Calculus

Problem 13101

Determine where the function f(x)=x44+x3x2f(x)=-\frac{x^{4}}{4}+x^{3}-x^{2} is increasing or decreasing.

See Solution

Problem 13102

Find and simplify the derivative f(x)f^{\prime}(x) for the function f(x)=2x2tanxsecxf(x)=\frac{2 x^{2} \tan x}{\sec x}.

See Solution

Problem 13103

Find the radius expansion rate of a circular area wetting at 10 mm2/s10 \mathrm{~mm}^{2} / \mathrm{s} when radius is 112 mm112 \mathrm{~mm}.

See Solution

Problem 13104

Find f(x)f^{\prime}(x) for f(x)=(4x+3)1f(x)=(4 x+3)^{-1} and determine f(4)=σ6f^{\prime}(4) = \square \sigma^{6}.

See Solution

Problem 13105

Find the rate of area increase of a metal plate when its radius is 46 cm46 \mathrm{~cm} and increases at 0.05 cm/min0.05 \mathrm{~cm/min}.

See Solution

Problem 13106

Find the degree 2 Taylor polynomial of f(x)=6xlnxf(x)=6x \ln x centered at x=2x=2.

See Solution

Problem 13107

Find the concavity intervals and inflection points for the function g(t)=3t5+15t4+20t3+70g(t)=3 t^{5}+15 t^{4}+20 t^{3}+70.

See Solution

Problem 13108

Find the linearization L(x)L(x) at x=1x=1 for the function f(x)=3x32x1f(x)=3x^3-2x-1.

See Solution

Problem 13109

Find the area represented by the integral 60(2+36x2)dx\int_{-6}^{0}\left(2+\sqrt{36-x^{2}}\right) d x.

See Solution

Problem 13110

Find the degree 3 Taylor polynomial T3T_{3} at x=0x=0 for f(x)=1(4x+1)1/2f(x)=\frac{1}{(4 x+1)^{1/2}}.

See Solution

Problem 13111

Find the Taylor series at x=0x=0 for f(x)=cos(5x)f(x)=\cos(5x).

See Solution

Problem 13112

Evaluate these antiderivatives: (a) (8x35x1/31x2/3+e2x)dx\int\left(8 x^{3}-5 x^{1 / 3}-\frac{1}{x^{2 / 3}}+e^{2 x}\right) d x (b) (x3)1/4xdx\int(x-3)^{1 / 4} x d x (c) cos(x2+1)xdx\int \cos \left(x^{2}+1\right) x d x (d) sinttdt\int \frac{\sin \sqrt{t}}{\sqrt{t}} d t. Show all steps for full credit.

See Solution

Problem 13113

Prove the inequality sinasinbab|\sin a - \sin b| \leq |a - b| using the Mean Value Theorem for all aa and bb.

See Solution

Problem 13114

Prove sinasinbab|\sin a - \sin b| \leq |a - b| using the Mean Value Theorem for any values of aa and bb.

See Solution

Problem 13115

Find the derivative of g(t)=ln(12t3)g(t) = \ln(12 t^3).

See Solution

Problem 13116

Arjun walks south at 1.5 m/s1.5 \mathrm{~m/s} and Maya east at 2 m/s2 \mathrm{~m/s}. Find the distance change rate after 2 mins.

See Solution

Problem 13117

Find dydx\frac{d y}{d x} using implicit differentiation for the equation x4+y5=7x^{4}+y^{5}=-7.

See Solution

Problem 13118

Find the derivative of f(x)=ex+9x23f(x)=\sqrt[3]{e^{x}+9 x^{2}}.

See Solution

Problem 13119

Find the limit: limh0(2+h)24h\lim _{h \rightarrow 0} \frac{(-2+h)^{2}-4}{h}.

See Solution

Problem 13120

Find the slope of the tangent line to the curve r=sinθ+2cosθr=\sin \theta+2 \cos \theta at θ=π2\theta=\frac{\pi}{2}.

See Solution

Problem 13121

A tennis ball's motion is given by x=32.0tx=32.0 t and y=42.0t4.90t2y=42.0 t-4.90 t^{2}. Find velocity and acceleration at t=6.00 st=6.00 \mathrm{~s}.

See Solution

Problem 13122

Find the limit: lims2525s5s\lim _{s \rightarrow 25} \frac{25-s}{5-\sqrt{s}}

See Solution

Problem 13123

Gravel is dumped at 24 m3/h24 \mathrm{~m}^{3} / \mathrm{h} forming a cone. Find height increase rate when height is 5 m5 \mathrm{~m}.

See Solution

Problem 13124

A 1.7 m tall person walks away from a 5.95 m pole at 1 m/s. Find the speed of their shadow's tip when 14 m from the pole.

See Solution

Problem 13125

Find 64f(s)ds\int_{6}^{4} f(s) d s if 46f(x)dx=113\int_{4}^{6} f(x) d x=\frac{11}{3}.

See Solution

Problem 13126

Find the bounds aa and bb for the integral if abf(x)dx=52f(x)dx+24f(x)dx51f(x)dx\int_{a}^{b} f(x) dx = \int_{-5}^{2} f(x) dx + \int_{2}^{4} f(x) dx - \int_{-5}^{-1} f(x) dx.

See Solution

Problem 13127

Untersuche, ob F(x)=0,1x65F(x)=0,1 x^{6}-5 oder G(x)=330x6G(x)=\frac{3}{30} x^{6} die Stammfunktion von h(x)=35x5h(x)=\frac{3}{5} x^{5} ist.

See Solution

Problem 13128

Find the point elasticity of demand for q=68p+ln(126p3)q=\frac{68}{p}+\ln(126-p^{3}) at p=5p=5. Then, estimate the impact of a 2% price drop on quantity sold and revenue.

See Solution

Problem 13129

Zeichne den Graphen von c(t)=t317t2+63t+81c(t)=t^{3}-17 t^{2}+63 t+81 für 0t90 \leq t \leq 9. Bestimme Maximal- und Endkonzentration.

See Solution

Problem 13130

Calculate the antiderivative of f(x)=3x2+12x3f(x)=-3 x^{2}+\frac{1}{2} x^{3}.

See Solution

Problem 13131

Find the limit: limh0f(x0+h)f(x0)h\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}

See Solution

Problem 13132

A light ray enters a raindrop, reflecting internally. Use Snell's Law sinβ=0.75sinθ\sin \beta=0.75 \sin \theta to find angles.
a. Find β\beta when θ=0.8\theta=0.8. b. Find ψ\psi when θ=0.8\theta=0.8 and show ψ=4β2θ\psi=4 \beta-2 \theta. Express ψ\psi as a function of θ\theta. c. As θ\theta varies from 0 to π2\frac{\pi}{2}, find the max ψ\psi and its relation to rainbows.
For extreme colors, find max ψ\psi for k=0.7513k=0.7513 (red) and k=0.7435k=0.7435 (violet). The rainbow's width is about 2 degrees.

See Solution

Problem 13133

Differentiate f(x)=x37x+9x27xf(x)=\frac{x^{3}-7 x+9 x^{2}}{7 x} with respect to xx.

See Solution

Problem 13134

Find dydx\frac{d y}{d x} for y=315x53+4xy=3-\frac{1}{5 \sqrt[3]{x^{5}}}+4 x.

See Solution

Problem 13135

Ein Zug muss vor einem 1000 m1000 \mathrm{~m} Signal anhalten. Bestimme, wann der Zug stoppt und ob er das Signal erreicht.

See Solution

Problem 13136

Bestimmen Sie die Ableitung von ff bei x0=2x_{0}=2 mit dem Differenzenquotienten für kleine hh für folgende Funktionen: a) f(x)=x2f(x)=x^{2}, b) f(x)=2xf(x)=\frac{2}{x}, c) f(x)=2x23f(x)=2 x^{2}-3, d) f(x)=x4f(x)=x^{4}, e) f(x)=x3f(x)=x^{3}, f) f(x)=4xx2f(x)=4 x-x^{2}, g) f(x)=xf(x)=\sqrt{x}, h) f(x)=5f(x)=5.

See Solution

Problem 13137

Berechne die Ableitung von ff bei x0=2x_{0}=2 mit dem Differenzenquotienten für kleine hh für die Funktionen: a) f(x)=x2f(x)=x^{2}, b) f(x)=2xf(x)=\frac{2}{x}, c) f(x)=2x23f(x)=2 x^{2}-3, d) f(x)=x4f(x)=x^{4}, e) f(x)=x3f(x)=x^{3}, f) f(x)=4xx2f(x)=4 x-x^{2}, g) f(x)=xf(x)=\sqrt{x}, h) f(x)=5f(x)=5.

See Solution

Problem 13138

Bestimme die Ableitung der Funktion ff bei x0=2x_{0}=2 mit dem Differenzenquotienten für kleine hh für die folgenden Funktionen: a) f(x)=x23f(x)=\frac{x^{2}}{3} b) f(x)=2xf(x)=\frac{2}{x} c) f(x)=2x23f(x)=2 x^{2}-3 d) f(x)=x4f(x)=x^{4} e) f(x)=x3f(x)=x^{3} f) f(x)=4xx2f(x)=4 x-x^{2} g) f(x)=xf(x)=\sqrt{x} h) f(x)=5f(x)=5

See Solution

Problem 13139

Find the derivative of f(tan1x)f\left(\tan^{-1} x\right) if f(x)=tanxf'(x) = \tan x. What is the result?

See Solution

Problem 13140

Finde die Stelle, an der die Steigung der Funktion f(x)=x5f(x)=x^{5} gleich 80 ist. Gib nur eine Lösung an.

See Solution

Problem 13141

Find the derivative of cos1x\cos^{-1} x with respect to 1x2\sqrt{1-x^{2}}. Choose from: (A) 11x2\frac{1}{\sqrt{1-x^{2}}}, (B) 1x2\sqrt{1-x^{2}}, (C) 12x\frac{1}{2 x}, (D) 1x\frac{1}{x}.

See Solution

Problem 13142

Finde den Hochpunkt der Funktion f(x)=2xe0,5xf(x)=2 x \cdot e^{-0,5 x}, die Tangentengleichung bei x0=1x_0=1 und zeige, dass F(x)=4(x+2)e0,5xF(x)=-4(x+2) \cdot e^{-0,5 x} eine Stammfunktion ist.

See Solution

Problem 13143

Find the value of xx where the tangent to y=x36x2+9x+4y=x^{3}-6 x^{2}+9 x+4 has maximum slope for 0x50 \leq x \leq 5.

See Solution

Problem 13144

Berechne die Steigung der Funktionen: a) f(x)=3xf(x)=\frac{3}{x} bei x=2x=-2, b) f(x)=2xf(x)=2 \cdot \sqrt{x} bei x=3x=3.

See Solution

Problem 13145

Evaluate the double integral D8yx3dA\iint_{D} 8 y x^{3} dA where D={(x,y)1y2,1x}D=\{(x, y) \mid -1 \leq y \leq 2, -1 \leq x\}.

See Solution

Problem 13146

Find ex(cosxsinx)dx\int e^{x}(\cos x-\sin x) d x. Choose from: (a) excosx+ce^{x} \cos x+c, (b) exsinx+ce^{x} \sin x+c, (c) excosx+c-e^{x} \cos x+c, (d) exsinx+c-e^{x} \sin x+c.

See Solution

Problem 13147

Assertion-Reason Questions:
For Q19, given f(x)f(x) with ddx(f(x))=(x1)3(x3)2\frac{d}{d x}(f(x))=(x-1)^{3}(x-3)^{2}, is AA: min at x=1x=1 true? RR: min condition true?

See Solution

Problem 13148

Evaluate the double integral D8yx3dA\iint_{D} 8 y x^{3} d A for the region D={(x,y)1y2,1x1+y2}D=\{(x, y) \mid -1 \leq y \leq 2, -1 \leq x \leq 1+y^{2}\}.

See Solution

Problem 13149

Convert the integral D(3xy22)dA\iint_{D}(3xy^{2}-2) dA from Cartesian to polar coordinates, where DD is the unit circle.

See Solution

Problem 13150

Bestimme die Ableitung von f(x)=35x5f(x)=\frac{3}{5} x^{5} mit der Faktorregel.

See Solution

Problem 13151

Evaluate the double integral: 12[11+y28yx3dx]dy\int_{-1}^{2}\left[\int_{-1}^{1+y^{2}} 8 y x^{3} d x\right] d y.

See Solution

Problem 13152

Find the limits of g(x)=ln(3x)g(x)=\ln(3-x) as xx \to -\infty and as x3x \to 3^- (from the left).

See Solution

Problem 13153

Analyze the end behavior of f(x)=1+5(1.02)xf(x)=-1+5(1.02)^{x} as xx \to \infty and xx \to -\infty using limits.

See Solution

Problem 13154

Calculate the area between the lines f(x)=8x+5f(x) = 8x + 5 and g(x)=8x5g(x) = 8x - 5.

See Solution

Problem 13155

Compounding Interest Problem Taylor invests \$1 at 100% interest. Calculate her amount after 1 year for different compounding periods. Also, if \$300 compounds continuously at 6% for 5 years, find the final amount.

See Solution

Problem 13156

Find the derivative of the function y=sinxlnxy=\frac{\sin x}{\ln x}. What is dydx\frac{d y}{d x}?

See Solution

Problem 13157

Find the derivative h(2)h^{\prime}(2) if h(x)=f(x)2x+1h(x)=\frac{f(x)}{2x+1}.

See Solution

Problem 13158

Find the derivative of the function y=3excosxy=3 e^{x} \cdot \cos x. What is dydx\frac{d y}{d x}?

See Solution

Problem 13159

Calculate the integral 4916x2dx\int_{-4}^{9} \sqrt{16-x^{2}} \, dx.

See Solution

Problem 13160

Berechnen Sie die Ableitung von ff an x0x_{0} für: a) f(x)=x2f(x)=x^{2} bei x0=2x_{0}=2, b) f(x)=2x2f(x)=2 x^{2} bei x0=1x_{0}=1, c) f(x)=x2f(x)=-x^{2} bei x0=2x_{0}=2.

See Solution

Problem 13161

Find the derivative of the function y=3x55+2x2x53y=\frac{3 x^{5}}{5}+\frac{2}{x^{2}}-\sqrt[3]{x^{5}}. What is dydx\frac{d y}{d x}?

See Solution

Problem 13162

Find the tangent line equation for f(x)=ln(x2+1)3sin(ex)f(x)=\ln(x^{2}+1)-3\sin(e^{x}) at x=2x=2.

See Solution

Problem 13163

Find the second derivative d2ydx2\frac{d^{2} y}{d x^{2}} by implicit differentiation of 5y2xy+3x2=25 y^{2}-x y+3 x^{2}=2.

See Solution

Problem 13164

Find the derivative of the function g(a)=a(1a)g(a)=\sqrt{a} \cdot(1-a), which is g(a)=13a2ag^{\prime}(a)=\frac{1-3 a}{2 \sqrt{a}}.

See Solution

Problem 13165

Find the derivative dydx\frac{d y}{d x} for the function y=4x35x1y=\sqrt{\frac{4 x^{3}}{5 x-1}}.

See Solution

Problem 13166

Evaluate (A) limx32lnx2ln3x3\lim _{x \rightarrow 3} \frac{2 \ln x-2 \ln 3}{x-3} and (B) limh09+h9h\lim _{h \rightarrow 0} \frac{\sqrt{9+h}-\sqrt{9}}{h} as derivatives.

See Solution

Problem 13167

Find values of bb and cc for which f(x)f(x) is continuous but not differentiable at x=4x=4:
f(x)={x3/2+5,x<4x2bx+c,x4 f(x)=\left\{\begin{array}{l} x^{3 / 2}+5, x<4 \\ x^{2}-b x+c, x \geqslant 4 \end{array}\right.

See Solution

Problem 13168

Find the total cost to produce 1500 yards of ribbon using C(x)=0.00001x20.02x+56C^{\prime}(x)=-0.00001 x^{2}-0.02 x+56 with 5 subintervals.

See Solution

Problem 13169

Approximate the area under f(x)=0.01x41.69x2+99f(x)=0.01 x^{4}-1.69 x^{2}+99 from x=8x=8 to x=12x=12 using 4 left endpoints.

See Solution

Problem 13170

Find the hourly growth rate of a bacteria population that grows from 1000 to 1153 in 4 hours. Express as a percentage.

See Solution

Problem 13171

Find the half-life of a radioactive substance with a decay rate of 2.3%2.3\% per day. Round to the nearest hundredth.

See Solution

Problem 13172

Alan coloca una botella de agua en una hielera. La temperatura C(t)C(t) en °C es C(t)=2+20e0.041tC(t)=2+20 e^{-0.041 t}. ¿Cuántos minutos debe dejarla para que alcance 16 °C? Redondea a la décima.

See Solution

Problem 13173

Find the limit of f(x)=2x3+x2+x1f(x)=2x^3 + x^2 + x - 1 as xx \to -\infty and xx \to \infty. Sketch the graph.

See Solution

Problem 13174

Find the hourly growth rate of a bacteria population that grows from 2400 to 2800 in 4 hours. Express as a percentage: %\square \%

See Solution

Problem 13175

How long does it take for a bacteria population to double with a growth rate of 7.1%7.1\% per hour? Round to the nearest hundredth.

See Solution

Problem 13176

Finde eine Stammfunktion von f(x)=(3+4x)4f(x)=(3+4x)^{4}.

See Solution

Problem 13177

Finde die Stammfunktion von f(x)=(1x)6f(x)=(1-x)^{6}.

See Solution

Problem 13178

Finde die Stammfunktion von f(x)=(2x+3)3f(x)=(2 x+3)^{-3}.

See Solution

Problem 13179

Find dyd y for the function y=x17x3y = x \sqrt{17 - x^3}.

See Solution

Problem 13180

Find the derivative of f(x)=3xxf(x)=\frac{3-x}{x} and explain how to get f(x)=3xx2f^{\prime}(x)=\frac{-3 x}{x^{2}}.

See Solution

Problem 13181

Alicia's utility is U(x1,x2)=x13x2U(x_{1}, x_{2})=x_{1}^{3}x_{2}. Find MRS, plot indifference curve at (1,1), and find optimal bundle with prices \$40 and \$20.

See Solution

Problem 13182

Ein Ballon mit Radius rr hat den Oberflächeninhalt O(r)=4πr2O(r)=4 \pi r^{2}.
1) Finde die mittlere Änderungsrate von OO in [r;z][r; z] und berechne sie für [10;20][10; 20] und [20;30][20; 30]. Welches Intervall hat die größere Änderungsrate? 2) Bestimme O(r)O^{\prime}(r) und berechne O(1)O^{\prime}(1) und O(3)O^{\prime}(3). Wo ändert sich OO stärker? 3) Ist O(r)O^{\prime}(r) linear, quadratisch oder keines von beidem?

See Solution

Problem 13183

Find the integral of (x+2)2(x+2)^{2} with respect to xx.

See Solution

Problem 13184

Bestimme die Stammfunktion FF von f(x)=6x25x2f(x)=6 x^{2}-\frac{5}{x^{2}} für x>0x>0, sodass F(1)=5F(1)=5.

See Solution

Problem 13185

Find the limit: limnn(1n2+1+1n2+2++1n2+n) \lim _{n \rightarrow \infty} n\left(\frac{1}{n^{2}+1}+\frac{1}{n^{2}+2}+\cdots+\frac{1}{n^{2}+n}\right)

See Solution

Problem 13186

Der Graph von ff' hat einen Tiefpunkt. Was bedeutet das für ff'' und die Steigungen der Ableitungen?

See Solution

Problem 13187

Find the rate of increase of the surface area (in cm2/min\mathrm{cm}^{2} / \mathrm{min}) when the radius is 5 cm5 \mathrm{~cm}, given it increases at 2 cm/min2 \mathrm{~cm} / \mathrm{min}.

See Solution

Problem 13188

Find the integral of (x+2)2(x+2)^{2} with respect to xx.

See Solution

Problem 13189

Calculate the integral of the function: (2ax4+62x)dx\int(2 a x^{4}+6^{2} x) \, dx.

See Solution

Problem 13190

Find the point of diminishing returns for productivity modeled by P(t)=3t3+49.5t2+6tP(t)=-3 t^{3}+49.5 t^{2}+6 t in a 10-hour shift.

See Solution

Problem 13191

Find the local maximum of f(x)=4+9x+36x1f(x)=4+9x+36x^{-1} and confirm the local minimum is at x=2x=2 with value σ\sigma.

See Solution

Problem 13192

Find the derivative of (2.5x2125)e0.4x2(2.5x^{2}-125) e^{0.4x-2}.

See Solution

Problem 13193

Find where the function f(x)=3x+8x1f(x)=3x+8x^{-1} is undefined, its critical numbers, and intervals for increasing, decreasing, concave up, and concave down.

See Solution

Problem 13194

Find the antiderivative S(t)S(t) if S(t)=10t23S^{\prime}(t)=-10 t^{\frac{2}{3}}.

See Solution

Problem 13195

Finde die Extremstellen der Funktion h(u)=(1,2u)2+(3,5(0,5u2+4,5))2h(u)=(1,2-u)^{2}+\left(3,5-(-0,5 u^{2}+4,5)\right)^{2} durch Differenzieren.

See Solution

Problem 13196

Find the population of a city 16 years after incorporation if dNdt=800+300t\frac{d N}{d t}=800+300 \sqrt{t} and initial population is 5000.

See Solution

Problem 13197

Finde die Extremstellen der Funktion f(x)=(4+4x)e2xf(x) = (4+4x) \cdot e^{2x}.

See Solution

Problem 13198

Find dydx\frac{d y}{d x} using the chain rule for: (a) y=6u9y=6 u-9, u=x42u=\frac{x^{4}}{2}; (b) y=uy=\sqrt{u}, u=sin(x)u=\sin (x); (c) y=3u3y=3 u^{3}, u=8x1u=8 x-1; (d) y=1u3y=\frac{1}{\sqrt[3]{u}}, u=cos(x)u=\cos (x).

See Solution

Problem 13199

Determine if L'Hospital's Rule can be applied to these limits. Write "YES" with indeterminate form or "NO" if not applicable.
Limits:
1. limx0x2x+2\lim _{x \rightarrow 0} \frac{x^{2}}{x+2}
2. limx0tan(3x)x\lim _{x \rightarrow 0} \frac{\tan (3 x)}{x}
3. limx01cosxx2\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}
4. limxsinxx\lim _{x \rightarrow \infty} \frac{\sin x}{x}
5. limx2xx2\lim _{x \rightarrow \infty} \frac{2^{x}}{x^{2}}
6. limx3x2+4x2\lim _{x \rightarrow \infty} \frac{3 x^{2}+4}{x^{2}}
7. limxπ2(xπ2)(tanx)\lim _{x \rightarrow \frac{\pi}{2}}\left(x-\frac{\pi}{2}\right)(\tan x)

See Solution

Problem 13200

Compute the derivatives of these functions: (a) p(t)=3tp(t)=\sqrt{3-t}, (b) s(t)=sin(3π2t)+cos(3π2t)s(t)=\sin\left(\frac{3\pi}{2}t\right)+\cos\left(\frac{3\pi}{2}t\right), (c) h(x)=x2sin(x4)+x2cos(x4)h(x)=x^{2}\sin(x^{4})+\frac{x^{2}}{\cos(x^{4})}, (d) q(s)=(4s+3)4(s+1)3q(s)=(4s+3)^{4}(s+1)^{-3}, (e) m(x)=cos(sin(x))m(x)=\cos(\sin(x)).

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord