Calculus

Problem 5701

Bestimme die Ableitungsfunktion ff^{\prime} für die Funktionen: a) f(x)=14x42x2f(x)=\frac{1}{4} x^{4}-2 x^{2}, b) f(x)=3x2+4f(x)=-3 x^{2}+4, c) f(x)=3(x2)2+xf(x)=3(x-2)^{2}+x, d) f(x)=ax3+bx2+cx+df(x)=a x^{3}+b x^{2}+c x+d, e) f(x)=2xf(x)=2 \sqrt{x}, f) f(x)=4x+1f(x)=\frac{4}{x}+1.

See Solution

Problem 5702

A ball goes 108 in in the first 0.1s, 102 in in the next, then 6 in less each 0.1s. How long until it falls? Total distance?

See Solution

Problem 5703

Berechnen Sie die Integrale: a) 04xdx\int_{0}^{4}-x d x, b) 112xdx\int_{-1}^{1}-2 x d x, c) 22x2dx\int_{-2}^{2}-x^{2} d x, d) 420,5xdx\int_{-4}^{-2}-0,5 x d x, e) 20101dx\int_{-20}^{-10}-1 d x, f) 10dx\int_{-1}^{0} d x.

See Solution

Problem 5704

Leiten Sie die Funktion ff mit Produkt- und Kettenregel ab für: a) f(x)=xsin(3x)f(x)=x \cdot \sin (3 x), b) f(x)=(2x1)2xf(x)=(2 x-1)^{2} \cdot \sqrt{x}, c) f(x)=3x5cos(2x)f(x)=3 x^{5} \cdot \cos (2 x), d) f(x)=3xsin(4x1)f(x)=3 x \cdot \sin (4 x-1), e) f(x)=(43x)2sin(x)f(x)=(4-3 x)^{2} \cdot \sin (x), f) f(x)=0,5x24xf(x)=0,5 x^{2} \cdot \sqrt{4-x}, g) f(x)=x2cos(1x)f(x)=x^{2} \cdot \cos (1-x), h) f(x)=2x+3x2f(x)=\sqrt{2 x+3} \cdot x^{2}, i) f(x)=(5x+2)7cos(x)f(x)=(5 x+2)^{7} \cdot \cos (x).

See Solution

Problem 5705

Find the rate of area increase of a square with side 3 m3 \mathrm{~m} growing at 0.8 m/min0.8 \mathrm{~m/min}.

See Solution

Problem 5706

Find the derivative of f(x)=xf(x) = \sqrt{x} or f(x)=x12f(x) = x^{\frac{1}{2}}.

See Solution

Problem 5707

Finde die Tangentengleichung an f(x)=2exf(x)=2 e^{x} bei x0=1x_{0}=-1.

See Solution

Problem 5708

Find the derivative f(x)f'(x) of f(x)=1x2f(x)=\frac{1}{x^2} using the limit definition: f(x)=limh01(x+h)21x2hf'(x)=\lim_{h \to 0} \frac{\frac{1}{(x+h)^{2}}-\frac{1}{x^{2}}}{h}.

See Solution

Problem 5709

Encuentra T(t)T(t), N(t)N(t), B(t)B(t) y K˙(t)\dot{K}(t) para r(t)=5t2,et,3tr(t)=\langle 5t-2, e^{-t}, 3t \rangle.

See Solution

Problem 5710

Find the absolute extrema of f(x)=4x354x2216xf(x)=-4 x^{3}-54 x^{2}-216 x on [8,3][-8,3]. Provide your answer as (x,f(x))(x, f(x)).

See Solution

Problem 5711

Find the absolute extrema of f(x)=6x399x2+540xf(x)=6 x^{3}-99 x^{2}+540 x on [4,8][-4,8]. Provide (x,f(x))(x, f(x)) pairs.

See Solution

Problem 5712

Find the absolute extrema of f(x)=5x220xf(x)=5x^{2}-20x on [0,8][0,8]. Give your answer as an ordered pair (x,f(x))(x, f(x)).

See Solution

Problem 5713

Find limx1f(x)f(1)x1\lim _{x \rightarrow 1^{-}} \frac{f(x)-f(1)}{x-1} for the function ff on [1,5][-1,5] with given segments and y=x3y=x^{3}.

See Solution

Problem 5714

Find the absolute extrema of f(x)=2x3216xf(x)=2 x^{3}-216 x on [8,7][-8,7]. Provide your answer as (x,f(x))(x, f(x)).

See Solution

Problem 5715

Find the derivative of f(x)=2x3216xf(x)=2x^{3}-216x.

See Solution

Problem 5716

Find the derivative of the function f(x)=5x220xf(x) = 5x^2 - 20x.

See Solution

Problem 5717

Find the absolute extrema of the function f(x)=x34f(x)=-x^{3}-4 on the interval [7,7][-7,7]. Provide as (x,f(x))(x, f(x)).

See Solution

Problem 5718

Find characteristics of the function f(x)=(1x2)e12x2f(x)=(1-x^{2}) \cdot e^{-\frac{1}{2} x^{2}}, like its derivative, integral, and extrema.

See Solution

Problem 5719

Find the absolute extrema of f(x)=4x312x2288xf(x)=4 x^{3}-12 x^{2}-288 x on [7,7][-7,7] as an ordered pair (x,f(x))(x, f(x)).

See Solution

Problem 5720

Find the absolute extrema of f(x)=5x2+10x8f(x)=5 x^{2}+10 x-8 on [6,3][-6,3]. Provide your answer as an ordered pair (x,f(x))(x, f(x)).

See Solution

Problem 5721

A volleyball is spiked from 10 ft with an initial speed of -55 ft/s. How much time do players have to hit it before it lands?

See Solution

Problem 5722

Find the absolute extrema of f(x)=2x3216xf(x)=2 x^{3}-216 x on [8,7][-8,7] by evaluating f(8)f(-8), f(7)f(7), f(6)f(6), and f(6)f(-6).

See Solution

Problem 5723

Find the absolute extrema of f(x)=8x+648xf(x)=8 x+\frac{648}{x} on [5, 19]. Provide (x,f(x))(x, f(x)) rounded to 3 decimal places.

See Solution

Problem 5724

Find the limit: limx20x416x35x320x4+74x\lim _{x \rightarrow \infty} \frac{20 x^{4}-16 x}{35 x^{3}-20 x^{4}+7-4 x}. State DNE if infinite.

See Solution

Problem 5725

Find the absolute extrema of f(x)=6x354x2+144xf(x)=6 x^{3}-54 x^{2}+144 x on [2,7][-2,7]. Provide as (x,f(x))(x, f(x)) pairs.

See Solution

Problem 5726

Find the limit: limx9x34110x+9+3x2\lim _{x \rightarrow \infty} \frac{\sqrt{9 x^{3}-41}}{10 x+9+3 x^{2}}. State DNE if infinite.

See Solution

Problem 5727

Find the limit: limx63x4+14x12x2+27x44\lim _{x \rightarrow \infty} \frac{63 x^{4}+14 x}{-12 x^{2}+27 x^{4}-4}. If infinite, state DNE.

See Solution

Problem 5728

Find the value of xx that minimizes the average cost function for C(x)=50000+1.6x+20x2C(x)=50000+1.6x+20x^{2}, where 1x2731 \leq x \leq 273.

See Solution

Problem 5729

Find the limit: limx20x416x35x320x4+74x\lim _{x \rightarrow \infty} \frac{20 x^{4}-16 x}{35 x^{3}-20 x^{4}+7-4 x}. If infinite, state DNE.

See Solution

Problem 5730

Find the absolute extrema of f(x)=3x3+81xf(x)=-3 x^{3}+81 x on [5,4][-5,4]. Provide your answer as (x,f(x))(x, f(x)).

See Solution

Problem 5731

Bestimme die Wendepunkte der Funktion f(x)=(1x2)e12x2f(x)=\left(1-x^{2}\right) \cdot e^{-\frac{1}{2} x^{2}}.

See Solution

Problem 5732

Find the tangent lines at x=2x=2 for: a. y=f(x)+g(x)y=f(x)+g(x) b. y=f(x)3g(x)y=f(x)-3g(x) c. y=2f(x)y=2f(x) Given tangents: y=5x+1y=5x+1 for ff and y=4x2y=4x-2 for gg.

See Solution

Problem 5733

Untersuchen Sie die Funktion f(x)=(1x2)e12x2f(x)=\left(1-x^{2}\right) \cdot e^{-\frac{1}{2} x^{2}} auf Maxima, Minima, Grenzwerte, Nullstellen, Ableitungen und Integrale.

See Solution

Problem 5734

Find limx2f(x)\lim _{x \rightarrow 2} f(x) for the piecewise function f(x)={2+2x if x2,1+x2 if x<2}f(x) = \{ 2 + 2x \text{ if } x \geq 2, 1 + x^2 \text{ if } x < 2 \}.

See Solution

Problem 5735

Find the absolute extrema of f(x)=3x336xf(x)=3 x^{3}-36 x on [3,7][-3,7]. Provide as (x,f(x))(x, f(x)).

See Solution

Problem 5736

Calculate the integral of the function f(x)=xex2f(x) = x e^{-x^2}.

See Solution

Problem 5737

Calculate the derivative of f(x)=ex22x2ex2f(x) = e^{-x^{2}} - 2x^{2}e^{-x^{2}}.

See Solution

Problem 5738

Find the second derivative d2ydx2\frac{d^{2} y}{d x^{2}} for the function y=3sinx+x2cosxy=3 \sin x+x^{2} \cos x.

See Solution

Problem 5739

Identify where ff^{\prime} is undefined in [4,6][-4,6] and graph the step function for the derivative of ff.

See Solution

Problem 5740

Find the derivative of f(x)=x2f(x)=x^{2}. What is f(x)=?f^{\prime}(x)=?

See Solution

Problem 5741

Find the missing parts of the derivative for h(t)=(4t2+2t)(9t38t2t)h(t)=(-4 t^{2}+2 t)(-9 t^{3}-8 t^{2}-t).

See Solution

Problem 5742

Find the derivative dydx\frac{d y}{d x} for the function y=x2x3+18y=\frac{x^{2}}{x^{3}+18}.

See Solution

Problem 5743

Set up an integral for the volume of the solid formed by rotating the area between y=xy=\sqrt{x}, y=0y=0, x=4x=4 about x=9x=9.

See Solution

Problem 5744

Find the volume VV of the solid formed by rotating the area between 3x=y23x=y^2, x=0x=0, y=6y=6 around the yy-axis.

See Solution

Problem 5745

Für die Funktion f(x)=bxf(x)=b^{x} mit f(0)=1,3f^{\prime}(0)=1,3: a) Wie hängt ff^{\prime} mit ff zusammen? b) Finde bb und den Term für ff^{\prime}.

See Solution

Problem 5746

Ein Fluss verläuft in einer Senke, beschrieben durch f(x)=5x2ex+1f(x) = -5 x^{2} e^{x} + 1 für x[6;0]x \in [-6; 0].
a) Berechne den Höhenunterschied zwischen den Uferzonen.
b) Bestimme die Breite der Senke einen Meter unterhalb der Wasseroberfläche.
c) Deute f(x+3)=f(x)f(x+3)=f(x) und finde eine Lösung.
d) Leite f(x)f^{\prime}(x) aus f(x)f(x) ab.
e) Berechne die Wassertiefe an der tiefsten Stelle.

See Solution

Problem 5747

Find the missing part of the derivative for k(x)=(14x2)6k(x)=(-1-4 x^{2})^{6}: k(x)=6(14x2)5?k^{\prime}(x)=6(-1-4 x^{2})^{5} \cdot ?

See Solution

Problem 5748

Find the missing part of the derivative for k(x)=(14x2)6k(x)=\left(-1-4 x^{2}\right)^{6}: k(x)=(6(14x2)5)?k^{\prime}(x)=\left(6\left(-1-4 x^{2}\right)^{5}\right) \cdot ?

See Solution

Problem 5749

Does the curve y=2x213x+5y=2 x^{2}-13 x+5 have a tangent with slope -1? Find the equation of the tangent line and point of tangency.

See Solution

Problem 5750

Find the correct derivative of f(x)=(5x+4)6f(x)=(\sqrt{5 x}+4)^{6}.

See Solution

Problem 5751

Find the derivative of f(x)=9x109x3+12x2+10x3f(x)=9 x^{-10}-9 x^{-3}+12 x^{-2}+10 x^{3}. What is f(x)f^{\prime}(x)?

See Solution

Problem 5752

Differentiate f(x)=(3+2x)5(4+2x3)2f(x)=\frac{(3+2x)^{5}}{(4+2x^{3})^{2}} and find f(1)f^{\prime}(1). Provide the exact value.

See Solution

Problem 5753

Find the missing part of the derivative for k(x)=(14x2)6k(x)=\left(-1-4 x^{2}\right)^{6}: k(x)=(6(14x2)5)?k^{\prime}(x)=\left(6\left(-1-4 x^{2}\right)^{5}\right) \cdot ?

See Solution

Problem 5754

Find dydx\frac{d y}{d x} for the function y=x4x5+26y=\frac{x^{4}}{x^{5}+26}.

See Solution

Problem 5755

Find the missing part of the derivative for h(t)=(7t3+2t2)(43t)h(t)=(7 t^{3}+2 t^{2})(4-3 t). h(t)=( click for List 3t)+(43 click for List )(3)h^{\prime}(t)=(\text { click for List }-3 t)+(4-3 \text { click for List })(-3)

See Solution

Problem 5756

A firm has a cost function TC(q)=50,000+25q+0.001q2T C(q)=50,000+25 q+0.001 q^{2}. Find fixed cost FCF C, marginal cost MCM C, and MCM C at q=100q=100 and q=10,000q=10,000.

See Solution

Problem 5757

Find the derivative of the function g(x)=(3x+7)(5x+1)g(x)=(3x+7)(5x+1). What is g(x)g'(x)?

See Solution

Problem 5758

Differentiate f(x)=8x2+8x+76x2+5x+3f(x)=\frac{8 x^{2}+8 x+7}{6 x^{2}+5 x+3} and find f(0)f^{\prime}(0). Enter an exact value.

See Solution

Problem 5759

Ein Fluss fließt in einer Senke, modelliert durch f(x)=5x2ex+1f(x)=-5 x^{2} e^{x}+1 für x[6;0]x \in[-6 ; 0].
Aufgaben: a) Bestimme den Höhenunterschied zwischen den Uferzonen. b) Wie breit ist die Senke 1 m unterhalb der Wasseroberfläche? c) Deute f(x+3)=f(x)f(x+3)=f(x) und finde eine Lösung. d) Leite f(x)f^{\prime}(x) aus f(x)f(x) ab. e) Berechne die Wassertiefe an der tiefsten Stelle.

See Solution

Problem 5760

Leiten Sie die folgenden Funktionen ab und vereinfachen Sie die Ergebnisse: a) f(x)=(x+2)4f(x)=(x+2)^{4} b) f(x)=(8x+2)3f(x)=(8x+2)^{3} c) f(x)=(125x)3f(x)=\left(\frac{1}{2}-5x\right)^{3} d) f(x)=14(x25)2f(x)=\frac{1}{4}\left(x^{2}-5\right)^{2} e) f(x)=(8x7)1f(x)=(8x-7)^{-1} f) f(x)=(5x)4f(x)=(5-x)^{-4} g) f(x)=(15x3)2f(x)=(15x-3)^{-2} h) f(x)=(15x3x2)2f(x)=\left(15x-3x^{2}\right)^{-2}

See Solution

Problem 5761

Find the missing part of the derivative for k(x)=(24x3)5k(x)=\left(2-4 x^{3}\right)^{-5}: k(x)=( 固国 )(12x2)k^{\prime}(x)=(\square \text { 固国 })\left(-12 x^{2}\right)

See Solution

Problem 5762

Differentiate f(x)=(5+3x2)5(35x3)2f(x)=\frac{(5+3x^{2})^{5}}{(3-5x^{3})^{2}} and find f(1)f^{\prime}(1). What is the exact value?

See Solution

Problem 5763

Find the correct derivative of h(t)=(2x3+3x24)(5x2+2x2)h(t)=(2 x^{3}+3 x^{2}-4)(-5 x^{2}+2 x-2).

See Solution

Problem 5764

Find the correct derivative of f(x)=(4x+2)2f(x)=(\sqrt{4 x}+2)^{2}. Options include f(x)=2(4x+2)4f^{\prime}(x)=2(\sqrt{4 x}+2) \sqrt{4}, etc.

See Solution

Problem 5765

Find the tangent line equation for g(x)=(x1)3x2+15g(x)=(x-1)^{3} \sqrt{x^{2}+15} at x=1x=1, in the form y=mx+by=m x+b.

See Solution

Problem 5766

Differentiate f(x)=(2+4x)3(3+x3)5f(x)=\frac{(2+4 x)^{3}}{(-3+x^{3})^{5}} and find f(1)f^{\prime}(1). What is the exact value?

See Solution

Problem 5767

Given f(x)=x2xx1f(x)=\frac{x^{2}-x}{x-1}, determine the behavior of its derivative f(x)f^{\prime}(x) at x=1x=1.

See Solution

Problem 5768

Die Geschwindigkeit eines Flugkörpers in den ersten 7 Sekunden ist v(t)=0,1t2v(t)=0,1 t^{2}. Bestimmen Sie v(t)v'(t), skizzieren Sie vv und vv' und interpretieren Sie die Änderungsrate.

See Solution

Problem 5769

Find xx where the derivative of y=(5+35x)280xy=\frac{(5+35 x)^{2}}{80 x} equals zero.

See Solution

Problem 5770

Given f(x)=x2xx1f(x)=\frac{x^{2}-x}{x-1}, find the correct statement about its derivative f(x)f^{\prime}(x).

See Solution

Problem 5771

Produktionsfunktion P(x)=0,5x3+1,5x2+0,075x;D(P)=[0;3,05]P(x)=-0,5 x^{3}+1,5 x^{2}+0,075 x ; D(P)=[0 ; 3,05].
a) Wo wächst die Produktion? b) Wo wächst die Produktion am stärksten? c) Wo wächst die Produktionsmenge progressiv? d) Wo wächst die Produktionsmenge degressiv?

See Solution

Problem 5772

Given f(x)=x2xx1f(x)=\frac{x^{2}-x}{x-1}, which statement about f(x)f^{\prime}(x) is true at x=1x=1?

See Solution

Problem 5773

Bestimmen Sie die Stellen, an denen die Funktion die gegebene Steigung mm hat.
a) f(x)=2x3f(x)=2 x^{3} ; m=6m=6 b) f(x)=3x42f(x)=\frac{3 x^{4}}{2} ; m=48m=48 c) f(x)=4xf(x)=\frac{-4}{x} ; m=19m=\frac{1}{9} d) f(x)=x25f(x)=\frac{x^{2}}{5} ; m=10m=10 e) f(x)=3xf(x)=3 x ; m=3m=3 f) f(x)=5xf(x)=5 x ; m=3m=3 g) f(x)=3xf(x)=3 \sqrt{x} ; m=6m=6 h) f(x)=2x2f(x)=\frac{2}{x^{2}} ; m=12m=\frac{1}{2} i) f(x)=9x3f(x)=\frac{9}{x^{3}} ; m=13m=-\frac{1}{3}

See Solution

Problem 5774

Find the tangent line equation y=mx+by=m x+b for the function g(x)=x2x2+8g(x)=x^{2} \sqrt{x^{2}+8} at x=1x=-1.

See Solution

Problem 5775

Find xx where the derivative of y=(39+26x)282xy=\frac{(39+26 x)^{2}}{82 x} equals zero.

See Solution

Problem 5776

Bestimme kk für das Abkühlungsgesetz T(t)=TU+(T0Tu)ektT(t)=T_{U}+(T_{0}-T_{u}) e^{k t} mit T0=80CT_{0}=80^{\circ}C, TU=20CT_{U}=20^{\circ}C nach 30 min.

See Solution

Problem 5777

Bestimme die Stellen, an denen die Funktion die Steigung mm hat für die folgenden Funktionen:
a) f(x)=2x3;m=6f(x)=2 x^{3} ; \quad m=6 b) f(x)=3x42;m=48f(x)=\frac{3 x^{4}}{2} ; \quad m=48 c) f(x)=4x;m=19f(x)=\frac{-4}{x} ; \quad m=\frac{1}{9} d) f(x)=x25;m=10f(x)=\frac{x^{2}}{5} ; \quad m=10 e) f(x)=3x;m=3f(x)=3 x ; \quad m=3 f) f(x)=5x;m=3f(x)=5 x ; \quad m=3 g) f(x)=3x;m=6f(x)=3 \sqrt{x} ; \quad m=6 h) f(x)=2x2;m=12f(x)=\frac{2}{x^{2}} ; \quad m=\frac{1}{2} i) f(x)=9x3;m=13f(x)=\frac{9}{x^{3}} ; \quad m=-\frac{1}{3}

See Solution

Problem 5778

Bestimme die Integrale mit Flächen von Dreiecken und Rechtecken: a) 25xdx\int_{2}^{5} x \, dx, b) 11(2x+1)dx\int_{-1}^{1}(2x+1) \, dx, c) 122tdt\int_{-1}^{2}-2t \, dt, d) 042dx\int_{0}^{4}-2 \, dx, e) 50(t5)dt\int_{-5}^{0}(-t-5) \, dt.

See Solution

Problem 5779

Find the derivative of the function f(y)=(cot(y))29f(y)=(\cot (y))^{\frac{2}{9}}. What is f(y)f^{\prime}(y)?

See Solution

Problem 5780

Given y=(f(x)+5x2)4y=(f(x)+5 x^{2})^{4}, with f(1)=4f(-1)=-4 and dydx=3\frac{d y}{d x}=3 at x=1x=-1, find f(1f^{\prime}(-1. Answer exactly. f(1)= f^{\prime}(-1)=

See Solution

Problem 5781

Bestimmen Sie die Ableitung von f(x)f(x) an den gegebenen Stellen x0x_{0} für die Funktionen a) bis f).

See Solution

Problem 5782

Find f(1)f^{\prime}(-1) given y=(f(x)+5x2)4y=(f(x)+5 x^{2})^{4}, f(1)=4f(-1)=-4, and dydx=3\frac{d y}{d x}=3 at x=1x=-1. Answer: f(1)=f^{\prime}(-1)=\square

See Solution

Problem 5783

Bestimme die Ableitung der folgenden Funktionen: a) f(s)=s23sy2f(s)=s^{2}-3sy-2, b) f(x)=ax3+bx2f(x)=ax^{3}+bx^{2}, c) f(t)=ktf(t)=k-t, d) t(x)=mx+bt(x)=mx+b, e) s(t)=g2t20,3t+2s(t)=\frac{g}{2}t^{2}-0,3t+2, f) f(x)=ax4+bx3+cx2+dx+ef(x)=ax^{4}+bx^{3}+cx^{2}+dx+e.

See Solution

Problem 5784

Find the derivative dydx\frac{d y}{d x} for the function y=x3x4+1y=\frac{x^{3}}{x^{4}+1}.

See Solution

Problem 5785

Calculate the limit as xx approaches 3 from the left: limx3(xx33x29)\lim _{x \rightarrow 3^{-}}\left(\frac{x}{x-3}-\frac{3}{x^{2}-9}\right).

See Solution

Problem 5786

Find the intervals where the function f(x)={2x2 if x<1x2 if 1x22x312 if x2f(x)=\left\{\begin{array}{cc}2 x-2 & \text { if } x<1 \\ x^{2} & \text { if } 1 \leq x \leq 2 \\ 2 x^{3}-12 & \text { if } x \geq 2\end{array}\right. is continuous.

See Solution

Problem 5787

Determine where the function f(x)={x3+1x+1 if 1<x<24 if x=1ln(x1) if x2f(x)=\left\{\begin{array}{cc}\frac{x^{3}+1}{x+1} & \text { if }-1<x<2 \\ 4 & \text { if } x=-1 \\ \ln (x-1) & \text { if } x \geq 2\end{array}\right. is continuous.

See Solution

Problem 5788

Bestimme die Tangentengleichung an den Wendepunkt W(3,331,48)W(3,33 \mid 1,48) der Funktion f(x)=0,02x3+0,2x2f(x)=-0,02 \cdot x^{3}+0,2 \cdot x^{2}.

See Solution

Problem 5789

Find the missing part of the derivative for h(t)=(t2+9)(5t37t2+8)h(t)=\left(t^{2}+9\right)\left(-5 t^{3}-7 t^{2}+8\right).

See Solution

Problem 5790

Finde die Ableitungen der Funktionen und analysiere die Funktion f(x)=12x3+1.6xf(x)=-\frac{1}{2} x^{3}+1.6 x hinsichtlich:
1. Definitionsbereich
2. Symmetrie
3. Achsenschnittpunkte
4. Extrempunkte
5. Wendepunkt

See Solution

Problem 5791

Find the missing part of the derivative for k(x)=(5+4x3)4k(x)=\left(-5+4 x^{3}\right)^{-4}: k(x)=( 固园 )(12x2)k^{\prime}(x)=(\square \text { 固园 })\left(12 x^{2}\right)

See Solution

Problem 5792

Find the correct derivative of the function h(t)=(3x3+x2+2x+2)(4+5x)h(t)=(-3 x^{3}+x^{2}+2 x+2)(4+5 x).

See Solution

Problem 5793

Find the tangent line equation y=mx+by=m x+b for the function g(x)=(x+2)3x23g(x)=(x+2)^{3} \sqrt{x^{2}-3} at x=2x=-2.

See Solution

Problem 5794

Find the value of xx where dydx=0\frac{d y}{d x}=0 for y=16x2+128(3x)2y=\frac{16}{x^{2}}+\frac{128}{(3-x)^{2}}.

See Solution

Problem 5795

Differentiate and simplify these functions:
a) f(x)=1(x1)2f(x)=\frac{1}{(x-1)^{2}}, b) f(x)=1(3x1)2f(x)=\frac{1}{(3x-1)^{2}}, c) f(x)=3(x1)2f(x)=\frac{3}{(x-1)^{2}}, d) f(x)=13(x1)2f(x)=\frac{1}{3(x-1)^{2}}, e) f(x)=e7xf(x)=e^{7x}, f) f(x)=e2x2+xf(x)=e^{2x^{2}}+x, g) f(x)=4e34xf(x)=4e^{3-4x}, h) f(x)=12e13x+2f(x)=\frac{1}{2}e^{\frac{1}{3}x+2}.

See Solution

Problem 5796

a) Vervollständigen Sie die Ableitungen: f(x)=exf^{\prime}(x)=\triangle e^{x} und g(x)=(13x)g^{\prime}(x)=\square(1-3 x)^{\triangle}. b) Finden Sie den Fehler in den Ableitungen: f(x)=4(52x)3f^{\prime}(x)=4(5-2 x)^{3} und g(x)=4e1xg^{\prime}(x)=-4 e^{1-x}.

See Solution

Problem 5797

3 a) Vervollständigen Sie: f(x)=2ex;f(x)=ex;g(x)=0,5(13x)4;g(x)=(13x)f(x)=2 e^{x} ; f^{\prime}(x)=\triangle e^{x} ; g(x)=0,5(1-3 x)^{4} ; g^{\prime}(x)=\square(1-3 x)^{\triangle} b) Wo ist der Fehler? f(x)=(52x)4;f(x)=4(52x)3;g(x)=4e1x;g(x)=4e1x f(x)=(5-2 x)^{4} ; f^{\prime}(x)=4(5-2 x)^{3} ; g(x)=4 e^{1-x} ; g^{\prime}(x)=-4 e^{1-x}

See Solution

Problem 5798

Berechne die Flächeninhaltsfunktion A0(x)\mathrm{A}_{0}(\mathrm{x}) für f(x)=13x2f(x)=\frac{1}{3} x^{2}. Bestimme die Flächeninhalte für [0;1][0;1], [0;2][0;2] und [1;2][1;2].

See Solution

Problem 5799

Approximate sugar production when price is 28 cents, using f(30)=6700f(30) = 6700 and f(30)=50f'(30) = 50 with linearization.

See Solution

Problem 5800

Monopoly profit maximization: Given TC(q)=q+0.02q2TC(q)=q+0.02q^{2} and q+20p=300q+20p=300, find (a) inverse demand, (b) profit function, (c) optimal qmq_{m}, max profit, (d) price.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord