Calculus

Problem 15601

Find the marginal cost from the average cost function AC(Q)=4Q+6+6.2/QA C(Q)=4 Q+6+6.2 / Q at Q=3Q=3. Round to the nearest integer!

See Solution

Problem 15602

Finde die Stelle x0x_{0}, wo der Graph von f(x)=x2+2x3f(x)=x^{2}+2x-3 einen Steigungswinkel von 4545^{\circ} hat.

See Solution

Problem 15603

Find the first derivative of f(x)=(x13x)5f(x)=\left(\frac{x-1}{3 x}\right)^{5}. Which option is correct?

See Solution

Problem 15604

Find the marginal product of labor for Y=0.1L10+3L2100.1L310Y=0.1 L \cdot 10 + 3 L^{2} \cdot 10 - 0.1 L^{3} \cdot 10. What is the domain for LL?

See Solution

Problem 15605

Berechne die Fläche unter der Funktion f(x)=13x+7f(x)=\frac{1}{3}x+7 im Intervall [2, 5].

See Solution

Problem 15606

Find how equilibrium price pp and quantity QQ of coffee change with cocoa price pcp_{c}. Calculate dpdpc=\frac{d p}{d p_{c}}= and dQdpc=\frac{d Q}{d p_{c}}= (round to 3 decimals).

See Solution

Problem 15607

Evaluate the integral: (x33)dx\int\left(x^{3}-3\right) d x

See Solution

Problem 15608

Find the first derivative of f(x)=3x3ln(x)f(x)=3 x^{3} \ln (x). Choose the correct option from the list.

See Solution

Problem 15609

Zeigen Sie, dass für b>0b>0 gilt: 0bx3dx=14b4\int_{0}^{b} x^{3} d x=\frac{1}{4} \cdot b^{4} und verwenden Sie die Summe der Kubikzahlen.

See Solution

Problem 15610

Evaluate the integral: 3xdx\int \sqrt{3 x} \, dx

See Solution

Problem 15611

Evaluate the integral: (10x4+6x1)dx\int(10 x^{4}+6 x-1) \, dx

See Solution

Problem 15612

Evaluate the integral: cos23xdx\int \cos \frac{2}{3} x \, dx

See Solution

Problem 15613

Evaluate the integral: dx52x\int \frac{d x}{5-2 x}

See Solution

Problem 15614

Evaluate the integral: 4x5dx\int 4 x^{5} \, dx

See Solution

Problem 15615

Evaluate the integral of the square root function: xdx\int \sqrt{x} \mathrm{dx}.

See Solution

Problem 15616

State Newton's method formula and find x1x_{1} and x2x_{2} using f(x)=x212f(x)=x^{2}-12 and x0=3x_{0}=3.

See Solution

Problem 15617

Evaluate the integral: sin3xdx\int \sin 3 x \, dx.

See Solution

Problem 15618

Write Newton's method formula and compute x1x_{1} and x2x_{2} using f(x)=4tan(4x)f(x)=4-\tan(4x) and x0=1x_{0}=1.

See Solution

Problem 15619

Calculate the definite integral: 14dxx2.\int_{1}^{4} \frac{d x}{x^{2}}.

See Solution

Problem 15620

Evaluate the integral 012(n=0(n+3n)xn)dx\int_{0}^{\frac{1}{2}}\left(\sum_{n=0}^{\infty}\left(\begin{array}{c}n+3 \\ n\end{array}\right) x^{n}\right) \mathrm{d} x.

See Solution

Problem 15621

Find the limit of the sequence an=1!+3!+5!++(2n1)!2!+4!+6!++(2n)!a_{n}=\frac{1 !+3 !+5 !+\cdots+(2 n-1) !}{2 !+4 !+6 !+\cdots+(2 n) !} as nn \to \infty.

See Solution

Problem 15622

Ein Modellhelikopter steigt. Gegeben ist h(t)=t24th(t)=-t^{2}-4t für 0t30 \leq t \leq 3.
a) Wann steigt er am schnellsten?
b) Wann ändert sich die Höhe nicht?
c) Weitere mathematische Aussagen zum Flugverlauf?

See Solution

Problem 15623

Approximate a root of the function f(x)=3x2x4f(x)=3 x^{2}-\sqrt{x}-4 using Newton's method starting with x0=2x_{0}=2.

See Solution

Problem 15624

Find the price elasticity of demand for Q=15.60.5pQ=15.6-0.5p at p=7.2p=7.2 \,€. Type your answer as ϵ=\epsilon= solution.

See Solution

Problem 15625

Fiona's speed is given by v(t)=23t36t2+13t+109v(t)=\frac{2}{3} t^{3}-6 t^{2}+13 t+109. Find v(0)v(0) and acceleration at t=5t=5.

See Solution

Problem 15626

Find the limit of the sequence an=1!+3!++(2n1)!2!+4!++(2n)!a_{n}=\frac{1 !+3 !+\cdots+(2 n-1) !}{2 !+4 !+\cdots+(2 n) !} as nn approaches infinity using the Stolz-Cesàro theorem.

See Solution

Problem 15627

Fiona's speed is given by v(t)=23t36t2+13t+109v(t)=\frac{2}{3} t^{3}-6 t^{2}+13 t+109.
(a) Find her speed at t=0t=0. (b) Calculate her acceleration at t=5t=5. (c) Determine when she reaches max speed in the first 4 minutes.

See Solution

Problem 15628

Find the limit: limn(4n3+4n+24n3+2n)3n2\lim _{n \rightarrow \infty}\left(\frac{4 n^{3}+4 n+2}{4 n^{3}+2 n}\right)^{3 n^{2}}.

See Solution

Problem 15629

Evaluate the limit: limn1+12++1nn\lim _{n \rightarrow \infty} \frac{1+\frac{1}{\sqrt{2}}+\cdots+\frac{1}{\sqrt{n}}}{\sqrt{n}}

See Solution

Problem 15630

Find the average value of f(x)=x(4x)f(x)=\sqrt{x}(4-x) on [0,4][0,4]. Options: (A) 73\frac{7}{3}, (B) 215\frac{21}{5}, (C) 3215\frac{32}{15}, (D) 354\frac{35}{4}.

See Solution

Problem 15631

Aufgabe 4: Bakterienwachstum: a) Beschreibe die Folge, b) Wie viele Bakterien nach 1 Stunde?, c) Wann sind es 1 Million?
Aufgabe 5: Grenzwerte: a) Untersuche Konvergenz von (i) an=100na_{n}=\frac{100}{n}, (ii) dn=2n(12)nd_{n}=2n-(\frac{1}{2})^{n}. b) Zeige g=1g=1 für an=2n+12n1a_{n}=\frac{2n+1}{2n-1}. c) Berechne Grenzwerte von (i) an=n5n46n5a_{n}=\frac{n^{5}-n^{4}}{6n^{5}}, (ii) an=n5+3n24n53n3a_{n}=\frac{n^{5}+3n^{2}}{4n^{5}-3n^{3}}.
Aufgabe 6: Funktionenverhalten: a) Unterschiede zwischen Folge und Funktion? b) Grenzverhalten für xx \rightarrow \infty und xx \rightarrow -\infty für f(x)=7x5x6f(x)=7x^{5}-x^{6}, f(x)=1+xx2+3f(x)=\frac{1+x}{x^{2}+3}, f(x)=4x+3,2xf(x)=4x+3,2^{x}.

See Solution

Problem 15632

Evaluate the integral sin(ln(x))xdx\int \frac{\sin (\ln (x))}{x} d x.

See Solution

Problem 15633

\1500isinvestedat10%interestcompoundedcontinuously.Findthebalanceafter12yearsusing1500 is invested at 10\% interest compounded continuously. Find the balance after 12 years using A=1500 e^{(0.10)(12)}$.

See Solution

Problem 15634

Calculate the flow rate through the triangular region with vertices (1,0,0), (0,1,0), (0,0,1) for v=4k\mathbf{v}=4 \mathbf{k}. TvdS=m3/s\iint_{T} v \cdot d S=\square \mathrm{m}^{3} / \mathrm{s}

See Solution

Problem 15635

Untersuchen Sie die Konvergenz der Folgen: (i) an=100na_{n}=\frac{100}{n}, (ii) dn=2n(12)nd_{n}=2 n-\left(\frac{1}{2}\right)^{n}. Zeigen Sie, dass g=1g=1 für an=2n+12n1a_{n}=\frac{2 n+1}{2 n-1} gilt. Berechnen Sie die Grenzwerte: (i) an=n5n46n5a_{n}=\frac{n^{5}-n^{4}}{6 n^{5}}, (ii) an=n5+3n24n53n3a_{n}=\frac{n^{5}+3 n^{2}}{4 n^{5}-3 n^{3}}.

See Solution

Problem 15636

Evaluate the limit as xx approaches 0: limx0xsinxx2\lim_{x \rightarrow 0} \frac{x - \sin x}{x^2}.

See Solution

Problem 15637

Find the heat flow rate out of a sphere (radius 1) in a copper cube with K=400 kW/(mK)K=400 \mathrm{~kW}/(\mathrm{m} \cdot \mathrm{K}).

See Solution

Problem 15638

Untersuchen Sie das Grenzverhalten der Funktionen für xx \rightarrow \infty und xx \rightarrow -\infty: a. f(x)=7x5x6f(x)=7 x^{5}-x^{6} b. f(x)=1+xx2+3f(x)=\frac{1+x}{x^{2}+3} c. f(x)=4x+3,2xf(x)=4 x+3,2^{x} Nennen Sie die Quadranten, in denen die Funktionen beginnen und enden.

See Solution

Problem 15639

Find the magnetic flux Φ(t)\Phi(t) through a rectangle of size 7×27 \times 2 m at d=0.5d=0.5 m above a wire with current i(t)=t(10t)i(t)=t(10-t). Use Φ=BdA\Phi = \int B \, dA and express in terms of μ0\mu_{0} and II.

See Solution

Problem 15640

Find the flow rate across a net in a river with velocity v=xy,z+y+2,z2\mathbf{v}=\langle x-y, z+y+2, z^{2}\rangle and net y=1x2z2,y0y=1-x^{2}-z^{2}, y \geq 0. Calculate SvdS.\iint_{S} \mathbf{v} \cdot d \mathbf{S}.

See Solution

Problem 15641

Bestimmen Sie die Stammfunktion von f(x)=1x5f(x)=\frac{1}{x^{5}}.

See Solution

Problem 15642

Find velocity and acceleration functions for each position function s(t)s(t). Simplify before differentiating.
a) s(t)=5+7t8t3s(t)=5+7 t-8 t^{3} b) s(t)=(2t+3)(45t)s(t)=(2 t+3)(4-5 t) c) s(t)=(t+2)(3t2t+5)s(t)=-(t+2)(3 t^{2}-t+5) d) s(t)=2t4t3+8t24t2s(t)=\frac{-2 t^{4}-t^{3}+8 t^{2}}{4 t^{2}}

See Solution

Problem 15643

Bestimme den Inhalt der Flächenstücke A: Halbe Fläche unter f(x)=0.5x2+2xf(x) = -0.5x^2 + 2x von 2 bis 4 und Fläche von 4 bis 5.

See Solution

Problem 15644

Find the derivative of f(x)=110(x29)2f(x)=-\frac{1}{10}(x^{2}-9)^{2}.

See Solution

Problem 15645

Calculate the area under the curve f(x)=0.5x2+2xf(x)=-0.5x^2+2x from x=2x=2 to x=5x=5. What is the total area?

See Solution

Problem 15646

Berechne die mittlere Geschwindigkeit in m/s für die Zeitintervalle [0;2][0 ; 2], [2;4][2 ; 4] und [4;6][4 ; 6] mit s(t)=0,25t2s(t)=0,25 t^{2}.

See Solution

Problem 15647

How high is the bridge if a rock dropped hits the water in 3.2 seconds? Use h=12gt2h = \frac{1}{2} g t^2 with g9.8m/s2g \approx 9.8 \, \text{m/s}^2.

See Solution

Problem 15648

Find the carrying capacity of the logistic growth model f(x)=1601+8e2xf(x)=\frac{160}{1+8 e^{-2 x}}.

See Solution

Problem 15649

a) Berechne die mittlere Geschwindigkeit des Zuges zwischen den Haltestellen. Wo ist die Geschwindigkeit am höchsten? b) Gib die Formel für die mittlere Geschwindigkeit vˉ(t1,t2)\bar{v}(t_{1}, t_{2}) im Intervall [t1,t2][t_{1}, t_{2}] an.

See Solution

Problem 15650

Estimate the area under f(x)=x2+6f(x)=x^{2}+6 from x=0x=0 to x=4x=4 using left, midpoint, and right Riemann sums with n=4n=4.

See Solution

Problem 15651

A rocket is shot upward with 34.5 m/s34.5 \mathrm{~m/s} from 3.2 m3.2 \mathrm{~m}. Find velocity, max height time, height, return time, and impact velocity.

See Solution

Problem 15652

Given the function f(x)=x3+12x29f(x)=x^{3}+12 x^{2}-9, find its domain, critical numbers, intervals of increase/decrease, and local extrema.

See Solution

Problem 15653

Find f(x)f^{\prime}(x) for f(x)=x2lnxf(x)=x^{2} \ln x and identify the critical points. List them or state none.

See Solution

Problem 15654

Position function: s(t)=2t315t2+36t+10s(t)=2 t^{3}-15 t^{2}+36 t+10. Find velocity, acceleration, rest times, direction, and distance in 7s.

See Solution

Problem 15655

Given the function f(x)=6(x4)2/3+2f(x)=6(x-4)^{2/3}+2, find critical values, intervals of increase/decrease, and local max/min.

See Solution

Problem 15656

Find the antiderivative of (x6+x7)dx=\int(\sqrt[6]{x}+\sqrt[7]{x}) d x = \square

See Solution

Problem 15657

Find the antiderivative of each function with C=0\mathrm{C} = 0 and verify by differentiation: (a) g(x)=7x8g(x)=-7 x^{-8}, (b) h(x)=x8h(x)=x^{-8}.

See Solution

Problem 15658

Find the right Riemann sum for f(x)=x2f(x)=x^{2} over [1,4][1,4] using 6 equal subintervals. Round to the nearest thousandth.

See Solution

Problem 15659

Solve the initial value problem: d2ydx2=812x,y(0)=5,y(0)=7\frac{d^{2} y}{d x^{2}}=8-12 x, y'(0)=5, y(0)=7. Find the integral for dydx\frac{d y}{d x}.

See Solution

Problem 15660

Estimate the area under f(x)=x2f(x)=x^{2} from x=1x=1 to x=3x=3 using 2 and then 4 rectangles. Area with 2 rectangles: \square.

See Solution

Problem 15661

Find the area between the curve y=x+2y=x+2 and the x-axis from x=0x=0 to x=1x=1 using limits.

See Solution

Problem 15662

Find the second derivative of f(x)=4x44x34x2+2f(x)=4 x^{4}-4 x^{3}-4 x^{2}+2, then calculate f(0)f^{\prime \prime}(0) and f(4)f^{\prime \prime}(4).

See Solution

Problem 15663

Approximate the area under y=xy=\sqrt{x} from x=0x=0 to x=4x=4 using upper and lower sums with n=4n=4 partitions.

See Solution

Problem 15664

Calculate the surface integral SFdS\iint_{S} \mathbf{F} \cdot d \mathbf{S} for F=4ez,2z,2x\mathbf{F}=\langle 4 e^{z}, 2 z, 2 x\rangle over the given surface. Round to three decimal places.

See Solution

Problem 15665

Find the second derivative of the function f(x)=4ex2f(x)=4 e^{-x^{2}}, then calculate f(0)f^{\prime \prime}(0) and f(2)f^{\prime \prime}(2).

See Solution

Problem 15666

Select the correct statements about the second derivative: A. Finds intercepts of the first derivative. B. Gives yy-values for the first derivative. C. Represents the slope of the tangent line to the derivative at xx. D. Determines the rate of change of the first derivative. E. Found by setting the first derivative to zero.

See Solution

Problem 15667

Bestimmen Sie das Integral 22(0,5t+0,5)dt\int_{-2}^{2}(0,5 t+0,5) d t mit Dreiecks- und Rechtecksflächen. Flächen: A1=0,25A_{1}=0,25, A2=0,25A_{2}=0,25, A3=1A_{3}=1, A4=1A_{4}=1.

See Solution

Problem 15668

Find limxx3x2+4\lim _{x \rightarrow \infty} \frac{x^{3}}{\sqrt{x^{2}+4}}. What is the limit? A. -\infty B. 0 C. 4 D. \infty

See Solution

Problem 15669

Find dydx\frac{d y}{d x} if y=f(x2)y=f(x^{2}) and f(x)=5x1f^{\prime}(x)=\sqrt{5 x-1}. Options: a. 2x5x212 x \sqrt{5 x^{2}-1} b. 5x1\sqrt{5 x-1} c. 2x5x12 x \sqrt{5 x-1} d. 5x21\sqrt{5 x^{2}-1}.

See Solution

Problem 15670

If y=f(x2)y=f\left(x^{2}\right) and f(x)=5x1f^{\prime}(x)=\sqrt{5 x-1}, find dydx\frac{d y}{d x}. Options: a. 2x5x212 x \sqrt{5 x^{2}-1}, b. 5x1\sqrt{5 x-1}, c. 2x5x12 x \sqrt{5 x-1}, d. 5x21\sqrt{5 x^{2}-1}.

See Solution

Problem 15671

Find the velocity of an object dropped after 2, 5, and 8 seconds using s(t)=16t2s(t)=-16t^{2}, and determine the acceleration.

See Solution

Problem 15672

Approximate the area under f(x)=x2+4xf(x)=x^{2}+4x from 00 to 44 using the midpoint formula with n=4n=4.

See Solution

Problem 15673

Find the limit: limy31y13y3\lim _{y \rightarrow 3} \frac{\frac{1}{y}-\frac{1}{3}}{y-3}.

See Solution

Problem 15674

Find the linearization L(x)L(x) of f(x)=ln(x2)f(x)=\ln(x^{2}) at x=ex=e, then estimate f(3)f(3) and explain the approximation's reasonableness.

See Solution

Problem 15675

A scientist has 180 mg of a radioactive substance. After 13 hours, 90 mg remains. How much is left after 18 hours? Give your answer to one decimal place.

See Solution

Problem 15676

Find the sum of the series 3600,900,225,3600, 900, 225, \ldots; what is SS_{\infty}?

See Solution

Problem 15677

Leiten Sie die Funktion ff ab und vereinfachen Sie, wenn möglich: a) f(x)=2x+e2xf(x)=2 x+e^{2 x}, b) f(x)=e2x5e15xf(x)=e^{2 x}-5 \cdot e^{\frac{1}{5} x}, c) f(x)=x2+e3x1f(x)=x^{2}+e^{3 x-1}, d) f(x)=20e0,1x+x+5f(x)=20 \cdot e^{0,1 x}+x+5, e) f(x)=13x32e0,25xf(x)=\frac{1}{3} x^{3}-2 \cdot e^{-0,25 x}, f) f(x)=2x2ex+3+x3f(x)=2 x^{2}-e^{-x+3}+x^{3}.

See Solution

Problem 15678

Find the sum of the infinite series: 10, 20, 40, ... What is SS_{\infty}?

See Solution

Problem 15679

Bestimme die Ableitung und klammere aus für die Funktionen: a) f(x)=xexf(x)=x e^{x}, b) f(x)=(x3)exf(x)=(x-3)e^{x}, c) f(x)=x2exf(x)=x^{2}e^{x}, d) f(x)=xexx2f(x)=xe^{x}-x^{2}, e) f(x)=sin(x)exf(x)=\sin(x)e^{x}, f) f(x)=(x25)exf(x)=(x^{2}-5)e^{x}, g) f(x)=x4ex7f(x)=x^{4}e^{x}-7, h) f(x)=5xxexf(x)=5x-xe^{x}.

See Solution

Problem 15680

Find the limit: limh0(7+h)373(7+h)272\lim _{h \rightarrow 0} \frac{(7+h)^{3}-7^{3}}{(7+h)^{2}-7^{2}}.

See Solution

Problem 15681

David has 80 yards of fencing for a rectangle. (a) Find area AA as a function of width WW. (b) What width WW maximizes area? (c) What is the maximum area?

See Solution

Problem 15682

Finden Sie eine Stammfunktion und berechnen Sie das Integral 13(4x32x2+1)dx\int_{-1}^{3}(4 x^{3}-2 x^{2}+1) \, dx. Erklären Sie den Begriff "eine" Stammfunktion.

See Solution

Problem 15683

Find the limit: limx0x+22x\lim _{x \rightarrow 0} \frac{\sqrt{x+2}-\sqrt{2}}{x}.

See Solution

Problem 15684

Bestimme die Ableitungen von: I. f(x)=sinx2ex+2f(x)=\sin x^{2} \cdot e^{x+2}, II. f(x)=2x2f(x)=\sqrt{2 x-2}, III. f(x)=ex2+2x2f(x)=\frac{e^{x^{2}+2 x}}{-2}.

See Solution

Problem 15685

Zeichne den Graphen von f(x)=x5+1f(x)=x^{5}+1 für 0x20 \leq x \leq 2 und berechne den Flächeninhalt zwischen ff und der xx-Achse.

See Solution

Problem 15686

Approximate (26.5)13(26.5)^{\frac{1}{3}} using linearization of the cube root function at a=27a=27. Answer to three decimal places.

See Solution

Problem 15687

Finde eine Stammfunktion für die Integrale: I. e2xe2x+2dx\int e^{2 x} \cdot e^{2 x+2} d x, II. 12x2+x2dx\int_{-1}^{2} \frac{x}{\sqrt{2+x^{2}}} d x, III. αcos(37x)dx\int \alpha \cdot \cos (3-7 x) d x.

See Solution

Problem 15688

Differentiate implicitly to find d2ydx2\frac{d^{2} y}{d x^{2}} for the equation y2xy+x2=8y^{2}-x y+x^{2}=8.

See Solution

Problem 15689

Gegeben sind die Funktionen f(x)=x36x2+8xf(x)=x^{3}-6 x^{2}+8 x und p(x)=x22xp(x)=x^{2}-2 x.
a) Berechne den Flächeninhalt zwischen ff und der xx-Achse im Intervall I=[1;5]I=[1 ; 5] und vergleiche mit dem Integral von ff.
b) Bestimme den Inhalt der Fläche zwischen ff und pp unter Angabe einer Stammfunktion.

See Solution

Problem 15690

Find the second derivative CxxC_{xx} of the function C(x,y)=2xy+72000xC(x, y)=2xy+\frac{72000}{x} at y=40y=40 and x=30x=30.

See Solution

Problem 15691

Evaluate the integral 1e8ln2(x2)xdx\int_{1}^{e^{8}} \frac{\ln ^{2}\left(x^{2}\right)}{x} dx and simplify the integrand. Use the substitution u=u=\square.

See Solution

Problem 15692

Maximize area of a rectangular field with 800 ft of fencing, subdivided into 3 plots. Find dimensions as reduced fractions.

See Solution

Problem 15693

Find the first derivative of the function R(x)=(302x)(50+20x)R(x)=(30-2x)(50+20x).

See Solution

Problem 15694

Evaluate the integral 3212(x33x)dx\int_{-\frac{3}{2}}^{\frac{1}{2}}\left(x^{3}-3 x\right) d x and discuss the area above/below the xx-axis.

See Solution

Problem 15695

Find the linearization L1(x)L_{1}(x) of f(x)=5x3+1x2f(x)=5 x^{3}+\frac{1}{x^{2}} at x=1x=1. Use two decimal places for constants.

See Solution

Problem 15696

Find the acceleration of a speedboat from t=0t=0 (speed 10) to t=2t=2 (speed 20), assuming a straight line graph.

See Solution

Problem 15697

Find the integral of x10ex11x^{10} e^{x^{11}} with respect to xx.

See Solution

Problem 15698

Find the minimum average cost for C(x)=43x2+1200C(x)=\frac{4}{3} x^{2}+1200 where 1x1001 \leq x \leq 100.

See Solution

Problem 15699

Berechne den Flächeninhalt zwischen f(x)=x36x2+8xf(x)=x^{3}-6x^{2}+8x und der xx-Achse im Intervall I=[1;5]I=[1;5] und vergleiche mit dem Integral von ff.

See Solution

Problem 15700

Evaluate the integral from 3 to 4: 34t55t2t4dt\int_{3}^{4} \frac{t^{5}-5 t^{2}}{t^{4}} d t.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord