Calculus

Problem 5901

Determine the limit as xx approaches infinity for 10x18x18+log4x\frac{-10 x^{18}}{x^{18}+\log _{4} x}. Options: 0, does not exist, or exists and not 0.

See Solution

Problem 5902

Find the horizontal asymptotes of the function f(x)=6xex3x2x2f(x)=\frac{6 x-e^{x}}{3 x-2 x^{2}}.

See Solution

Problem 5903

Evaluate the limit: limx012sin2(x)9sin(x)5x\lim _{x \rightarrow 0} \frac{12 \sin ^{2}(x)-9 \sin (x)}{5 x}

See Solution

Problem 5904

Evaluate the limit: limx010x9cos(x)9\lim _{x \rightarrow 0} \frac{-10 x}{9 \cos (x)-9}.

See Solution

Problem 5905

Evaluate the limit: limx03sin(x)4x+5\lim _{x \rightarrow 0} \frac{-3-\sin (x)}{4 x+5}

See Solution

Problem 5906

Find the limit as xx approaches 0 for the expression 3sin(x)5x2\frac{3 \sin (x)}{5 x^{2}}.

See Solution

Problem 5907

Is the function f(x)f(x) continuous at x=2x=-2 where f(x)={2+2x2,x<262x,x2f(x)=\begin{cases} 2+2 x^{2}, & x<-2 \\ 6-2 x, & x \geq-2 \end{cases}?

See Solution

Problem 5908

Is the function f(x)f(x) continuous at x=2x=2 where f(x)={195x2,x>25x,x2f(x)=\left\{\begin{array}{ll}19-5 x^{2}, & x>-2 \\ -5-x, & x \leq-2\end{array}\right.?

See Solution

Problem 5909

Check if the function f(x)f(x) is continuous at x=3x=-3, where f(x)=11x2f(x)=11-x^{2} for x>3x>-3 and f(x)=11+3xf(x)=11+3x for x3x \leq -3.

See Solution

Problem 5910

Find dVdv\frac{d V}{d v} for V(v)=BlvV(v)=-B l v with B=8B=8, l=0.8l=0.8. Then find dVdt\frac{d V}{d t} if v=4t+9v=4t+9.

See Solution

Problem 5911

A balloon's volume increases at 8 m3/min8 \mathrm{~m}^{3}/\mathrm{min}. Find the radius growth rate when the diameter is 2 m2 \mathrm{~m}.

See Solution

Problem 5912

Calculate the half-life of cobalt-60 if its mass decreased from 0.800 g0.800 \mathrm{~g} to 0.100 g0.100 \mathrm{~g} in 15.75 years.

See Solution

Problem 5913

Find the limit: limx02sinxsin2xxcosx\lim _{x \rightarrow 0} \frac{2 \sin x - \sin 2x}{x \cos x}.

See Solution

Problem 5914

Find the limit: limx0sinxtanx\lim _{x \rightarrow 0} \frac{\sin x}{\tan x}.

See Solution

Problem 5915

Find when the object changes direction given v(t)=8(t5)2(t3)3(t2)v(t)=8(t-5)^{2}(t-3)^{3}(t-2). Options: t=0,t=2,t=3,t=5t=0, t=2, t=3, t=5 or none.

See Solution

Problem 5916

Using Ohm's Law V=IRV=IR with V=19V=19, find the average rate of change of II from R=7R=7 to R=7.1R=7.1, and the rates at R=7R=7 and I=1.6I=1.6.

See Solution

Problem 5917

Find when the object changes direction given v(t)=8(t5)2(t3)3(t2)v(t)=8(t-5)^{2}(t-3)^{3}(t-2). Options: t=2,t=3,t=5t=2, t=3, t=5.

See Solution

Problem 5918

Find the limit: limx01cosxtanx\lim _{x \rightarrow 0} \frac{1-\cos x}{\tan x}.

See Solution

Problem 5919

Find the limit: limx01cos2xx2\lim _{x \rightarrow 0} \frac{1-\cos ^{2} x}{x^{2}}.

See Solution

Problem 5920

Find θ(t)\theta^{\prime}(t) for the minimum angle between clock hands at 90 minutes. Answer in radians per minute.

See Solution

Problem 5921

Find the slope of the tangent line for f(x)=x211f(x)=x^{2}-11 at x=4x=-4.

See Solution

Problem 5922

Find the slope of the tangent line for f(x)=4x2+10x6f(x)=-4 x^{2}+10 x-6 at x=8x=8.

See Solution

Problem 5923

Calculate the rate of change of BSA =hm60=\frac{\sqrt{h m}}{60} for constant height h=181h=181 with respect to mass mm. What are the units? Find the rate at m=72m=72 and m=85m=85. BSA increases less rapidly with higher or lower mass?

See Solution

Problem 5924

Find the slope of the tangent line for the function f(x)=x2+2f(x)=x^{2}+2 at the point where x=8x=8.

See Solution

Problem 5925

Find the tangent line equation for the function f(x)=4x2+6x2f(x)=4 x^{2}+6 x-2 at x=6x=6.

See Solution

Problem 5926

Evaluate the integral x1xdx\int \frac{x}{\sqrt{1-x}} \, dx using the substitution u=1xu=\sqrt{1-x}.

See Solution

Problem 5927

Find the derivative dydx\frac{d y}{d x} using implicit differentiation for the equation 8x+y=68 \sqrt{x}+\sqrt{y}=6.

See Solution

Problem 5928

Calculate the integral from 0 to 1 of x21+7x33\frac{x^{2}}{\sqrt[3]{1+7 x^{3}}}. Provide your answer as a single fraction.

See Solution

Problem 5929

Find the first, second, and third derivatives of y(x)=1549+xy(x)=\frac{15}{49+x}. Show your work for y(x)y'(x), y(x)y''(x), and y(x)y'''(x).

See Solution

Problem 5930

Ein Körper fällt frei. a. Bestimme die Ableitung von s(t)=12gt2s(t)=\frac{1}{2} g t^{2} und interpretiere sie. b. Berechne die Aufprallgeschwindigkeit aus 100 m100 \mathrm{~m}.

See Solution

Problem 5931

Find the third derivative of y(x)=(3x2+6)(4x3+11)y(x)=(3 x^{2}+6)(4 x^{3}+11). What is y(x)y^{\prime \prime \prime}(x)?

See Solution

Problem 5932

Leiten Sie die folgenden Funktionen ab: a) f(x)=3x2e4xf(x)=3 x^{2} e^{-4 x} b) f(x)=12x3e2xf(x)=\frac{1}{2} x^{3} e^{2 x}

See Solution

Problem 5933

Differentiate the function f(x)=cos(ln(4x))f(x)=\cos (\ln (4 x)).

See Solution

Problem 5934

Find the rate of change of yy with respect to xx at x=π6x=\frac{\pi}{6} for y=cscx4cosxy=\csc x-4 \cos x.

See Solution

Problem 5935

Evaluate the integral: 01x32x2+x4x+1dx\int_{0}^{1} \frac{x^{3}-2 x^{2}+x}{\sqrt{4 x+1}} d x

See Solution

Problem 5936

Find the derivatives of these functions: 1. y=sin6x7y=\sin \frac{6 x}{7}, 2. y=sinxcosxy=\frac{\sin x}{\cos x}, 3. y=tanx1secxy=\frac{\tan x}{1-\sec x}.

See Solution

Problem 5937

Find the derivatives of these functions: 1. y=sin3x2y=\sin \frac{3 x}{2}, 2. y=cos2x33y=\cos \frac{2 x^{3}}{3}, 3. y=tan(x5)y=\tan \left(x^{5}\right).

See Solution

Problem 5938

Find the function f(x)f(x) and the value of aa from the derivative expression limh08+h32h\lim_{h \to 0} \frac{\sqrt[3]{8+h}-2}{h}.

See Solution

Problem 5939

Find the derivatives of these functions: 1. y=sin6x7y=\sin \frac{6 x}{7}, 2. y=sinxcosxy=\frac{\sin x}{\cos x}, 3. y=tanx1secxy=\frac{\tan x}{1-\sec x}.

See Solution

Problem 5940

Find the function f(x)f(x) and the point aa where the derivative is given by limx716+x3x+7\lim _{x \rightarrow-7} \frac{\sqrt{16+x}-3}{x+7}.

See Solution

Problem 5941

Find the derivative of Γf(x)=1.5e130x1+15+e130x+125\Gamma f(x)=1.5 \cdot e^{\frac{1}{30} x-1}+1^{5}+e^{-\frac{1}{30} x+1}-25.

See Solution

Problem 5942

Find the derivative of y=sec2(3x)y=\sec^{2}(3x).

See Solution

Problem 5943

Find the function f(x)f(x) and the value of aa given the derivative at x=ax=a as limh08+h32h\lim_{h \to 0} \frac{\sqrt[3]{8+h}-2}{h}.

See Solution

Problem 5944

Given continuous functions f(x)f(x), g(x)g(x), and h(x)h(x) where g(1)=3g(-1)=3, h(1)=2h(-1)=2, and limx1(f(x))22g(x)3h(x)=5\lim _{x \rightarrow-1} \frac{(f(x))^{2}-2 g(x)}{3 h(x)}=5, find f(1)f(-1) if f(x)f(x) is odd and f(1)>0f(1)>0.

See Solution

Problem 5945

Find the function f(x)f(x) if its derivative at x=ax=a is limh027+h33h\lim_{h \to 0} \frac{\sqrt[3]{27+h}-3}{h}.

See Solution

Problem 5946

Find the derivatives of these functions: 1. y=1+sinx1+cosxy=\frac{1+\sin x}{1+\cos x} 2. y=sec23xy=\sec ^{2} 3 x

See Solution

Problem 5947

Find f(1)f(-1) given that g(1)=4g(-1)=4, h(1)=5h(-1)=5, limx1(f(x))25g(x)4h(x)=19\lim_{x \to -1} \frac{(f(x))^2 - 5g(x)}{4h(x)}=19, and f(x)f(x) is odd with f(1)>0f(1)>0.

See Solution

Problem 5948

Bestimme die Steigung und den Steigungswinkel von ff an x0x_{0} für die Funktionen a) bis f) mit den gegebenen x0x_{0}.

See Solution

Problem 5949

Find the function f(x)f(x) and the point aa where the derivative is limx59+x2x+5\lim _{x \rightarrow -5} \frac{\sqrt{9+x}-2}{x+5}.

See Solution

Problem 5950

Finde die Wendetangente der Funktion f(x)=5(x+1)exf(x) = 5(x+1)e^x.

See Solution

Problem 5951

Find the second derivative yy^{\prime \prime} of the function y=tan3xy=\tan 3x.

See Solution

Problem 5952

Leiten Sie die Funktionen ab: a) f(x)=4(2x+1)2f(x)=\frac{4}{(2 x+1)^{2}} b) f(x)=x(3x+2)2f(x)=\frac{x}{(3 x+2)^{2}}

See Solution

Problem 5953

Evaluate the integral 18sinx+1x+1dx\int_{1}^{8} \frac{\sin \sqrt{x+1}}{\sqrt{x+1}} d x using the substitution x+1=t\sqrt{x+1}=t.

See Solution

Problem 5954

Bestimmen Sie die Ableitungsfunktionen für: a) f(x)=5xex2f(x)=5 x \cdot e^{x^{2}}, b) f(x)=cos(x32x)f(x)=\cos \left(x^{3}-2 x\right), c) f(x)=3x+1x31f(x)=\frac{3 x+1}{x^{3}-1}.

See Solution

Problem 5955

Find the limit: limh08+h32h\lim _{h \rightarrow 0} \frac{\sqrt[3]{8+h}-2}{h}.

See Solution

Problem 5956

Gegeben ist die Funktion f(x)=x32xf(x)=x^{3}-2 x. Bestimmen Sie die Tangente bei P(0f(0))P(0 | f(0)), Punkte mit Steigung 1 und 7, und ob Tangenten parallel zu g:y=10x3g: y=10 x-3 sind.

See Solution

Problem 5957

Bestimmen Sie die Ableitungsfunktionen für die folgenden Funktionen: a) f(x)=5xex2f(x)=5 x \cdot e^{x^{2}}, b) f(x)=cos(x32x)f(x)=\cos(x^{3}-2x), c) f(x)=3x+1x31f(x)=\frac{3x+1}{x^{3}-1}.

See Solution

Problem 5958

Finde die Gleichung der Wendetangente für f(x)=5(x+1)ex2f(x)=5 \cdot(x+1) \cdot e^{-\frac{x}{2}}.

See Solution

Problem 5959

Gegeben ist die Funktion f(x)=x32xf(x)=x^{3}-2 x.
a) Finde die Tangentengleichung bei P(0,f(0))P(0, f(0)). b) Bestimme die Punkte mit Steigung 1 und 7. c) Gibt es Punkte, wo Tangenten parallel zu y=10x3y=10 x-3 sind?

See Solution

Problem 5960

Eine Flüssigkeit kühlt bei 20C20^{\circ}C ab.
a) Welche Art von Abkühlungsprozess ist das?
b) Was war die Anfangstemperatur?
c) Nach 3 Minuten war die Temperatur 73C73^{\circ}C. Wann sinkt die Temperatur erstmals um weniger als 11^{\circ} pro Minute?

See Solution

Problem 5961

Ein Ball wird mit v0=20msv_{0}=20 \frac{\mathrm{m}}{\mathrm{s}} nach oben geworfen. Berechne Wurfzeit TT, Steigzeit tst_{s}, Steighöhe sHs_{H} und Zeitpunkte t1,t2t_{1}, t_{2} bei s1=5 ms_{1}=5 \mathrm{~m}.

See Solution

Problem 5962

Leiten Sie die Funktionen ab: a) f(x)=31+exf(x)=\frac{3}{1+e^{x}} b) f(x)=41exf(x)=\frac{4}{1-e^{-x}}

See Solution

Problem 5963

A bucket catches water at 0.5 cm30.5 \mathrm{~cm}^{3} per minute. Find dhdt\frac{dh}{dt} when h=10 cmh=10 \mathrm{~cm} from V=πh3(h2+3h+300)V=\frac{\pi h}{3}(h^{2}+3h+300).

See Solution

Problem 5964

Solve the equation xy=y+xe2y/xx y' = y + x e^{2y/x} using the substitution v=y/xv = y/x. Find yy in terms of xx.

See Solution

Problem 5965

Find the rate of increase of a cube's edge length when its volume grows at 144 cm3/s144 \mathrm{~cm}^{3}/\mathrm{s} and edge length is 4 cm4 \mathrm{~cm}.

See Solution

Problem 5966

Zeigen Sie, dass FF eine Stammfunktion von 6x2+46x^2 + 4 ist, und berechnen Sie dann 3(6x2+4)dx\int^{3}(6x^2 + 4) dx.

See Solution

Problem 5967

Sand is dumped at 1.2 m3/min1.2 \mathrm{~m}^{3} / \mathrm{min} forming a cone. Find height growth rate when height is 3 m3 \mathrm{~m}.

See Solution

Problem 5968

Zeigen Sie, dass F eine Stammfunktion ist und berechnen Sie die Integrale: a) 13(6x2+4)dx;F:x2x3+4x1\int_{1}^{3}(6 x^{2}+4) dx ; F: x \mapsto 2 x^{3}+4 x-1 b) 44(x3+3x)dx;F:x14x4+1,5x2\int_{-4}^{4}(-x^{3}+3 x) dx ; F: x \mapsto -\frac{1}{4} x^{4}+1,5 x^{2}

See Solution

Problem 5969

Berechne die Integrale und zeichne die Graphen von f\mathrm{f} im Intervall. a) 12(x2+1)dx\int_{1}^{2}(x^{2}+1) dx b) 12(x2)dx\int_{-1}^{2}(x-2) dx c) 03(212x2)dx\int_{0}^{3}(2-\frac{1}{2} x^{2}) dx d) 04xdx\int_{0}^{4} \sqrt{x} dx e) 11x3dx\int_{-1}^{1} x^{3} dx f) 12(x34x)dx\int_{-1}^{2}(x^{3}-4x) dx

See Solution

Problem 5970

Sand is dumped at 1.2 m3/min1.2 \mathrm{~m}^{3}/\mathrm{min} forming a cone. Find the height growth rate when the height is 3 m3 \mathrm{~m}.

See Solution

Problem 5971

A toy car rolls off a 1.35 m table at 2.5 m/s. How long until it hits the ground?

See Solution

Problem 5972

Find fs\frac{\partial f}{\partial s} for f(x,y,z)=xyzf(x,y,z)=xyz where x=sinscostx=\sin s \cos t, y=sinssinty=\sin s \sin t, z=cossz=\cos s at s=π4,t=π6s=\frac{\pi}{4}, t=\frac{\pi}{6}. Round to three decimal places.

See Solution

Problem 5973

Find the tangent line at x=3x=3 using g(3)=17g(3)=17 and g(3)=1g'(3)=-1 to approximate g(3.2)g(3.2).

See Solution

Problem 5974

How far from the cliff base will your keys land if thrown horizontally at 7.5 m/s7.5 \mathrm{~m/s} from a height of 70.8 m70.8 \mathrm{~m}?

See Solution

Problem 5975

Bestimmen Sie die Tangentengleichung von f(x)=12x23x+1f(x)=\frac{1}{2} x^{2}-3 x+1 an den Punkten: a) P(43)P(4|-3), b) P(11,5)P(1|-1,5), c) P(421)P(-4|21), d) P(01)P(0|1).

See Solution

Problem 5976

Boyle's Law states PV=CPV=C. Given V=600 cm3V=600 \mathrm{~cm}^3, P=150kPaP=150 \mathrm{kPa}, and dPdt=20kPa/min\frac{dP}{dt}=20 \mathrm{kPa/min}, find dVdt\frac{dV}{dt}.

See Solution

Problem 5977

Find the second derivative d2ydx2\frac{d^{2} y}{d x^{2}} for the equation 11x2+y2=811x^{2} + y^{2} = 8 using Implicit Differentiation.

See Solution

Problem 5978

Find the second derivative d2ydx2\frac{d^{2} y}{d x^{2}} for the equation 2x+4y=sin(y)2 x + 4 y = \sin(y).

See Solution

Problem 5979

Find the second derivative d2ydx2\frac{d^{2} y}{d x^{2}} for the equation cosy+5x=5y\cos y + 5 x = 5 y.

See Solution

Problem 5980

Find the first three derivatives of f(x)f(x) and the general formula for the derivative if f(x)=1xf(x)=\frac{1}{x}.

See Solution

Problem 5981

Calculate the limit: limx0tanxsinxxcosx\lim _{x \rightarrow 0} \frac{\tan x-\sin x}{x \cos x}.

See Solution

Problem 5982

Find the limit: limx01cosxtanx\lim _{x \rightarrow 0} \frac{1-\cos x}{-\tan x}.

See Solution

Problem 5983

Find the rate of change of respiration R(g,t)R(g, t) for an amoeba at (1,0,π2)(-1,0, \pi^{2}) using given gg and tt formulas.

See Solution

Problem 5984

Trouver la vitesse instantanée de l'objet à t=7t=7 pour la position y(t)=16ty(t)=\frac{1}{6 t}. Vt=7=V_{t=7}=

See Solution

Problem 5985

Find the second derivative d2ydx2\frac{d^{2} y}{d x^{2}} for the equation xy+y2=17x y+y^{2}=17.

See Solution

Problem 5986

Gegeben ist die Funktion fa(x)=3axf_{a}(x)=\sqrt{3-a x} mit a>0a>0. Bestimmen Sie die Definitionsmenge, die Ableitung fa(x)f_{a}^{\prime}(x) und den Wert von aa, sodass fa(2)=0,5f_{a}^{\prime}(2)=-0,5.

See Solution

Problem 5987

Find the value of fy\frac{\partial f}{\partial y} for the function f(x,y,z)f(x,y,z) at the point (1,2,3)(1,2,3).

See Solution

Problem 5988

Calculez la vitesse instantanée de l'objet à t=at=a pour y(t)=16ty(t)=\frac{1}{6 t}, avec a>0a>0. Vt=a=V_{t=a}=

See Solution

Problem 5989

Dérivez g(x)=x4+1x4g(x)=x^{4}+\frac{1}{x^{4}} et trouvez les valeurs de xx pour lesquelles g(x)=0g^{\prime}(x)=0. Séparez par des virgules. x=x=

See Solution

Problem 5990

Bestimmen Sie die Intervalle, in denen f(x)=x3+xf(x)=x^{3}+x monoton wachsend oder fallend ist, und untersuchen Sie das Krümmungsverhalten.

See Solution

Problem 5991

Find the Taylor series for f(x)=3x45x3+x2100f(x)=3x^{4}-5x^{3}+x^{2}-100 at x=2x=-2.

See Solution

Problem 5992

Graph a function with: domain (,)(-\infty, \infty), f(2)=1f(2)=1, limits at 2 and -1, no asymptotes.

See Solution

Problem 5993

Berechne die Integrale: a) 04πcosxdx\int_{0}^{4 \pi} \cos x \, dx b) 21(2x3+3x3)dx\int_{-2}^{-1} (-2 x^{-3} + 3 x^{-3}) \, dx

See Solution

Problem 5994

Find xx where the derivative f(x)=0f^{\prime}(x)=0 for f(x)=xx2+64f(x)=\frac{x}{x^{2}+64}. Answers: x=x=

See Solution

Problem 5995

Estimate the cost of making 71 bicycles if C(70)=5000C(70)=5000 and C(70)=65C'(70)=65.

See Solution

Problem 5996

Estimate the cost of manufacturing 71 bicycles per day if C(5000)C(5000) and C(70)=65C'(70) = 65.

See Solution

Problem 5997

Bestimmen Sie die Koordinaten von PP für maximalen Flächeninhalt des Rechtecks unter den Funktionen:
a) f(x)=412x3f(x)=4-\frac{1}{2} x^{3} für x[0;2]x \in[0 ; 2]
b) f(x)=1x2f(x)=\frac{1}{x^{2}} für x[1;3]x \in[1 ; 3]
c) f(x)=4xf(x)=\sqrt{4-x} für x[0;4]x \in[0 ; 4]

See Solution

Problem 5998

Berechnen Sie die 1. Ableitung von ff an x0x_0 als Grenzwert des Differenzenquotienten für: a) f(x)=0,25x2f(x)=0,25 x^{2}, x0=2x_{0}=2 b) f(x)=0,5x21f(x)=0,5 x^{2}-1, x0=1x_{0}=-1

See Solution

Problem 5999

A rectangle's width increases by 6 in/sec and length by 2 in/sec. Find the area increase rate at width 3 in and length 9 in. Let W(t)W(t) and L(t)L(t) be width and length.

See Solution

Problem 6000

Differentiate y=6π+4x2+5y=\frac{6}{\pi}+\frac{4}{x^{2}+5} with respect to xx and simplify your answer.
y= y^{\prime}=

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord