(x)}{h}=\frac{A}{x(x+h)}. Then compute f(1)f^{\prime}(1), f(2)f^{\prime}(2), f(3)f^{\prime}(3).

See Solution

Problem 33124

Indicate T or F for each statement below. All must be correct for credit.
1. If limx7[f(x)g(x)]\lim _{x \rightarrow 7}[f(x) g(x)] exists, then it's f(7)g(7)f(7) g(7)
2. If limx6f(x)=\lim _{x \rightarrow 6} f(x)=\infty and limx6g(x)=\lim _{x \rightarrow 6} g(x)=\infty, then limx6[f(x)g(x)]=0\lim _{x \rightarrow 6}[f(x)-g(x)]=0
3. limx3x2+6x27x2+7x30=limx3x2+6x27limx3x2+7x30\lim _{x \rightarrow 3} \frac{x^{2}+6 x-27}{x^{2}+7 x-30}=\frac{\lim _{x \rightarrow 3} x^{2}+6 x-27}{\lim _{x \rightarrow 3} x^{2}+7 x-30}
4. If f(x)f(x) is differentiable at aa, then f(x)f(x) is continuous at aa
5. If limx6f(x)=6\lim _{x \rightarrow 6} f(x)=6 and limx6g(x)=0\lim _{x \rightarrow 6} g(x)=0, then limx6[f(x)/g(x)]\lim _{x \rightarrow 6}[f(x) / g(x)] does not exist

See Solution

Problem 33125

Indicate True (T) or False (F) for these statements about limits and continuity:
1. If limxf[f(x)g(x)]\lim _{x \rightarrow f}[f(x) g(x)] exists, then it equals f(7)g(7)f(7) g(7).
2. If limx6f(x)=\lim _{x \rightarrow 6} f(x)=\infty and limxg(x)=\lim _{x \rightarrow \infty} g(x)=\infty, then limx6[f(x)g(x)]=0\lim _{x \rightarrow 6}[f(x)-g(x)]=0.
3. limx3x2+6x27x2+7x30=limx3(x2+6x27)limx3(x2+7x30)\lim _{x \rightarrow 3} \frac{x^{2}+6 x-27}{x^{2}+7 x-30}=\frac{\lim _{x \rightarrow 3} (x^{2}+6 x-27)}{\lim _{x \rightarrow 3} (x^{2}+7 x-30)}.
4. If f(x)f(x) is differentiable at aa, then f(x)f(x) is continuous at aa.
5. If limx6f(x)=6\lim _{x \rightarrow 6} f(x)=6 and limx6g(x)=0\lim _{x \rightarrow 6} g(x)=0, then limx6[f(x)/g(x)]\lim _{x \rightarrow 6}[f(x) / g(x)] does not exist.

See Solution

Problem 33126

Determine if the sequence an=2n2+n1n2a_{n}=\frac{2 n^{2}+n-1}{n^{2}} converges or diverges, and find the limit if it converges.

See Solution

Problem 33127

Determine the behavior of the curve x2y4x=5x^{2} y - 4 x = 5 at the point (5,1)(5,1): increasing/concave up/down or decreasing/concave up/down?

See Solution

Problem 33128

Find the limit: limnn2n3+4n\lim _{n \rightarrow \infty} \frac{n^{2}}{\sqrt{n^{3}+4 n}}.

See Solution

Problem 33129

Find the derivative of f(x)=55x+6f(x)=\frac{5}{5x+6}. What is f(x)=?f^{\prime}(x)=?

See Solution

Problem 33130

Determine if the sequence an=n2n3+4na_{n}=\frac{n^{2}}{\sqrt{n^{3}+4 n}} converges and find its limit.

See Solution

Problem 33131

Find a relative minimum for the function h(t)=t41+th(t)=t-4 \sqrt{1+t} using the second derivative test.

See Solution

Problem 33132

Find the derivative of f(x)=x4cosxf(x)=x^{4} \cos x. What is f(x)=?f^{\prime}(x)=?

See Solution

Problem 33133

Find the critical value of f(x)=2x+5cos(x)f(x)=2x+5\cos(x) on 0x2π0 \leq x \leq 2\pi that has absolute and relative extrema. Options: 0, 0.412, 2.730, 6.283.

See Solution

Problem 33134

Find the derivative of the function f(x)=(7x5x3)(6+x)f(x)=\left(7 x-5 x^{3}\right)(6+\sqrt{x}). What is f(x)f^{\prime}(x)?

See Solution

Problem 33135

Find the limit: limh0132+h0.03125h\lim _{h \rightarrow 0} \frac{\frac{1}{32+h}-0.03125}{h}.

See Solution

Problem 33136

Find the derivative of the function f(x)=(7x5x3)(6+x)f(x)=(7x-5x^{3})(6+\sqrt{x}). What is f(x)f^{\prime}(x)?

See Solution

Problem 33137

Find g(1)g'(1) for g(x)=23x3g(x)=2-3x^3 and use it to write the tangent line at (1,1)(1,-1) in y=mx+by=mx+b form.

See Solution

Problem 33138

Find g(1)g(1) for g(x)=23x3g(x)=2-3x^3 and use it to find the tangent line at (1,1)(1,-1) in the form y=mx+by=mx+b.

See Solution

Problem 33139

Determine if the sequence an=1(0.2)na_n = 1 - (0.2)^n converges and find its limit.

See Solution

Problem 33140

Deposit \1000at1000 at 3\%$ simple interest. Find the average rate of change for the first year and six years, to two decimal places.

See Solution

Problem 33141

Find the derivative of the function f(x)=9x7/55x2+104f(x)=9 x^{7/5}-5 x^{2}+10^{4}.

See Solution

Problem 33142

Find the derivative of the function f(x)=cosx7tanxf(x)=\cos x-7 \tan x, i.e., compute f(x)f^{\prime}(x).

See Solution

Problem 33143

Evaluate the integral: 68x3+7x46x2dx=\int \frac{68 x^{3}+7 x-46}{x^{2}} d x =

See Solution

Problem 33144

Find the first four terms of the Taylor series for f(y)=ryln(ky)f(y)=r y \ln \left(\frac{k}{y}\right) about y=Ky=K.

See Solution

Problem 33145

Find the derivative f(x)f'(x) of the function f(x)=2x23+x2f(x)=\frac{2-x^{2}}{3+x^{2}} and evaluate f(3)f'(3).

See Solution

Problem 33146

Find the derivative f(x)f'(x) of the function f(x)=x2x+2f(x)=\frac{\sqrt{x}-2}{\sqrt{x}+2} and evaluate f(2)f'(2).

See Solution

Problem 33147

Find the function f(x)f(x) and the number aa for the limit limh064+h8h\lim _{h \rightarrow 0} \frac{\sqrt{64+h}-8}{h}.

See Solution

Problem 33148

Find the limit limh0(8+h)264h\lim _{h \rightarrow 0} \frac{(8+h)^{2}-64}{h} and identify the function f(t)f(t) and the value aa.

See Solution

Problem 33149

Evaluate the integral 36(ddt5+3t4)dt\int_{3}^{6} \left(\frac{d}{d t} \sqrt{5+3 t^{4}}\right) d t.

See Solution

Problem 33150

1. What is the expected temperature at 10 km if sea level is 22°C and 2 km is 9°C?
2. Find a function T=f(h)T=f(h) for 27°C at sea level. What is its reasonable domain?
3. For pressure pp at height hh: p=101.32e(34.2hT+273.15)p=101.32 \cdot e^{\left(-\frac{34.2 h}{T+273.15}\right)}. Find pp at 10 km with 27°C.

See Solution

Problem 33151

Find the derivative yy^{\prime} of the function y=1cos(x)(2t+10sin(t))dty=\int_{1}^{\cos (x)}(2 t+10 \sin (t)) d t using the Fundamental Theorem of Calculus.

See Solution

Problem 33152

Find the derivative f(t)f^{\prime}(t) of the function f(t)=(t2+7t+2)(6t2+6t3)f(t)=(t^{2}+7 t+2)(6 t^{-2}+6 t^{-3}).

See Solution

Problem 33153

Find the derivative of the function F(x)=ex2F(x)=e^{x^{2}}. What is F(x)F^{\prime}(x)? F(x)=F^{\prime}(x)=\square

See Solution

Problem 33154

Evaluate the integral 042xex2dx=\int_{0}^{4} 2 x e^{x^{2}} d x=\square using the Fundamental Theorem of Calculus.

See Solution

Problem 33155

Find the function f(a)f(a) and the number aa such that limh0(8+h)264h\lim _{h \rightarrow 0} \frac{(8+h)^{2}-64}{h} represents its derivative.

See Solution

Problem 33156

Find f(x)f(x) where f(x)=tan(x)xf'(x)=\frac{\tan(x)}{x} and f(1)=5f(1)=5.

See Solution

Problem 33157

If f(3)=14f(3)=14, ff^{\prime} is continuous, and 37f(t)dt=20\int_{3}^{7} f^{\prime}(t) dt=20, find f(7)f(7).

See Solution

Problem 33158

Find and simplify f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} for f(x)=5xf(x)=\frac{5}{x}, then use it to find the derivative f(z)f'(z).

See Solution

Problem 33159

Find and simplify f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} for f(x)=5xf(x)=\frac{5}{x}, then use it to find the derivative. Also, find f(2)f^{\prime}(2).

See Solution

Problem 33160

Find the open intervals where the function f(x)=cos(x)sin(x)f(x)=\cos (x)-\sin (x) is increasing on [0,2π][0,2 \pi].

See Solution

Problem 33161

Given f(x)=11x(sin(x)+cos(x))f(x)=11 x(\sin (x)+\cos (x)), find f(x)f^{\prime}(x) and f(π4)f^{\prime}\left(\frac{\pi}{4}\right).

See Solution

Problem 33162

Evaluate the integral ππf(x)dx\int_{-\pi}^{\pi} f(x) \, dx for the piecewise function f(x)={4x if πx0,sin(x) if 0<xπ}f(x) = \{-4x \text{ if } -\pi \leq x \leq 0, \sin(x) \text{ if } 0 < x \leq \pi\}.

See Solution

Problem 33163

A graphing calculator is recommended.
1. Bismuth-210 has a half-life of 5 days. (a) Find remaining mass after 15 days from 160 mg. (b) Determine remaining mass after tt days: y(t)=mgy(t) = \mathrm{mg}. (c) Estimate remaining mass after 2 weeks (round to 1 decimal). (d) Find days to reduce mass to 1 mg (round to 1 decimal).

See Solution

Problem 33164

Find the domain of y=1x23y=\frac{1}{x^{2}-3} and the largest interval II for the initial condition.

See Solution

Problem 33165

Evaluate the integral using the Fundamental Theorem of Calculus: 555dxx=\int_{-55}^{-5} \frac{d x}{x}=

See Solution

Problem 33166

Find a function with second derivative y=12x2y''=12x-2 and tangent line y=x+5y=-x+5 at x=1x=1. What is y=?y=?

See Solution

Problem 33167

Check if these functions are eigenfunctions of the operator ddx\frac{d}{d x}: a. eikxe^{-i k x}, b. kx2k x^{2}.

See Solution

Problem 33168

Find the value of 44(f(x)+4)dx\int_{4}^{-4}(f(x)+4) d x given 48f(x)dx=7\int_{4}^{8} f(x) d x=7 and 48f(x)dx=15\int_{-4}^{8} f(x) d x=15.

See Solution

Problem 33169

Given y=5x2y=5 x^{2}, find Δy\Delta y when x=5x=5 and Δx=0.1\Delta x=0.1. Also, find dyd y for dx=0.1d x=0.1.

See Solution

Problem 33170

Determine the formula for the integral from 4 to x2x^{2} of (t+5)(t+5) with respect to tt.

See Solution

Problem 33171

Find the function formula for the integral: 2x(8t27t)dt=\int_{-2}^{x}(8 t^{2}-7 t) dt =

See Solution

Problem 33172

Find the derivative yy^{\prime} of y=1cos(x)(10t+3sin(t))dty=\int_{1}^{\cos (x)}(-10 t+3 \sin (t)) d t using the Fundamental Theorem of Calculus.

See Solution

Problem 33173

Find dyd y for y=tan(3x+3)y=\tan(3x+3) at x=2x=2 with dx=0.1d x=0.1 and dx=0.2d x=0.2.

See Solution

Problem 33174

Find F(9)F(-9), F(9)F(9), F(0)F^{\prime}(0), and F(9)F^{\prime}(9) for F(x)=9xduu2+1F(x)=\int_{-9}^{x} \frac{d u}{u^{2}+1}.

See Solution

Problem 33175

Estimate Δy\Delta y for y=4x2+6x+2y=4 x^{2}+6 x+2 with Δx=0.4\Delta x=0.4 at x=3x=3 using linear approximation.

See Solution

Problem 33176

Given f(t)f(t) as the weight of a solid in water, with f(t)=1f(t)(4+f(t))f^{\prime}(t)=-1 f(t)(4+f(t)). If f(2)=4f(2)=4, find f(2+160)f(2+\frac{1}{60}).

See Solution

Problem 33177

Approximate 125.33\sqrt[3]{125.3} using the tangent line of f(x)=x3f(x)=\sqrt[3]{x} at x=125x=125. Find mm and bb for y=mx+by=m x+b.

See Solution

Problem 33178

Estimate Δy\Delta y for y=sin(3x)y=\sin(3x) at x=0x=0 with Δx=0.3\Delta x=0.3 using linear approximation. Find percentage error.

See Solution

Problem 33179

Evaluate the integrals for the piecewise function f(x)={2x,x12,x>1f(x)=\left\{\begin{array}{ll}2 x, & x \leq 1 \\ 2, & x>1\end{array}\right.: a. 01f(x)dx\int_{0}^{1} f(x) d x, b. 11f(x)dx\int_{-1}^{1} f(x) d x, c. 010f(x)dx\int_{0}^{10} f(x) d x, d. 1/25f(x)dx\int_{1/2}^{5} f(x) d x.

See Solution

Problem 33180

Approximate 11.003\frac{1}{1.003} using linear approximation with f(x)=1xf(x)=\frac{1}{x} at a point near 1.003.

See Solution

Problem 33181

Find F(x)F^{\prime}(x) for F(x)=x31cos(t2)dtF(x)=\int_{x}^{-3}-1 \cos(t^{2}) dt using the Fundamental Theorem of Calculus.

See Solution

Problem 33182

Find f(8)f(8) given that f(3)=16f(3)=16, ff^{\prime} is continuous, and 38f(t)dt=20\int_{3}^{8} f^{\prime}(t) dt=20.

See Solution

Problem 33183

Estimate the maximum error in the surface area of a sphere with circumference 90 cm90 \mathrm{~cm} and error 0.5 cm0.5 \mathrm{~cm}.

See Solution

Problem 33184

Find the derivative of the function F(x)=ex2F(x)=e^{x^{2}}. What is F(x)F^{\prime}(x)? F(x)=F^{\prime}(x)=\square

See Solution

Problem 33185

Find the tangent lines to f(x)=x3+2f(x)=x^{3}+2 that are parallel to 3xy4=03x-y-4=0. Give both yy-intercepts.

See Solution

Problem 33186

Sketch the area between y=x325y=\frac{x^{3}}{25} and the x-axis over [6,5][-6,-5]. Find the area. Area ==

See Solution

Problem 33187

Find the tangent lines to f(x)=x3+2f(x)=x^{3}+2 that are parallel to the line 3xy4=03x - y - 4 = 0.

See Solution

Problem 33188

Find the derivative of the function F(x)=ex2F(x)=e^{x^{2}}, i.e., compute F(x)F^{\prime}(x).

See Solution

Problem 33189

Find the first derivative dydx\frac{d y}{d x} at the point (1,1)(1,1) for the equation x23+y23=2yx^{\frac{2}{3}}+y^{\frac{2}{3}}=2 \sqrt{y}.

See Solution

Problem 33190

Evaluate f(x)=2x24x+5f(x)=-2x^{2}-4x+5 at x=6x=-6 and x=4x=4. Does Rolle's Theorem apply? Find cc where f(c)=0f'(c)=0 or enter "DNE".

See Solution

Problem 33191

Evaluate the integral 36(ddt5+5t4)dt\int_{3}^{6} \left(\frac{d}{d t} \sqrt{5+5 t^{4}}\right) d t using the Fundamental Theorem of Calculus.

See Solution

Problem 33192

Evaluate the integral ππf(x)dx\int_{-\pi}^{\pi} f(x) d x where f(x)={7xif πx010sin(x)if 0<xπf(x)=\begin{cases}7x & \text{if } -\pi \leq x \leq 0 \\ 10 \sin(x) & \text{if } 0 < x \leq \pi\end{cases}. If it doesn't exist, answer "DNE".

See Solution

Problem 33193

Find df1dx\frac{d f^{-1}}{d x} for f(x)=x32f(x)=x^{3}-2 at x=6x=6 where f(2)=6f(2)=6.

See Solution

Problem 33194

Evaluate f(x)=cos(5πx)f(x)=\cos(5\pi x) at x=45x=\frac{4}{5} and x=65x=\frac{6}{5}. Does Rolle's Theorem apply? Find cc where f(c)=0f'(c)=0.

See Solution

Problem 33195

Find the derivative of x9/2x^{9/2}.

See Solution

Problem 33196

Find the tangent line equation to the curve f(x)=e2xf(x)=e^{2 x} at the point (0,1)(0,1).

See Solution

Problem 33197

Find the slope of the tangent line to the curve y=xe6xe2xy=x e^{6 x}-e^{2 x} at x=0x=0. Options: 1-1, 2-2, None.

See Solution

Problem 33198

Apply Rolle's Theorem to f(x)=2x216x4f(x)=2 x^{2}-16 x-4 on [2,6][2,6]. How many cc values satisfy f(c)=0f^{\prime}(c)=0? What is cc? Also, check conditions for [1,13][-1,13].

See Solution

Problem 33199

Find the derivative of y=4x35xy=4 x^{3}-5 x and identify stationary points. Provide answers as specified.

See Solution

Problem 33200

Calculate the integral 24x2x(1+lnx)dx\int_{2}^{4} x^{2 x}(1+\ln x) d x.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord