Calculus

Problem 19701

Find the interval of xx where f(x)=esinx2cos(3x)f(x) = e^{\sin x} - 2\cos(3x) is concave down for 0x40 \leq x \leq 4. Options:
(A) 0x0.2830 \leq x \leq 0.283
(B) 0.605x1.5710.605 \leq x \leq 1.571 and 2.536x3.6932.536 \leq x \leq 3.693
(C) 0.283x3.0820.283 \leq x \leq 3.082
(D) 1.108x2.1661.108 \leq x \leq 2.166 and 3.082x43.082 \leq x \leq 4
(E) 0x1.1080 \leq x \leq 1.108 and 2.166x3.0822.166 \leq x \leq 3.082

See Solution

Problem 19702

Compare Δy\Delta y and dyd y for f(x)=x4x+6f(x)=x^{4}-x+6 as xx changes from 1 to 1.05 and 1 to 1.01. Round to four decimals.

See Solution

Problem 19703

Approximate the cubic f(y)=y(y1)(3y)f(y)=y(y-1)(3-y) near steady states. Find linearized equations for y(0)=y0y(0)=y_0 close to aa. Plot solutions for y(0)=a0.25,a,a+0.25y(0)=a-0.25, a, a+0.25 and compare with original equation's solutions.

See Solution

Problem 19704

Is the series 104+1.60.64+10 - 4 + 1.6 - 0.64 + \cdots convergent or divergent? If convergent, find the sum.

See Solution

Problem 19705

Is the series k=1kek2\sum_{k=1}^{\infty} k e^{-k^{2}} convergent or divergent?

See Solution

Problem 19706

Is the series n=16n2+n3\sum_{n=1}^{\infty} \frac{6}{n^{2}+n^{3}} convergent?

See Solution

Problem 19707

Is the series n=17πn\sum_{n=1}^{\infty} \frac{7}{\pi^{n}} convergent or divergent? If convergent, find the sum.

See Solution

Problem 19708

Determine if the sequence an=8n4n+1a_{n}=\frac{8 n}{4 n+1} converges.

See Solution

Problem 19709

Is the series n=18n4n+1\sum_{n=1}^{\infty} \frac{8n}{4n+1} convergent or divergent?

See Solution

Problem 19710

Evaluate the integral from 0 to 1: 01r325+r2dr\int_{0}^{1} \frac{r^{3}}{\sqrt{25+r^{2}}} d r

See Solution

Problem 19711

Find F(x)F^{\prime}(x) using the Second Fundamental Theorem of Calculus for F(x)=1x1t4dtF(x)=\int_{1}^{x} \frac{1}{t^{4}} dt.

See Solution

Problem 19712

Evaluate the integral from 0 to 3 of xex(1+x)2\frac{x e^{x}}{(1+x)^{2}} dx.

See Solution

Problem 19713

Find the limit using l'Hospital's Rule or a simpler method: limx5x5x225\lim _{x \rightarrow 5} \frac{x-5}{x^{2}-25}

See Solution

Problem 19714

Evaluate if the following limits are indeterminate forms given: limxaf(x)=0\lim_{x \to a} f(x) = 0, limxag(x)=0\lim_{x \to a} g(x) = 0, limxah(x)=1\lim_{x \to a} h(x) = 1, limxap(x)=\lim_{x \to a} p(x) = \infty, limxaq(x)=\lim_{x \to a} q(x) = \infty. (a) limxa[f(x)p(x)]\lim_{x \to a}[f(x) p(x)] (b) limxa[h(x)p(x)]\lim_{x \to a}[h(x) p(x)] (c) limxa[p(x)q(x)]\lim_{x \to a}[p(x) q(x)]

See Solution

Problem 19715

Find the antiderivative FF of ff with F(1)=0F(1)=0. Check by comparing the graphs of ff and FF. f(x)=53(1+x2)1f(x)=5-3(1+x^{2})^{-1}

See Solution

Problem 19716

Evaluate the integral: 7sin(8x)cos(5x)dx\int 7 \sin (8 x) \cos (5 x) d x, using the constant CC.

See Solution

Problem 19717

Berechne die Arbeit, um 100 kg um 10 km anzuheben, und finde eine Formel für die Arbeit W in Joule für Masse m und Höhe x.

See Solution

Problem 19718

Given ff^{\prime \prime} is continuous, determine local extrema for ff at x=3x=-3 and x=5x=5 based on ff^{\prime} and ff^{\prime \prime}.

See Solution

Problem 19719

Find the function ff such that f(x)=8x3+5f^{\prime \prime}(x)=8 x^{3}+5, with conditions f(1)=9f(1)=9 and f(1)=4f^{\prime}(1)=4.

See Solution

Problem 19720

Evaluate the integral from 0 to π/2: 0π/2cos(9t)cos(18t)dt\int_{0}^{\pi / 2} \cos (9 t) \cos (18 t) d t.

See Solution

Problem 19721

A sky diver falls for 5 seconds, increasing velocity by 49 m/s49 \mathrm{~m/s}. What is the acceleration rate?

See Solution

Problem 19722

Evaluate the integral: 03xex(1+x)2dx\int_{0}^{3} \frac{x e^{x}}{(1+x)^{2}} d x

See Solution

Problem 19723

Evaluate the integrals given 48f(x)dx=15\int_{4}^{8} f(x) dx=15 and 48g(x)dx=4\int_{4}^{8} g(x) dx=4 for: (a) 48[f(x)+g(x)]dx\int_{4}^{8}[f(x)+g(x)] dx (b) 48[f(x)g(x)]dx\int_{4}^{8}[f(x)-g(x)] dx (c) 48[2f(x)3g(x)]dx\int_{4}^{8}[2 f(x)-3 g(x)] dx (d) 488f(x)dx\int_{4}^{8} 8 f(x) dx

See Solution

Problem 19724

Find the average value of f(x)=1xf(x)=\frac{1}{\sqrt{x}} over [9,16][9,16] and where f(x)f(x) equals that average. x=x=

See Solution

Problem 19725

Find the derivative of the function f(x)f(x) defined as f(x)={(x1)3x1(x1)2x>1f(x)=\begin{cases}(x-1)^{3} & x \leq 1 \\ (x-1)^{2} & x>1\end{cases} at x=1x=1.

See Solution

Problem 19726

Berechne die erste und zweite Ableitung für die Funktionen: a) f(x)=x3+3x217x+1f(x)=x^{3}+3 x^{2}-17 x+1, b) f(x)=x(3x21)f(x)=x(3 x^{2}-1), c) f(x)=x42xf(x)=\sqrt[4]{x}-2 x, d) f(x)=2x+1f(x)=\frac{2}{x}+1, e) f(x)=13x+xf(x)=\frac{1}{3 \sqrt{x}}+x, f) f(x)=x13+2sin(x)f(x)=x^{\frac{1}{3}}+2 \sin (x).

See Solution

Problem 19727

Find the rate of volume growth of a watermelon rind after 5 weeks, with radius growth at 2 cm/week and rind thickness as 0.1rr.

See Solution

Problem 19728

Evaluate the integral x316+x2dx\int \frac{x^{3}}{\sqrt{16+x^{2}}} d x using the substitution x=4tan(θ)x=4 \tan (\theta).

See Solution

Problem 19729

Is the function f(x)=x1f(x) = |x-1| differentiable at the point x=1x=1?

See Solution

Problem 19730

Find the water rise rate in an inverted cone (depth 60 ft, diameter 30 ft) filled at 17 ft³/min when water is 1 ft deep.

See Solution

Problem 19731

Evaluate the integral x316+x2dx\int \frac{x^{3}}{\sqrt{16+x^{2}}} d x with the substitution x=4tan(θ)x=4 \tan (\theta).

See Solution

Problem 19732

Find the integral of 1x(xa)\frac{1}{x(x-a)} with respect to xx.

See Solution

Problem 19733

Evaluate the integral: x2x+18x3+3xdx\int \frac{x^{2}-x+18}{x^{3}+3 x} \, dx (include absolute values and use CC for integration constant).

See Solution

Problem 19734

Evaluate the integral from 0 to 1 of x3+3xx4+6x2+2dx\frac{x^{3}+3 x}{x^{4}+6 x^{2}+2} \, dx.

See Solution

Problem 19735

Approximate 154\sqrt{154} using Δyf(x)Δx\Delta y \approx f^{\prime}(x) \Delta x. What is the rounded value? 154\sqrt{154} \approx \square (3 decimals)

See Solution

Problem 19736

Find the inflection point (x, y) for the function f(x)=ex2+exf(x)=\frac{e^{x}}{2+e^{x}}.

See Solution

Problem 19737

Find the derivative of y=x(x+2)(2x+1)(3x+2)y=\sqrt{\frac{x(x+2)}{(2 x+1)(3 x+2)}} using logarithmic differentiation.

See Solution

Problem 19738

Find the derivative of the function f(x)=x3+3xf(x)=x^{3}+3^{x}.

See Solution

Problem 19739

Determine when the inflection point of c(t)=eαteβtβαc(t)=\frac{e^{-\alpha t}-e^{-\beta t}}{\beta-\alpha} occurs, given β>α>0\beta>\alpha>0.

See Solution

Problem 19740

Find dyd y and Δy\Delta y for y=f(x)=x39x2+7y=f(x)=x^{3}-9 x^{2}+7 at x=5x=5 and Δx=0.1\Delta x=-0.1. dy=d y=\square

See Solution

Problem 19741

Find y(9)y(9) given y(x)=3xy^{\prime}(x)=\frac{3}{\sqrt{x}}, y(16)=35y(16)=35.

See Solution

Problem 19742

Find the derivative of f(x)=xexf(x)=x^{e^{x}} using logarithmic differentiation.

See Solution

Problem 19743

Find the derivative of f(x)=x3xf(x)=x^{3^{x}} using logarithmic differentiation.

See Solution

Problem 19744

Differentiate x2y3x^{2} y^{3} with respect to xx, where yy is a function of xx.

See Solution

Problem 19745

Find the derivative f(x)f^{\prime}(x) if f(x)=(3x+3)(x+4)f(x)=(-3 x+3)(-x+4). Choose from: (a) 6x+96 x+9, (b) 6x156 x-15, (c) 4x+114 x+11, (d) 2x2+5x172 x^{2}+5 x-17.

See Solution

Problem 19746

Find the derivative of f(x)=x3R5f(x) = x^{3} R^{5} with respect to xx.

See Solution

Problem 19747

Find the derivative of the function f(x)=x1x+2f(x)=\frac{x-1}{x+2}.

See Solution

Problem 19748

Substitute to turn the integrand into a rational function and evaluate the integral: 1x7x+12dx\int \frac{1}{x-7 \sqrt{x}+12} d x.

See Solution

Problem 19749

Evaluate the integral 1493+2ttdt=(\int_{1}^{49} \frac{3+2 \sqrt{t}}{\sqrt{t}} d t=\square( Type an exact answer.)

See Solution

Problem 19750

Determine the length of the curve y=14x212ln(x)y=\frac{1}{4} x^{2}-\frac{1}{2} \ln (x) for 1x61 \leq x \leq 6.

See Solution

Problem 19751

Find the initial amount of a radioactive isotope given by A(t)=500e0.02839tA(t)=500 e^{-0.02839 t} and its half-life.

See Solution

Problem 19752

Which statements are true?
1. Constant positive velocity means distance = velocity × time.
2. Positive but decreasing velocity overestimates distance. Choose: a. Neither b. Both c. Just 1 d. Just 2

See Solution

Problem 19753

Given A(t)=700e0.02839tA(t)=700 e^{-0.02839 t}, find the initial amount and the half-life of the isotope.

See Solution

Problem 19754

Find the area of the surface formed by rotating y=cos(14x)y=\cos \left(\frac{1}{4} x\right), 0x2π0 \leq x \leq 2\pi, around the xx-axis.

See Solution

Problem 19755

Given the function f(x)=ex6+exf(x)=\frac{e^{x}}{6+e^{x}}, find f(x)f^{\prime}(x), intervals of increase/decrease, local min/max, f(x)f^{\prime \prime}(x), and concavity.

See Solution

Problem 19756

Calculate the curve length for x=13y(y3)x=\frac{1}{3} \sqrt{y}(y-3) from y=1y=1 to y=9y=9.

See Solution

Problem 19757

Given the function f(x)=e3.5x2f(x)=e^{-3.5 x^{2}}, find critical values, intervals of increase/decrease, local maxima/minima, concavity, and inflection points.

See Solution

Problem 19758

Find the surface area when the curve y=13x3/2y=\frac{1}{3} x^{3/2}, for 0x120 \leq x \leq 12, is rotated about the yy-axis.

See Solution

Problem 19759

Find the area of the surface formed by rotating the curve y=x36+12xy=\frac{x^{3}}{6}+\frac{1}{2 x} from x=12x=\frac{1}{2} to x=1x=1 around the xx-axis.

See Solution

Problem 19760

A turkey cools from 185185^{\circ}F to 140140^{\circ}F in 30 min.
(a) Find its temp after 45 min.
(b) When will it reach 100100^{\circ}F?

See Solution

Problem 19761

Calculate the limit: limx02x3+xcosxsinxx2\lim _{x \rightarrow 0} \frac{2 x^{3}+x \cos x-\sin x}{x^{2}}.

See Solution

Problem 19762

Evaluate the limit limt0(11sin(12t)ln(12t))=\lim _{t \rightarrow 0}(11 \sin (12 t) \ln (12 t))=\square using L'Hôpital's Rule.

See Solution

Problem 19763

Given the function f(x)=3x2ln(x)f(x)=3 x^{2} \ln (x) for x>0x>0, find:
(A) Critical values. (B) Intervals where f(x)f(x) is increasing. (C) Intervals where f(x)f(x) is decreasing. (D) xx values of local maxima. (E) xx values of local minima. (F) Intervals where f(x)f(x) is concave up. (G) Intervals where f(x)f(x) is concave down. (H) xx values of inflection points.

See Solution

Problem 19764

Find the limit: limx(3x4x2+2)\lim _{x \rightarrow-\infty}\left(\frac{3 x-4}{\sqrt{x^{2}+2}}\right)

See Solution

Problem 19765

Show algebraically that as xx approaches 0, the slope of the tangent line h(x)=2x3+xcosxsinxx2h^{\prime}(x)=\frac{2 x^{3}+x \cdot \cos x-\sin x}{x^{2}} approaches 0.

See Solution

Problem 19766

Find the limit as xx approaches 0 from the right of (x41)(\sqrt[4]{x}-1). What is the value?

See Solution

Problem 19767

Find the limit: limx49x49x7\lim _{x \rightarrow 49} \frac{x-49}{\sqrt{x}-7} using algebraic methods.

See Solution

Problem 19768

Find the limit as xx approaches infinity for 5+2x3x\frac{5+2x}{3-x}. Options: a) 0, b) 020-2, c) 53\frac{5}{3}, d) 0, Does not exist.

See Solution

Problem 19769

Find limx0(x43)\lim _{x \rightarrow 0^{-}}(\sqrt[4]{x}-3). What is the limit? a) 00 b) 01 c) -1 d) Does not exist

See Solution

Problem 19770

Calculate limits for the speed vv of a dropped object: (a) limtv\lim_{t \to \infty} v, (b) limmv\lim_{m \to \infty} v using L'Hospital's rule.

See Solution

Problem 19771

Find the limit as xx approaches -1.5 from the right of 3+2x+x\sqrt{3+2x} + x. Options: a) 1.5 b) 01.50-1.5 c) 00 d) 1

See Solution

Problem 19772

Find the bacteria population after 3 hours if it grows at 16%16\% per hour from an initial count of 129. Round to the nearest tenth.

See Solution

Problem 19773

As xx approaches 0.5, find the limit of f(x)=1x2f(x)=\frac{1}{x^{2}}. Choices: a) 16 b) 04 c) 0.025 d) 0.25

See Solution

Problem 19774

Find the limit as xx approaches -\infty for f(x)=x+4x2+16\mathbf{f}(x) = \frac{x+4}{x^2+16}. Options: a) 14\frac{1}{4} b) 0140-\frac{1}{4} c) 0 d) Does not exist.

See Solution

Problem 19775

Calculate the limit: limx(7x+56x24x+9) \lim _{x \rightarrow \infty}\left(\frac{7 x+5}{6 x^{2}-4 x+9}\right)

See Solution

Problem 19776

Find the limit: limx[6x25x+72x2+9]\lim _{x \rightarrow \infty}\left[\frac{6 x^{2}-5 x+7}{2 x^{2}+9}\right] algebraically.

See Solution

Problem 19777

Find the indefinite integral and verify by differentiation: (x+16x)dx\int\left(\sqrt{x}+\frac{1}{6 \sqrt{x}}\right) d x

See Solution

Problem 19778

Find the limit as xx approaches 3 from the right for x3x3\frac{|x-3|}{x-3}. Options: a) 01 b) 010-1 c) 020-2 d) 00

See Solution

Problem 19779

Is the function f(x)={x24x+2,x11,x=1f(x)=\left\{\begin{array}{c}\frac{x^{2}-4}{x+2}, x \neq 1 \\ -1, x=1\end{array}\right. continuous at x=1x=1?

See Solution

Problem 19780

Find f(1)f(-1) given that f(x)=8x3+12x+2f^{\prime}(x)=8 x^{3}+12 x+2 and f(1)=4f(1)=-4.

See Solution

Problem 19781

The substitution u=3xu=3 x changes the integral e3xdx\int e^{3 x} d x. What is the new integral?

See Solution

Problem 19782

Evaluate the integral x3(3x2)2dx\int \frac{x-3}{(3 x-2)^{2}} d x using the substitution u=3x2u=3 x-2.

See Solution

Problem 19783

Calculate the integral: 1ee235+2lnxxdx\int_{\frac{1}{\sqrt{e}}}^{e^{2}} \frac{3 \sqrt{5+2 \ln x}}{x} d x

See Solution

Problem 19784

A biologist models bacteria population P(t)=t+2t2+t+3P(t)=\frac{t+2}{t^{2}+t+3}. Find rates of change at t=0t=0 and t=10t=10.

See Solution

Problem 19785

Given the function f(x)=x2/5(x5)f(x)=x^{2/5}(x-5), find critical numbers AA and BB. Determine if f(x)f(x) is increasing or decreasing in the intervals (,A](-\infty, A], [A,B][A, B], and [B,)[B, \infty). Also, find CC and DD where f(x)=0f''(x)=0 or undefined, and check concavity in (,C)(-\infty, C), (C,D)(C, D), and (D,)(D, \infty).

See Solution

Problem 19786

Determine if h(θ)=3cosθ2h(\theta)=-3 \cos \frac{\theta}{2} has local extrema at θ=0\theta=0 and θ=2π\theta=2\pi.

See Solution

Problem 19787

Find the derivative of f(x)=6x2x225f(x)=\frac{6 x^{2}}{x^{2}-25}, its critical numbers, intervals of increase/decrease, and local extrema.

See Solution

Problem 19788

Evaluate the integral sec2(1/x3)x4dx\int \frac{\sec ^{2}(1 / x^{3})}{x^{4}} dx using the substitution u=1/x3u=1/x^{3}.

See Solution

Problem 19789

Find the value for the blank in 06(s\int_{0}^{6}(\square s given F(G(r,s))N(r,s)=er+r2(1s)+rs2\mathbf{F}(\mathbf{G}(r, s)) \cdot \mathbf{N}(r, s) = -e^{r}+r^{2}(1-s)+r s^{2}.

See Solution

Problem 19790

Calculate the area under the curve xy=1xy = -1 from x=1x = 1 to x=2x = 2.

See Solution

Problem 19791

Rewrite the equation du=9x10dxdu=-\frac{9}{x^{10}} dx to show it as 1/9du-1/9 du.

See Solution

Problem 19792

Evaluate the integral: 1/213xdx1+4x2\int_{1/2}^{1} \frac{3x \, dx}{1 + 4x^2}.

See Solution

Problem 19793

Find the zero(s) where the second derivative ff^{\prime \prime} of the polynomial f(x)=(x+4)2(x1)5(x2)f(x)=(x+4)^{2}(x-1)^{5}(x-2) flattens out. Express as ordered pair(s).

See Solution

Problem 19794

Find the derivative of 18s2+216(1s)3e6+118s^2 + \frac{216(1-s)}{3} - e^6 + 1 and evaluate 06(18s2+216(1s)3e6+1)ds\int_{0}^{6} (18s^2 + \frac{216(1-s)}{3} - e^6 + 1) ds.

See Solution

Problem 19795

Find and classify all critical points of the function f(x,y)=9e(x2+y22x)f(x, y)=9 e^{-\left(x^{2}+y^{2}-2 x\right)}.

See Solution

Problem 19796

Find the antiderivative of 18s2+216(1s)3e6+118s^2 + \frac{216(1-s)}{3} - e^{6} + 1 from 00 to 66 and evaluate it:
06(18s2+216(1s)3e6+1)ds=X\int_{0}^{6}\left(18 s^{2}+\frac{216(1-s)}{3}-e^{6}+1\right) ds = \square_{X}

See Solution

Problem 19797

Find the first three nonzero terms in the Maclaurin series for y=exln(1+x)y=e^{x} \ln(1+x) using power series operations.

See Solution

Problem 19798

Evaluate the series: 3+92!+273!+814!+3+\frac{9}{2!}+\frac{27}{3!}+\frac{81}{4!}+\cdots

See Solution

Problem 19799

Calculate total cost for q=20q=20 using marginal cost function 0.12q21.60q+6.700.12 q^{2}-1.60 q+6.70 and fixed costs of \{8000\}. Total cost is \$\square.

See Solution

Problem 19800

Find y given: y=30xy^{\prime \prime \prime}=30 x, y(0)=8y^{\prime \prime}(0)=8, y(0)=8y^{\prime}(0)=8, y(0)=5y(0)=5. y(x)=y(x)=\square

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord