Calculus

Problem 7401

Find the derivative of the function f(x)=cos(5x1)sin(5x+3)f(x)=\cos(5x-1)\sin(5x+3). What is f(x)f^{\prime}(x)?

See Solution

Problem 7402

Find the derivative dydx\frac{d y}{d x} for $y=\frac{e^{x^{4}}}{\sqrt{3-x^{4}}$.

See Solution

Problem 7403

Find the derivative of 8sin2(4x5)-8 \sin^{2}(-4 x^{5}) using the chain rule twice.

See Solution

Problem 7404

Find the derivative of the function f(x)=(3x21x+6)sin(4x)f(x)=(-3 x^{2}-1 x+6) \sin (4 x). What is f(x)f^{\prime}(x)?

See Solution

Problem 7405

Find the derivative of the function f(x)=cos(3x6)sin(3x4)f(x)=\cos (-3 x-6) \sin (3 x-4). What is f(x)f^{\prime}(x)?

See Solution

Problem 7406

Calculate the difference quotient for f(x)=4x2+3xf(x) = 4x^2 + 3x using f(x+h)f(x)h\frac{f(x + h) - f(x)}{h}.

See Solution

Problem 7407

Find if there exists a value of 0<x<50 < x < 5 such that the average rate of change of ff as xx approaches 0 equals 0.

See Solution

Problem 7408

Find the derivative of the implicit function given by (x2+y2)2=y2x2xy(x^{2}+y^{2})^{2}=y^{2}x^{2}-xy.

See Solution

Problem 7409

Una población PP crece según dP/dt=0.5P0.00125P2dP/dt=0.5P-0.00125P^2. Halla P(16)P(16) para P(0)=40,500,100P(0)=40, 500, 100 y compara los resultados.

See Solution

Problem 7410

Given f(3)=5f(3)=5, f(3)=2f^{\prime}(3)=2, find D(3)D^{\prime}(3) for D(x)=x2f(x)D(x)=x^{2} f(x). Use derivative rules.

See Solution

Problem 7411

Find the derivative C(2)C^{\prime}(2) for C(x)=f(x)g(x)C(x)=\frac{f(x)}{g(x)} where f(x)=xf(x) = x and g(x)=12x+2g(x) = -\frac{1}{2}x +2.

See Solution

Problem 7412

Select all true statements about derivatives:
1. If f(x)=1x5f(x)=\frac{1}{x^{5}}, then f(x)=15x4f^{\prime}(x)=\frac{1}{5 x^{4}}.
2. If f(x)=x(x3+5)f(x)=x(x^{3}+5), then f(x)=3x2f^{\prime}(x)=3 x^{2}.
3. If f(x)=x2xf(x)=\frac{x^{2}}{\sqrt{x}}, then f(x)=2xx12x32xf^{\prime}(x)=\frac{2 x \sqrt{x}-\frac{1}{2} x^{\frac{3}{2}}}{x}.
4. If f(x)=x3f(x)=\sqrt[3]{x}, then f(x)=13x2/3f^{\prime}(x)=\frac{1}{3} x^{-2/3}.
5. If f(x)=52f(x)=5^{2}, then f(x)=0f^{\prime}(x)=0.

See Solution

Problem 7413

If f(5)=4f(5)=4, f(5)=2f'(5)=-2, g(5)=3g(5)=3, g(5)=7g'(5)=7, then is A(5)=14A'(5)=-14 for A(x)=f(x)g(x)A(x)=f(x)g(x)? True or False?

See Solution

Problem 7414

Find b>1b > 1 such that the average rate of change of f(x)=e2xf(x) = e^{2x} over [1,b][1, b] equals 20. What equation to use?

See Solution

Problem 7415

Find when the displacement s=t33t2s=t^{3}-3t^{2} is 0 for t>0t>0 and the distance traveled in the first 4 seconds.

See Solution

Problem 7416

Find the global minimum and maximum of f(x,y)=4x3+4x2y+5y2f(x, y)=4 x^{3}+4 x^{2} y+5 y^{2} for x,y0x, y \geq 0 and x+y1x+y \leq 1.

See Solution

Problem 7417

Find the global minimum and maximum of f(x,y)=4x38yf(x, y)=4 x^{3}-8 y for 0x,y10 \leq x, y \leq 1. fmin= f_{\min }= fmax= f_{\max }=

See Solution

Problem 7418

Find max and min of f(x,y,z)=yz+xyf(x, y, z)=y z+x y with constraints y2+z2=4y^{2}+z^{2}=4 and xy=5x y=5. Max value is Min value is.

See Solution

Problem 7419

Find the derivative of y=(6x9)7y=(6-x^{9})^{7} with respect to xx: dydx=\frac{d y}{d x}=

See Solution

Problem 7420

Find the limit: limx0x(13+6x)\lim _{x \rightarrow 0} x\left(13+\frac{6}{x}\right).

See Solution

Problem 7421

Find the derivative of the function F(x)=(4x+7)3(x26x+7)4F(x)=(4 x+7)^{3}(x^{2}-6 x+7)^{4}. What is F(x)F^{\prime}(x)?

See Solution

Problem 7422

Evaluate: a limx05\lim _{x \rightarrow 0} 5

See Solution

Problem 7423

Find the limit: limx3(x+4)\lim _{x \rightarrow 3}(x+4).

See Solution

Problem 7424

Gegeben ist die Funktion fa(x)=(x2+a)e0,5xf_{a}(x)=(x^{2}+a) \cdot e^{0,5-x}.
a) Bestimmen Sie die Nullstellen von faf_{a} in Abhängigkeit von aa und das Verhalten für xx \rightarrow \infty und xx \rightarrow -\infty.
b) Geben Sie den yy-Achsen-Schnittpunkt von GaG_{a} an und identifizieren Sie die Graphen für ganzzahlige aa.
c) Berechnen Sie die Fläche AA zwischen G2G_{2}, G0G_{0}, der yy-Achse und der Linie x=3x=3.
d) Zeigen Sie, dass GaG_{a} für a>1a>1 keine Extrempunkte hat.
e) Beweisen Sie f2(x)=(x2)2e0,5xf_{2}^{\prime \prime}(x)=(x-2)^{2} e^{0,5-x} und erläutern Sie die Auswirkungen auf G2G_{2}.
f) Bestimmen Sie die Tangentengleichung tt an G2G_{2} in x=2x=2 und zeigen Sie, dass der Funktionswert von tt bei x=1x=1 weniger als 2%2\% vom Wert von f2f_{2} abweicht.
g) Finden Sie die zwei Stellen, an denen die Vase einen maximalen Radius von ca. 1,07 dm hat.
h) Interpretieren Sie die Funktion b(t)=π3t3(f0,65(x))2dxb(t)=\pi \cdot \int_{3-t}^{3}\left(f_{0,65}(x)\right)^{2} dx im Kontext.

See Solution

Problem 7425

Set up a definite integral for the volume of the solid formed by rotating y=x1y=\sqrt{x-1}, y=0y=0, x=5x=5 about the xx-axis.

See Solution

Problem 7426

Find the first and second derivatives of f(x)=2x(2x6x)f(x)=2x\left(\frac{2}{x^{6}}-x\right).

See Solution

Problem 7427

Finde die Tangentengleichung t1t_{1} an f(x)=13x2f(x)=\frac{1}{3} x^{2} bei x0=2x_{0}=-2 und die orthogonale Tangente.

See Solution

Problem 7428

Calculate the first and second derivatives of g(x)=12(x)3+5x4g(x)=12(\sqrt{x})^{3}+5 \sqrt[4]{x}.

See Solution

Problem 7429

Find the first and second derivatives of h(x)=2ln(x5/2)h(x)=2 \ln \left(x^{5 / 2}\right).

See Solution

Problem 7430

Find critical points and absolute max/min of f(x)=3x12x52f(x)=3 x^{\frac{1}{2}}-x^{\frac{5}{2}} on [0,9][0,9]. Critical point(s): x=\mathrm{x}=

See Solution

Problem 7431

Find critical points and absolute max/min of f(x)=3x12x52f(x)=3 x^{\frac{1}{2}}-x^{\frac{5}{2}} on [0,9][0,9]. Critical point(s): x=x=

See Solution

Problem 7432

Find critical points and absolute max/min of f(x)=2x12x52f(x)=2 x^{\frac{1}{2}}-x^{\frac{5}{2}} on [0,25][0,25]. Critical points: x=x=

See Solution

Problem 7433

Differentiate h(x)=eaxcos(bx)h(x)=e^{-a x} \cos (b x) using the product rule. Find h(x)=h^{\prime}(x)=

See Solution

Problem 7434

Find the tangent line of y=e4xy=e^{4 x} parallel to y=7x+17y=7 x+17. Give the equation in the form y=mx+by=m x+b.

See Solution

Problem 7435

Find the critical points of f(x)=12xx2+36f(x)=\frac{12 x}{x^{2}+36} and its derivative f(x)f'(x).

See Solution

Problem 7436

Find critical points of f(x)=6x7xf(x)=6 \sqrt{x}-7 x on the interval [0,4][0,4].

See Solution

Problem 7437

Find the critical points of the function f(x)=xx2+25f(x)=\frac{x}{x^{2}+25}.

See Solution

Problem 7438

Find the critical points of the function f(x)=x2x+22f(x)=x^{2} \sqrt{x+22}.

See Solution

Problem 7439

Find the derivative of y=e6x+4y = e^{\sqrt{6x + 4}}. What is yy'?

See Solution

Problem 7440

Find the derivative of h(x)=7x3exx4x2h(x) = \frac{7 x^{3} e^{x}}{x^{4}-x^{2}} using the quotient rule. What is h(x)h^{\prime}(x)?

See Solution

Problem 7441

Set up a definite integral to find the area between the curves y=12x2y=12-x^{2} and y=x26y=x^{2}-6.

See Solution

Problem 7442

Find the absolute maximum of f(x)=x36x2f(x)=x^{3}-6x^{2} on [2,6][-2,6]. What is the max value and its location? A or B?

See Solution

Problem 7443

Find the absolute extreme values of f(x)=(x3)43f(x)=(x-3)^{\frac{4}{3}} on the interval [5,5][-5,5]. What are they?

See Solution

Problem 7444

Find the absolute maximum of f(x)=x357x2f(x)=x^{3}-57 x^{2} on [19,57][-19,57]. Where is it located? A or B?

See Solution

Problem 7445

Find the storm's speed at 3:00 PM, given s(t)=25+25t6t2s(t)=25+25t-6t^{2} for tt hours after noon.

See Solution

Problem 7446

Find the absolute extrema of f(x)=(x3)43f(x)=(x-3)^{\frac{4}{3}} on the interval [5,5][-5,5].

See Solution

Problem 7447

Find the first and second derivatives of k(x)=blogb(x)k(x)=b^{\log_b(x)}, where b>1b>1.

See Solution

Problem 7448

Find the stone's velocity after it rises 8 feet, given height h(t)=5t12t2h(t)=5t-\frac{1}{2}t^{2}.

See Solution

Problem 7449

Find the critical point(s) of the function f(x)=4x+3xf(x)=-4 \sqrt{x}+3 x on the interval [0,4][0,4].

See Solution

Problem 7450

Find the absolute max and min of f(x)=x36x2f(x)=x^{3}-6x^{2} on [2,6][-2,6]. What are their values and locations?

See Solution

Problem 7451

Find dPdh\frac{d P}{d h} using the Chain Rule for T=15.040.00649hT=15.04-0.00649 h and P=101.29(T+273.1288.08)5.256P=101.29\left(\frac{T+273.1}{288.08}\right)^{5.256}.

See Solution

Problem 7452

Find the absolute extreme values of f(x)=5cos2xf(x)=5 \cos ^{2} x on the interval [0,π][0, \pi].

See Solution

Problem 7453

Find the derivative of the composite function f(g(x))f(g(x)) at x=6x = 6 using the given values. Provide a whole number answer.

See Solution

Problem 7454

Determine how fast the area of a square changes as side length xx changes when x=3 cmx=3 \mathrm{~cm}.

See Solution

Problem 7455

Find functions f(x)f(x) and g(x)g(x) such that y=(2x+3sin(x))5=f(g(x))y=(2x+3\sin(x))^{5}=f(g(x)), then compute the derivative using the Chain Rule.

See Solution

Problem 7456

Find the derivative of y=cos9(θ+5)y=\cos^{9}(\theta+5) using the General Power Rule or Chain Rule.

See Solution

Problem 7457

Find the absolute extremes of f(x)=5cos2xf(x)=5 \cos ^{2} x on [0,π][0, \pi]. Choose A, B, C, or D and fill in values.

See Solution

Problem 7458

Find the absolute extreme values of f(x)=cos5xf(x)=\cos 5x on [π6,π3][-\frac{\pi}{6}, \frac{\pi}{3}]. What are they?

See Solution

Problem 7459

Find the absolute extreme values of f(x)=4cscxf(x)=-4 \csc x on the interval [π4,3π4]\left[\frac{\pi}{4}, \frac{3 \pi}{4}\right].

See Solution

Problem 7460

A stone is launched from a cliff 384ft384 \mathrm{ft} high at 32ft/s32 \mathrm{ft/s}. When does it reach max height? Find ss'. s=s' =

See Solution

Problem 7461

Find the absolute extreme values of f(x)=cos5xf(x)=\cos 5x on the interval [π6,π3]\left[-\frac{\pi}{6}, \frac{\pi}{3}\right].

See Solution

Problem 7462

A stone is launched from a cliff 128 ft high at 32 ft/s. Find when it reaches max height and the derivative ss'.

See Solution

Problem 7463

Find the absolute extreme values of f(x)=4cscxf(x)=-4 \csc x on the interval [π4,3π4]\left[\frac{\pi}{4}, \frac{3 \pi}{4}\right].

See Solution

Problem 7464

A scientist has 176 grams of goo. After 180 minutes, it decays to 11 grams. How much remains after 20 minutes?

See Solution

Problem 7465

A stone is launched from a cliff 192ft192 \mathrm{ft} high at 64ft/s64 \mathrm{ft/s}. When does it reach max height? Find ss'. s=s' =

See Solution

Problem 7466

A stone is launched from a cliff at 192ft192 \mathrm{ft} with a speed of 64ft/s64 \mathrm{ft/s}. Find when it reaches max height using s=16t2+64t+192s=-16 t^{2}+64 t+192.

See Solution

Problem 7467

Find the derivative of 15sin(x7)cos(x7)15 \sin(x^{7}) \cos(x^{7}).

See Solution

Problem 7468

Find the slope mm of the tangent line to the curve y=x+3x6y=\frac{x+3}{x-6} at the point (5,8)(5,-8) and its equation.

See Solution

Problem 7469

Find the elevator's descent speed when it's 500 feet away from you and moving closer at 16ft/se16 \mathrm{ft} / \mathrm{se}.

See Solution

Problem 7470

Find the derivative of (4e2x+12e8x)12(4 e^{2 x}+12 e^{-8 x})^{12}.

See Solution

Problem 7471

Find the terminal velocity of a 202 lb skydiver given v(t)=2021.1(1e24.2t/202)v(t)=\frac{202}{1.1}\left(1-e^{-24.2 t / 202}\right) and time to reach 74% of it.

See Solution

Problem 7472

Find the second derivative of sin(4x4)\sin(4x^4). Calculate: d2dx2sin(4x4)=\frac{d^{2}}{d x^{2}} \sin \left(4 x^{4}\right) =

See Solution

Problem 7473

Find the third derivative of (146x)6(14-6 x)^{6}. What is d3dx3(146x)6=?\frac{d^{3}}{d x^{3}}(14-6 x)^{6}=?

See Solution

Problem 7474

Find the tangent line to y=e2xy=e^{2 x} that is parallel to y=5x+15y=5 x+15. Give your answer as y=mx+by=m x+b, with exact mm and bb.

See Solution

Problem 7475

Calculate the derivative of f(g(x))f(g(x)) at x=6x=6 using the given values. Answer as a whole number: ddxf(g(x))x=6=\left.\frac{d}{d x} f(g(x))\right|_{x=6} ^{-}=

See Solution

Problem 7476

Evaluate the series: n=0enn!\sum_{n=0}^{\infty} \frac{e^{n}}{\sqrt{n !}}.

See Solution

Problem 7477

Find the derivative yy^{\prime} of the function y=2xx4y=\frac{\sqrt{2 x}}{\sqrt[4]{x}}.

See Solution

Problem 7478

Calculate the sum: n=1n!100n\sum_{n=1}^{\infty} \frac{n !}{100^{n}}.

See Solution

Problem 7479

Find the slope of secant lines from P(x,4x2)P\left(x, 4 x^{2}\right) to Q(x+δx,4(x+δx)2)Q\left(x+\delta x, 4(x+\delta x)^{2}\right) as δx0\delta x \rightarrow 0. Investigate for x=1x=1.

See Solution

Problem 7480

Calculate dPdh\frac{d P}{d h} using the Chain Rule for T=15.040.00649hT=15.04-0.00649 h and P=101.29(T+273.1288.08)5.256P=101.29\left(\frac{T+273.1}{288.08}\right)^{5.256}.

See Solution

Problem 7481

Calculate dPdh\frac{d P}{d h} using the Chain Rule for the formulas T=15.040.00649hT=15.04-0.00649 h and P=101.29(T+273.1288.08)5.256P=101.29\left(\frac{T+273.1}{288.08}\right)^{5.256}.

See Solution

Problem 7482

Find the value of the series: n=0(2n)!n!\sum_{n=0}^{\infty} \frac{\sqrt{(2 n) !}}{n !}.

See Solution

Problem 7483

Test these series for convergence:
1. n=1(1)nn\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}
2. n=1(2)nn2\sum_{n=1}^{\infty} \frac{(-2)^{n}}{n^{2}}
3. n=1(1)nn2\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}
4. n=1(3)nn!\sum_{n=1}^{\infty} \frac{(-3)^{n}}{n !}
5. n=2(1)nlnn\sum_{n=2}^{\infty} \frac{(-1)^{n}}{\ln n}
6. n=1(1)nnn+5\sum_{n=1}^{\infty} \frac{(-1)^{n} n}{n+5}
7. n=0(1)nn1+n2\sum_{n=0}^{\infty} \frac{(-1)^{n} n}{1+n^{2}}
8. n=1(1)n10nn+2\sum_{n=1}^{\infty} \frac{(-1)^{n} \sqrt{10 n}}{n+2}

See Solution

Problem 7484

Use the ratio test to determine convergence or divergence for these series:
1. n=12nn2\sum_{n=1}^{\infty} \frac{2^{n}}{n^{2}}
2. n=03n22n\sum_{n=0}^{\infty} \frac{3^{n}}{2^{2 n}}
3. n=0n!(2n)!\sum_{n=0}^{\infty} \frac{n !}{(2 n) !}
4. n=05n(n!)2(2n)!\sum_{n=0}^{\infty} \frac{5^{n}(n !)^{2}}{(2 n) !}
5. n=110n(n!)2\sum_{n=1}^{\infty} \frac{10^{n}}{(n !)^{2}}
6. n=1n!100n\sum_{n=1}^{\infty} \frac{n !}{100^{n}}
7. n=032n23n\sum_{n=0}^{\infty} \frac{3^{2 n}}{2^{3 n}}
8. n=0enn!\sum_{n=0}^{\infty} \frac{e^{n}}{\sqrt{n !}}
9. n=0(n!)3e3n(3n)!\sum_{n=0}^{\infty} \frac{(n !)^{3} e^{3 n}}{(3 n) !}
10. n=0100nn200\sum_{n=0}^{\infty} \frac{100^{n}}{n^{200}}
11. n=0n!(2n)!(3n)!\sum_{n=0}^{\infty} \frac{n !(2 n) !}{(3 n) !}
12. n=0(2n)!n!\sum_{n=0}^{\infty} \frac{\sqrt{(2 n) !}}{n !}

See Solution

Problem 7485

Find the interval of convergence for these power series and check the endpoints:
1. n=0(1)nxn\sum_{n=0}^{\infty}(-1)^{n} x^{n}
4. n=1x2n2nn2\sum_{n=1}^{\infty} \frac{x^{2 n}}{2^{n} n^{2}}
7. n=1x3nn\sum_{n=1}^{\infty} \frac{x^{3 n}}{n}
10. n=1(1)nx2n(2n)3/2\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)^{3 / 2}}
13. n=1n(x)nn2+1\sum_{n=1}^{\infty} \frac{n(-x)^{n}}{n^{2}+1}
16. n=1(x1)n2n\sum_{n=1}^{\infty} \frac{(x-1)^{n}}{2^{n}}
2. n=0(2x)n3n\sum_{n=0}^{\infty} \frac{(2 x)^{n}}{3^{n}}
5. n=1xn(n!)2\sum_{n=1}^{\infty} \frac{x^{n}}{(n !)^{2}}
8. n=1(1)nxnn\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{n}}{\sqrt{n}}
11. n=11n(x5)n\sum_{n=1}^{\infty} \frac{1}{n}\left(\frac{x}{5}\right)^{n}
14. n=1nn+1(x3)n\sum_{n=1}^{\infty} \frac{n}{n+1}\left(\frac{x}{3}\right)^{n}
17. n=1(1)n(x+1)nn\sum_{n=1}^{\infty} \frac{(-1)^{n}(x+1)^{n}}{n}
3. n=1(1)nxnn(n+1)\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{n}}{n(n+1)}
6. n=1(1)nxn(2n)!\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{n}}{(2 n) !}
9. n=1(1)nn3xn\sum_{n=1}^{\infty}(-1)^{n} n^{3} x^{n}
12. n=1n(2x)n\sum_{n=1}^{\infty} n(-2 x)^{n}
15. n=1(x2)n3n\sum_{n=1}^{\infty} \frac{(x-2)^{n}}{3^{n}}
18. n=1(2)n(2x+1)nn2\sum_{n=1}^{\infty} \frac{(-2)^{n}(2 x+1)^{n}}{n^{2}}

See Solution

Problem 7486

Find point BB on the curve 2y=3x37x2+4x2y=3x^3-7x^2+4x. Then find point NN where normals at OO and AA intersect, and calculate area of OAN\triangle OAN.

See Solution

Problem 7487

Find the first few terms of the Maclaurin series for these functions:
20. exsinxe^{x} \sin x
21. tan2x\tan ^{2} x
22. ex1x\frac{e^{x}}{1-x}
23. 11+x+x2\frac{1}{1+x+x^{2}}
24. secx\sec x
25. 2xe2x1\frac{2 x}{e^{2 x}-1}
26. 1cosx\frac{1}{\sqrt{\cos x}}
27. esinxe^{\sin x}
28. sin[ln(1+x)]\sin [\ln (1+x)]
29. 1+ln(1+x)\sqrt{1+\ln (1+x)}
30. 1x1+x\sqrt{\frac{1-x}{1+x}}
31. cos(ex1)\cos \left(e^{x}-1\right)
32. ln(1+xex)\ln \left(1+x e^{x}\right)
33. 1sinx1x\frac{1-\sin x}{1-x}
34. ln(2ex)\ln \left(2-e^{-x}\right)
35. xsinx\frac{x}{\sin x}
36. 0usinxdx1x2\int_{0}^{u} \frac{\sin x d x}{\sqrt{1-x^{2}}}

See Solution

Problem 7488

Find the derivative dvds\frac{d v}{d s} for the function v(s)=tan2(sin3(s))v(s)=\tan^{2}(\sin^{3}(s)).

See Solution

Problem 7489

Find the derivative of v(s)=tan2(sin3(s))v(s)=\tan^{2}(\sin^{3}(s)).

See Solution

Problem 7490

Find the derivative dsdt\frac{d s}{d t} for s(t)=(1cos(2t)1+cos(2t))4s(t)=\left(\frac{1-\cos (2 t)}{1+\cos (2 t)}\right)^{4}.

See Solution

Problem 7491

Find the whole number value of f(0.25)f^{\prime}(0.25) for the function f(x)=1x2xf(x)=\frac{1}{x^{2} \sqrt{x}}.

See Solution

Problem 7492

Find the derivatives: (a) h(4)h'(4) for h(x)=f(g(x))h(x)=f(g(x)), (b) h(2)h'(2) for h(x)=g(f(x))h(x)=g(f(x)), (c) h(1)h'(1) for h(x)=g(x)h(x)=\sqrt{g(x)}.

See Solution

Problem 7493

Find the derivative dvds\frac{d v}{d s} for the function v(s)=tan2(sin3(s))v(s)=\tan^{2}(\sin^{3}(s)).

See Solution

Problem 7494

Bestimmen Sie die Werte für a, sodass der Graph Gf0G_{f_{0}} rechtsgekrümmt ist für: a) fa(x)=a(2x3)4f_{a}(x)=a \cdot(2 x-3)^{4}, b) fa(x)=a2xf_{a}(x)=\sqrt{a^{2} x}, c) fa(x)=ax2f_{a}(x)=\frac{a}{x^{2}}.

See Solution

Problem 7495

Find the derivatives: (a) h(4)h^{\prime}(4) for h(x)=f(g(x))h(x)=f(g(x)) (b) h(2)h^{\prime}(2) for h(x)=g(f(x))h(x)=g(f(x)) (c) h(1)h^{\prime}(1) for h(x)=g(x)h(x)=\sqrt{g(x)} (d) h(4)h^{\prime}(4) for h(x)=(f(x))3/2h(x)=(f(x))^{3/2} (e) h(3)h^{\prime}(3) for h(x)=f(x)g(x)h(x)=f(x)g(x) (f) h(2)h^{\prime}(2) for h(x)=f(x)g(x)h(x)=\frac{f(x)}{g(x)}

See Solution

Problem 7496

Find the derivative dydx\frac{d y}{d x} for: a) y=(x26x)10y=(x^{2}-6 x)^{-10}, b) y=(1+3x2)5y=\sqrt{(1+3 x^{2})^{5}}.

See Solution

Problem 7497

Finde die Extremstellen und bestimme Minimum oder Maximum für die Funktionen: a) f(x)=2x31,5x29xf(x)=2x^{3}-1,5x^{2}-9x, b) g(x)=x24xg(x)=x^{2}-4\sqrt{x}, c) h(x)=14x42x22h(x)=\frac{1}{4}x^{4}-2x^{2}-2, d) k(x)=x44xk(x)=x^{4}-\frac{4}{x}, e) l(x)=x4+8x2l(x)=-x^{4}+8x^{2}, f) m(x)=2x1x2m(x)=2x-\frac{1}{x^{2}}.

See Solution

Problem 7498

Gegeben ist die konstante Funktion f(x)=cf(x)=c. Erklären Sie, warum das VZW- und ff^{\prime \prime}-Kriterium keine Extremstellen finden.

See Solution

Problem 7499

Berechnen Sie die 1. und 2. Ableitung von ff und geben Sie Df,DfD_{f}, D_{f^{\prime}} und DfD_{f^{\prime \prime}} an für: a) f(x)=2sin(x)+x3f(x)=2 \sin (x)+x^{-3}, b) f(t)=4t3tf(t)=-4 \sqrt{t}-3 t, c) f(t)=t4t4f(t)=t^{4}-\sqrt[4]{t}, d) f(s)=2s3s5f(s)=\frac{2}{\sqrt{s}}-3 s^{5}, e) f(x)=cos(x)+1x2f(x)=-\cos (x)+\frac{1}{x^{2}}, f) f(x)=x3+3cos(x)f(x)=\sqrt[3]{x}+3 \cos (x).

See Solution

Problem 7500

Show that the gradient of the curve y=2x32x2+5x+8y=2 x^{3}-2 x^{2}+5 x+8 is always non-negative.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord