Calculus

Problem 10301

Evaluate the triple integral: 02π0arctan(12)0csc(ϕ)ρ3sin2ϕcosθdρdϕdθ\int_{0}^{2 \pi} \int_{0}^{\arctan \left(\frac{1}{2}\right)} \int_{0}^{\csc (\phi)} \rho^{3} \sin ^{2} \phi \cos \theta d \rho d \phi d \theta.

See Solution

Problem 10302

Determine the radius and interval of convergence for the series n=0(1)nn2n(x1)n\sum_{n=0}^{\infty}(-1)^{n} \frac{n}{2^{n}}(x-1)^{n}.

See Solution

Problem 10303

Find the derivative of the function f(x)=0+xf(x) = 0 + x.

See Solution

Problem 10304

Berechnen Sie die Ableitung von f(x)=0,7xf(x)=0,7x.

See Solution

Problem 10305

Find dydx\frac{d y}{d x} for the equation 13x7+5x65y+y8=7-13 x^{7}+5 x^{65} y+y^{8}=-7. Then, find the tangent line at (1,1)(1,1) in y=mx+by=m x+b format.

See Solution

Problem 10306

Find αR\alpha \in \mathbb{R} for F(x)=αsin(x2+3)+cF(x) = \alpha \sin(x^2 + 3) + c where f(x)=xcos(x2+3)f(x) = x \cos(x^2 + 3). Answer: α=12\alpha = \frac{1}{2}.

See Solution

Problem 10307

Bestimmen Sie die Ableitung von f(x)=ex+xf(x) = e^{x} + x.

See Solution

Problem 10308

Evaluate the integral from 1 to 2 of the function x31x2x^{3} - \frac{1}{x^{2}}.

See Solution

Problem 10309

Differentiate y=cscx(x+cotx)y=\csc x(x+\cot x) and find yy'.

See Solution

Problem 10310

Find the derivative of tan(π6)\tan \left(\frac{\pi}{6}\right).

See Solution

Problem 10311

Écrivez l'intégrale pour l'aire entre l'axe des xx, f(x)=e0,1x3f(x)=-e^{0,1 x}-3, x=1x=1 et x=3x=3. Ne pas évaluer.

See Solution

Problem 10312

Écrivez l'intégrale pour l'aire entre f(x)=2x3f(x)=2 x-3 et g(x)=x2+7x+3g(x)=-x^{2}+7 x+3 sans l'évaluer.

See Solution

Problem 10313

Find the tangent line equation for the curve xe2+3x+4y=4x e^{2}+3 x+4 y=4.

See Solution

Problem 10314

Gravel is dumped at 50ft3/m50 \mathrm{ft}^{3}/\mathrm{m}. Find the height increase rate when the pile is 10 ft tall.

See Solution

Problem 10315

Bestimme f(1)f^{\prime}(1) und f(2)f^{\prime}(2) für die Funktion f(x)=3x2f(x)=3 x^{2}.

See Solution

Problem 10316

Estimate the population of country XX in 22 years, given N(t)=500e0.02tN(t)=500 e^{0.02 t} for an initial population of 500 million.

See Solution

Problem 10317

Bestimme die Ableitung von f(x)=4e3x+x6f(x)=4 e^{3 x}+x^{-6}.

See Solution

Problem 10318

Calculate the integral 0a(axx2)dx\int_{0}^{a}(a x-x^{2}) dx.

See Solution

Problem 10319

Find the limit: limx0ex1sin(15x)\lim _{x \rightarrow 0} \frac{e^{x}-1}{\sin (15 x)}.

See Solution

Problem 10320

Find the limit as xx approaches -4 for f(x)g(x)\frac{f(x)}{g(x)} given f(4)=0f(-4)=0, g(4)=0g(-4)=0, f(4)=5f'(-4)=-5, g(4)=3g'(-4)=3.

See Solution

Problem 10321

Find the limit: limx2x2x25x+10=\lim _{x \rightarrow 2} \frac{x^{2}-x-2}{-5 x+10}=

See Solution

Problem 10322

Evaluate the limit using L'Hôpital's rule: limx03x11xx\lim _{x \rightarrow 0} \frac{3^{x}-11^{x}}{x}.

See Solution

Problem 10323

Evaluate the limit: limx15x2e10x=\lim _{x \rightarrow \infty} \frac{15 x^{2}}{e^{10 x}}=

See Solution

Problem 10324

A cone has a radius of 12 units and height of 8 units. Water flows in at 24 cubic units/sec. Find the radius change rate at 6 units depth.

See Solution

Problem 10325

Evaluate the limit using L'Hôpital's rule: lims2525s5s=\lim _{s \rightarrow 25} \frac{25-s}{5-\sqrt{s}}=

See Solution

Problem 10326

Evaluate the limit using L'Hôpital's rule: limx0ex+2x13x=\lim _{x \rightarrow 0} \frac{e^{x}+2 x-1}{3 x}=

See Solution

Problem 10327

Evaluate the limit: limh0(2+h)24h=\lim _{h \rightarrow 0} \frac{(-2+h)^{2}-4}{h}=

See Solution

Problem 10328

Berechnen Sie die Ableitung von f(x)=3x2+2ln(x)f(x) = 3x^2 + 2 \ln(x) bei x=2x=2.

See Solution

Problem 10329

Find the limit as xx approaches 1 for the piecewise function f(x)={3x1,x132x2,x>1f(x)=\left\{\begin{array}{l}3 x-1, x \leq 1 \\ \frac{3}{2} x^{2}, x>1\end{array}\right..

See Solution

Problem 10330

Find the slope of the secant line between points x=ax=a and x=1x=1 for the function f(x)=2(x3)2+1f(x)=2(x-3)^{2}+1.

See Solution

Problem 10331

Evaluate the limit using L'Hôpital's rule:
limy46(y21)6y2(y1)3= \lim _{y \rightarrow 4} \frac{6(y^{2}-1)}{6y^{2}(y-1)^{3}}=

See Solution

Problem 10332

Evaluate the limit using L'Hôpital's rule: limx5x2+6x+5x+5.\lim _{x \rightarrow-5} \frac{x^{2}+6 x+5}{x+5}.

See Solution

Problem 10333

Find the slope of the curve 4(x2+y2)2=25xy24(x^{2}+y^{2})^{2}=25xy^{2} at the point (1,2)(1,2).

See Solution

Problem 10334

Aubrey invested \$ 61,000 at a continuous interest rate of 1.9\%. How long to reach \$ 73,600? Round to the nearest tenth.

See Solution

Problem 10335

Evaluate the limit using L'Hôpital's rule: lima1a3aa21=\lim _{a \rightarrow 1} \frac{a^{3}-a}{a^{2}-1}=

See Solution

Problem 10336

Bestimme den Wert von xx, der das Volumen einer Schachtel maximiert, wenn xx von Ecken eines 16 cm×10 cm16 \mathrm{~cm} \times 10 \mathrm{~cm} Rechtecks ausgeschnitten wird.

See Solution

Problem 10337

Identify where L'Hospital's Rule applies for these limits:
limx0x+tanxsinx\lim _{x \rightarrow 0} \frac{x+\tan x}{\sin x}, limx0sin(7x)7x\lim _{x \rightarrow 0} \frac{\sin (7 x)}{7 x}, limxexx\lim _{x \rightarrow \infty} \frac{e^{-x}}{x}, limxlnxx\lim _{x \rightarrow \infty} \frac{\ln x}{\sqrt{x}}.

See Solution

Problem 10338

Grayson wants to know how much to invest at 4%4\% interest to reach \$15,000 in 5 years.

See Solution

Problem 10339

Given f(7)=9f(7)=9, f(7)=8f^{\prime}(7)=-8, and f(x)f^{\prime}(x) continuous, find:
1. limx7f(x)9x249\lim _{x \rightarrow 7} \frac{f(x)-9}{x^{2}-49}
2. limx7ln(f(x)8)x7\lim _{x \rightarrow 7} \frac{\ln (f(x)-8)}{x-7}

See Solution

Problem 10340

Bestimmen Sie die Koordinaten von Punkt PP mit maximalem Flächeninhalt für die Funktionen a) f(x)=412x3f(x)=4-\frac{1}{2} x^{3}, b) f(x)=1x2f(x)=\frac{1}{x^{2}}, c) f(x)=4xf(x)=\sqrt{4-x}. Finden Sie die Extrema durch Ableitungen und setzen Sie diese gleich Null.

See Solution

Problem 10341

Bestimme den Wert von x\mathrm{x} für maximales Volumen einer Schachtel und die Koordinaten von PP für maximalen Flächeninhalt. a) f(x)=412x3;x[0;2]f(x)=4-\frac{1}{2} x^{3} ; x \in[0 ; 2] b) f(x)=1x2;x[1;3]f(x)=\frac{1}{x^{2}} ; x \in[1 ; 3] c) f(x)=4x;x[0;4]f(x)=\sqrt{4-x} ; x \in[0 ; 4]

See Solution

Problem 10342

Bestimmen Sie die Steigung von ft(x)f_{t}(x) an x0x_{0} für die folgenden Funktionen: a) ft(x)=(x+t)(xt)2f_{t}(x)=(x+t)(x-t)^{2} bei P(0,8)P(0,8), b) ft(x)=t2xf_{t}(x)=t \cdot 2^{x} bei P(2,1)P(-2,1), c) ft(x)=extf_{t}(x)=e^{x-t} bei P(1,e2)P(-1,e^{2}).

See Solution

Problem 10343

Bestimmen Sie die Steigung von ft(x)f_{t}(x) für x0x_{0} in Abhängigkeit von tt für die folgenden Funktionen: a) ft(x)=tt3xf_{t}(x)=t-\frac{t}{3} x, x0=3x_{0}=-3 b) ft(x)=t4x3tx2+tx+1f_{t}(x)=\frac{t}{4} x^{3}-t x^{2}+t x+1, x0=1x_{0}=1 c) ft(x)=tetxf_{t}(x)=t \cdot e^{t x}, x0=0x_{0}=0

See Solution

Problem 10344

Find the derivative of y=1xx4+4(x+3)3y=\frac{\sqrt{1-x}}{x^{4}}+4(x+3)^{3} and show y=7x82x5(1x)12+12(x+3)2y'=\frac{7 x-8}{2 x^{5}(1-x)^{\frac{1}{2}}}+12(x+3)^{2}.

See Solution

Problem 10345

Find the absolute extrema of f(x)=0.002x2+3.6x30f(x)=0.002 x^{2}+3.6 x-30 over the interval (,)(-\infty, \infty).

See Solution

Problem 10346

A quantity starts at 7800 and grows continuously at 0.8%0.8\% per decade. Find its value after 59 years, rounded to two decimal places.

See Solution

Problem 10347

Berechnen Sie die Steigung von ft(x)=x312t2xf_{t}(x)=x^{3}-12 t^{2} x im Ursprung in Abhängigkeit von tt.

See Solution

Problem 10348

Find the derivative of the composite function h(x)=f(g(x))h(x)=f(g(x)) at x=2x=2 using the graphs of y=f(x)y=f(x) and y=g(x)y=g(x).

See Solution

Problem 10349

Find the limit: limx1(ex5ex2)\lim _{x \rightarrow 1}\left(e^{x^{5}}-e^{x^{2}}\right).

See Solution

Problem 10350

Find the limit as xx approaches 5 from the left of x24x5x225\frac{x^{2}-4x-5}{x^{2}-25}.

See Solution

Problem 10351

Determine the horizontal asymptotes of the function f(x)=3x22x2+4f(x)=\frac{3x^{2}-2}{x^{2}+4}.

See Solution

Problem 10352

Find the derivative of $d(z)=\left(\frac{e^{z^{7}-5 z^{3}}{(2 z^{7}+7 z^{2})^{5}}\right)^{26}$.

See Solution

Problem 10353

Trouver la dérivée de f(x)=3x21f(x)=3 x^{2}-1 à x=1x=1.

See Solution

Problem 10354

Find dydx\frac{d y}{d x} for y=u32u+1y=u^{3}-2 u+1 with u=2xu=2 \sqrt{x} at x=4x=4.

See Solution

Problem 10355

Evaluate the integral: 240y(12+3y)dxdy\int_{2}^{4} \int_{0}^{y}\left(\frac{1}{2}+3 y\right) d x d y

See Solution

Problem 10356

Calculate the volume of a box with dimensions 2 m, 5 m, and 6 m using a double integral. Use calculus for full credit.

See Solution

Problem 10357

Evaluate the integral R(x22y2)dA\int_{R}(x^{2}-2 y^{2}) d A over the first quadrant between circles of radius 4 and 5.

See Solution

Problem 10358

Find the average rate of change of f(x)=2x2+1f(x)=2x^{2}+1 over these intervals: (a) 0 to 2, (b) 3 to 5, (c) -3 to 0.

See Solution

Problem 10359

Find the average rate of change of f(x)=2x2+1f(x)=2x^{2}+1 over these intervals: (a) 0 to 2, (b) 3 to 5, (c) -3 to 0.

See Solution

Problem 10360

Find the derivative of y=(5x33)3y=\left(-5 x^{3}-3\right)^{3} with respect to xx using the chain rule.

See Solution

Problem 10361

Find the derivative of y=(5x33)3y=\left(-5 x^{3}-3\right)^{3} with respect to xx.

See Solution

Problem 10362

Find the coffee temperature after 30 minutes using f(t)=57(0.9)t+21f(t)=57(0.9)^{t}+21. What is the asymptote and its meaning?

See Solution

Problem 10363

Calculate the integral: (6tt9t67)dt\int\left(6 t \sqrt{t}-9 \sqrt[7]{t^{6}}\right) d t

See Solution

Problem 10364

Evaluate the integral: 10dx\int 10 \, dx

See Solution

Problem 10365

Calculate the indefinite integral: (6tt9t67)dt\int\left(6 t \sqrt{t}-9 \sqrt[7]{t^{6}}\right) d t

See Solution

Problem 10366

Find the derivative of ln(x2+3)\ln(x^2 + 3).

See Solution

Problem 10367

Find the indefinite integral: (10tt7t67)dt\int\left(10 t \sqrt{t}-7 \sqrt[7]{t^{6}}\right) dt

See Solution

Problem 10368

Evaluate the integral: (7x4/56x5/2)dx\int\left(7 x^{4 / 5}-6 x^{5 / 2}\right) d x

See Solution

Problem 10369

Find the average rate of change of f(x)=7x1f(x) = \sqrt{-7x - 1} from x1=8x_1 = -8 to x2=5x_2 = -5, rounded to the nearest hundredth.

See Solution

Problem 10370

Evaluate the integral: 12dx\int 12 \, dx

See Solution

Problem 10371

What must be true if F(x)F(x) and G(x)G(x) are both antiderivatives of f(x)f(x)?
A. Not possible for two antiderivatives. B. They are the same function. C. They differ only by a constant. D. They differ by a factor of x2x^{2}.

See Solution

Problem 10372

Evaluate the integral: (9t2.58t1)dt\int\left(-9 t^{-2.5}-8 t^{-1}\right) d t.

See Solution

Problem 10373

Find the derivative of y=((x+5)51)4y=((x+5)^{5}-1)^{4} using the chain rule.

See Solution

Problem 10374

Water drains from a cone (height 12 ft, diameter 8 ft) into a cylinder (area 400π400 \pi ft²).
(a) Find volume VV of cone as a function of hh. (b) Rate of volume change when h=3h=3? Include units. (c) Rate of depth change yy in cylinder when h=3h=3? Include units.

See Solution

Problem 10375

A quantity starts at 2300 and grows at 45%45\% per minute. Find its value after 0.2 hours, rounded to the nearest hundredth.

See Solution

Problem 10376

A quantity starts at 2300 and grows at 45%45\% per minute. Find its value after 0.2 hours, rounded to the nearest hundredth.

See Solution

Problem 10377

Evaluate the triple integral domain and find the average value fˉ\bar{f} if the integral equals 24π24\pi.

See Solution

Problem 10378

A quantity starts at 6200 and decays at 5.5%5.5\% monthly. Find its value after 4 years, rounded to the nearest hundredth.

See Solution

Problem 10379

Determine the long run behavior of these functions:
1. f(x)=x3+1x2+2f(x)=\frac{x^{3}+1}{x^{2}+2}
2. f(x)=x2+1x2+2f(x)=\frac{x^{2}+1}{x^{2}+2}
3. f(x)=x2+1x3+2f(x)=\frac{x^{2}+1}{x^{3}+2}

See Solution

Problem 10380

Approximate f(10)f(10) using the tangent line at (8,2)(8,2) for the function f(x)=x3f(x)=\sqrt[3]{x}.

See Solution

Problem 10381

Find the velocity of the particle at the first time it is at the origin, given x(t)=costx(t)=\cos \sqrt{t}.

See Solution

Problem 10382

Calculate the compound amount and interest for \$130,000 at 5.4% for 16 years with continuous compounding.

See Solution

Problem 10383

A sky diver jumps from 1,251 m1,251 \mathrm{~m}. How long (in s) until he hits the ground if a=9.715 m/s2\mathrm{a}=9.715 \mathrm{~m/s}^{2}?

See Solution

Problem 10384

Given the drug concentration formula C=5t21+t2C=\frac{5 \cdot t}{21+t^{2}}:
a. Find CC after 3 hours (round to 3 decimals). b. How long until CC drops to 0.7%0.7\%? (round to 2 decimals) c. Determine the end behavior of CC as tt \rightarrow \infty.

See Solution

Problem 10385

Determine the horizontal asymptote for the function f(x)=2x3f(x)=\frac{2}{x-3}.

See Solution

Problem 10386

Determine where the function f(x)=sinx+sin3xf(x)=\sin x+\sin ^{3} x increases/decreases and find local minima/maxima for π<x<π-\pi<x<\pi.

See Solution

Problem 10387

Find Sarah's acceleration xmph/hx \mathrm{mph} / \mathrm{h} between 7:00 pm (15 mph) and 7:20 pm (50 mph).

See Solution

Problem 10388

Find where the prize wheel stops, starting at 22, spinning at 116.30rpm116.30 \mathrm{rpm}, slowing at 1.900rad/s21.900 \mathrm{rad/s^2}.

See Solution

Problem 10389

Find the acceleration xx in mph/h for Sarah driving from 20 mph to 40 mph between 7:00 pm and 7:10 pm.

See Solution

Problem 10390

Find the derivative of y=6(7x2+3)6y=-6(7x^{2}+3)^{-6}. What is dydx\frac{dy}{dx}?

See Solution

Problem 10391

Find the average rate of change of f(x)f(x) from x1=1x_{1}=1 to x2=4x_{2}=4, rounding to the nearest hundredth. f(x)=9x+1f(x)=\sqrt{9x+1}

See Solution

Problem 10392

Find the derivative of y=(6x44x2+3)4y=(6x^4-4x^2+3)^4. What is u=g(x)u=g(x) if y=f(u)y=f(u)?

See Solution

Problem 10393

Find the derivative of f(t)=84t2+9f(t)=8 \sqrt{4 t^{2}+9}. What is u=g(t)u=g(t) if you write ff as f=h(u)f=h(u)?

See Solution

Problem 10394

Find Sarah's acceleration xx in mph/h between 10:00 pm (30 mph) and 10:15 pm (50 mph).

See Solution

Problem 10395

Find the rate of change of A=1700(1+r36,500)1095A=1700\left(1+\frac{r}{36,500}\right)^{1095} with respect to rr. Choices: (a) 6%6 \%, (b) 2%2 \%, (c) 8%8 \%.

See Solution

Problem 10396

Find values of xx where the tangent line of f(x)=x39x2+24x+1f(x)=\sqrt{x^{3}-9 x^{2}+24 x+1} is horizontal.

See Solution

Problem 10397

Find the derivative f(π2)f^{\prime}\left(\frac{\pi}{2}\right) for the function f(x)=x3+2cos(x)3sin(x)f(x)=\frac{x^{3}+2 \cos (x)}{3 \sin (x)}.

See Solution

Problem 10398

Compute the derivative h(π/3)h^{\prime}(\pi / 3) for the function h(t)=e5tcos(5t)h(t)=e^{-5 t} \cos (5 t).

See Solution

Problem 10399

A company has a fixed cost of \400,000and$100perbike.Whatdoes400,000 and \$100 per bike. What does \overline{C}(4000)=200$ mean? What's the horizontal asymptote?

See Solution

Problem 10400

Find the derivative of y=tan(cotx22x)y = \tan \left(\cot \frac{x^{2}}{2^{x}}\right) with respect to xx.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord