Calculus

Problem 23901

Find the absolute max and min of the function f(x)=exsinxf(x)=e^{x} \sin x on the interval [0,2π][0, 2 \pi].

See Solution

Problem 23902

Evaluate the integral xcos(4x2)dx\int x \cos(4 x^{2}) \, dx with the substitution u=4x2u=4 x^{2}.

See Solution

Problem 23903

Evaluate the integral xcos(4x2)dx\int x \cos(4 x^{2}) dx with the substitution u=4x2u=4 x^{2}. What is the result?

See Solution

Problem 23904

Find the work done in stretching a spring 70 cm with a force of 800 N. (Remember to consider the units.)

See Solution

Problem 23905

Find relative extrema of gg where g(x)=(5x)x3g^{\prime}(x)=(5-x) x^{-3} for x>0x>0 and justify your answers.

See Solution

Problem 23906

Find the derivative of the function f(t)=ln(8t)8t2f(t)=\frac{\ln (8 t)}{8 t-2}: f(t)=f^{\prime}(t)=

See Solution

Problem 23907

Find the length and width of a rectangle on the xx-axis under the curve y=36x2y=36-x^{2} for maximum area.

See Solution

Problem 23908

Evaluate the integral using substitution: 01dx9x2\int_{0}^{1} \frac{d x}{\sqrt{9-x^{2}}}.

See Solution

Problem 23909

Find f(x)f'(x) and f(3)f'(-3) if f(x)=0xt6dtf(x)=\int_{0}^{x} t^{6} dt.

See Solution

Problem 23910

Determine if the mutual fund amount m(t)=sin(e3)tm(t)=\sin \left(\frac{e}{3}\right)^{t} is increasing or decreasing at t=4t=4 years. Justify.

See Solution

Problem 23911

Evaluate the integral using substitution: π/6π/2cotxcsc4xdx\int_{\pi / 6}^{\pi / 2} \cot x \csc^{4} x \, dx.

See Solution

Problem 23912

Find f(x)f^{\prime \prime}(x) if f(x)=0x(t3+5t2+2)dtf(x)=\int_{0}^{x}(t^{3}+5 t^{2}+2) dt.

See Solution

Problem 23913

A 2 kg ball is dropped from 15 meters. What is its impact speed? Ignore air resistance. A. 12.1 m/s B. 17.1 m/s C. 147 m/s D. 294 m/s

See Solution

Problem 23914

Evaluate the integral: etcot(et2)dt\int e^{t} \cot \left(e^{t}-2\right) d t

See Solution

Problem 23915

Find the horizontal and vertical asymptotes of f(x)=2x21x2+3f(x) = \frac{2x^2 - 1}{x^2 + 3} using limits.

See Solution

Problem 23916

Find tangent line equations to y=x1x+1y=\frac{x-1}{x+1} parallel to x2y=3x-2y=3. List answers as comma-separated equations.

See Solution

Problem 23917

Maximize volume of a file from a 10-in by 18-in sheet. What height maximizes the volume?

See Solution

Problem 23918

Evaluate the integral: x2x3+9dx\int x^{2} \sqrt{x^{3}+9} \, dx

See Solution

Problem 23919

Show that the equation 2x5+9x47x313x=0-2 x^{5}+9 x^{4}-7 x^{3}-13 x=0 has a solution in [3,4][3,4] using the Intermediate Value Theorem. Then, use Newton's method to find the solution to six decimal places.

See Solution

Problem 23920

Find the horizontal and vertical asymptotes of f(x)=2x+1x2xf(x) = \frac{2x + 1}{x^2 - x} using limits to describe the behavior.

See Solution

Problem 23921

A rock is thrown on Mars with height H=13t1.86t2H=13t-1.86t^{2}. Find velocities after 1s and at t=at=a, time to hit ground, and impact velocity.

See Solution

Problem 23922

Evaluate the integral 2x(x2+8)6dx\int 2 x\left(x^{2}+8\right)^{6} dx using the substitution u=x2+8u=x^{2}+8.

See Solution

Problem 23923

Evaluate the integral using symmetry: x/2π/2sin53xdx\int_{-x / 2}^{\pi / 2} \sin ^{5} 3 x \, dx.

See Solution

Problem 23924

Calculate the work done in moving an electron from (2,4)(-2,4) to (1,4)(1,4) with one fixed at (2,4)(2,4) under inverse square force.

See Solution

Problem 23925

Find the integral 16xsin(8x2+1)dx\int -16 x \sin(8 x^{2}+1) \, dx using the substitution u=8x2+1u=8 x^{2}+1.

See Solution

Problem 23926

Find the integral (7x6+2)x7+2xdx\int\left(7 x^{6}+2\right) \sqrt{x^{7}+2 x} \, dx using u=x7+2xu=x^{7}+2 x and verify by differentiation.

See Solution

Problem 23927

Find an antiderivative of e8x3e^{8 x-3} and verify by differentiating your answer. e8x3dx=\int e^{8 x-3} \mathrm{dx}=\square

See Solution

Problem 23928

Does the function f(x)=xx+2f(x)=\frac{x}{x+2} meet the Mean Value Theorem conditions on [1,4][1,4]? Find cc if it does. c=c=

See Solution

Problem 23929

Determine the horizontal asymptote of the function f(x)=6x2x2+1f(x)=\frac{6 x}{2 x^{2}+1}.

See Solution

Problem 23930

Differentiate implicitly to find dxdy\frac{d x}{d y} for the equation x5y2x3y+3xy3=0x^{5} y^{2}-x^{3} y+3 x y^{3}=0.

See Solution

Problem 23931

Find the average value of f(x)=2x+6f(x)=-2x+6 over the interval [6,3][-6,3].

See Solution

Problem 23932

Find the rate of change dAdt\frac{d A}{d t} when A=5A=5 and dBdt=3\frac{dB}{dt}=3 for A3+B3=133A^{3}+B^{3}=133.

See Solution

Problem 23933

Evaluate the integral 7x+5dx\int \sqrt{7 x+5} \, dx using the substitution u=ax+bu=ax+b.

See Solution

Problem 23934

A 10 ft ladder leans against a wall. If it slides away at 0.7 ft/s, find the angle's rate of change (in rad/s) when 6 ft from the wall.

See Solution

Problem 23935

Evaluate the integral of csc2(8θ+4)dθ\csc^{2}(8\theta + 4) \, d\theta.

See Solution

Problem 23936

Evaluate the integral using a change of variables: x15ex16dx\int x^{15} e^{x^{16}} d x.

See Solution

Problem 23937

A circle's radius increases by 4 mm4 \mathrm{~mm}/s. Find the area change rate when the radius is 25 mm25 \mathrm{~mm}. Area change: \square (round to nearest thousandth).

See Solution

Problem 23938

Evaluate the integral: 4x478x5dx\int \frac{4 x^{4}}{\sqrt{7-8 x^{5}}} d x using a change of variables.

See Solution

Problem 23939

Explain why the function is discontinuous at x=4x = 4. Possible reasons: f(4)f(4) defined, limx4f(x)\lim_{x \to 4} f(x) finite but not equal; f(4)f(4) undefined; limx4f(x)\lim_{x \to 4} f(x) does not exist; limx4+f(x)\lim_{x \to 4^{+}} f(x) and limx4f(x)\lim_{x \to 4^{-}} f(x) finite but not equal; none of the above.

See Solution

Problem 23940

Evaluate the integral (x2+x)9(2x+1)dx\int\left(x^{2}+x\right)^{9}(2 x+1) dx using a change of variables or a table.

See Solution

Problem 23941

Evaluate the integral: 0694x+1dx\int_{0}^{6} 9 \sqrt{4 x+1} \, dx.

See Solution

Problem 23942

Evaluate the integral: 9dx3681x2\int \frac{9 d x}{\sqrt{36-81 x^{2}}}.

See Solution

Problem 23943

Evaluate the integral: dx7x+8\int \frac{d x}{\sqrt{7 x+8}} with the substitution u=7x+8u=7 x+8.

See Solution

Problem 23944

Evaluate the integral using a change of variables: 113x4dx\int \frac{1}{13 x-4} d x.

See Solution

Problem 23945

Find dydt\frac{d y}{d t} when y=x3+1y=x^{3}+1, dxdt=4\frac{d x}{d t}=4, and x=5x=5. Simplify dydt=\frac{d y}{d t}=\square.

See Solution

Problem 23946

Evaluate the integral 022x(x2+4)3dx\int_{0}^{2} \frac{2 x}{(x^{2}+4)^{3}} dx using a variable change or a table.

See Solution

Problem 23947

Evaluate the integral: 9dx3681x2\int \frac{9 d x}{\sqrt{36-81 x^{2}}}.

See Solution

Problem 23948

Evaluate the integral dx7x+8\int \frac{d x}{\sqrt{7 x+8}} using the substitution u=7x+8u=7 x+8.

See Solution

Problem 23949

Calculate the integral: dx7x+8\int \frac{d x}{\sqrt{7 x+8}}

See Solution

Problem 23950

Evaluate the integral 08p36+p2dp\int_{0}^{8} \frac{p}{\sqrt{36+p^{2}}} d p using a change of variables or a table.

See Solution

Problem 23951

Calculate the area between the curve f(x)=xsin(x2)f(x)=x \sin \left(x^{2}\right) and the xx-axis from x=0x=0 to x=πx=\sqrt{\pi}.

See Solution

Problem 23952

Trouvez les extrêmes relatifs et absolus des fonctions suivantes sur les intervalles donnés :
1. f(x)=x39x2+24x2,[0,5]f(x)=x^{3}-9 x^{2}+24 x-2,[0,5]
2. f(x)=x1x,[1,1]f(x)=x \sqrt{1-x},[-1,1]
3. f(x)=3x4x2+1,[2,2]f(x)=\frac{3 x-4}{x^{2}+1},[-2,2]
4. f(x)=x2+x+1,[2,1]f(x)=\sqrt{x^{2}+x+1},[-2,1]
5. f(x)=x+2cosx,[π,π]f(x)=x+2 \cos x,[-\pi, \pi]
6. f(x)=x2ex,[1,3]f(x)=x^{2} e^{-x},[-1,3]

See Solution

Problem 23953

Evaluate the integral using substitution: 01x7ex8dx\int_{0}^{1} x^{7} \cdot e^{x^{8}} \, dx.

See Solution

Problem 23954

Find the rate of change of average cost when producing 177 belts, given C(x)=720+37x0.067x2C(x)=720+37x-0.067x^{2}. Calculate C(177)=\overline{\mathrm{C}}^{\prime}(177)=\square.

See Solution

Problem 23955

Evaluate the integral 0π/33sin(3t)6cos(3t)dt\int_{0}^{\pi / 3} \frac{3 \sin (3 t)}{6-\cos (3 t)} dt.

See Solution

Problem 23956

Calculate the integral: 1e7(lnx)2xdx\int_{1}^{e^{7}} \frac{(\ln x)^{2}}{x} d x.

See Solution

Problem 23957

Find the function ff given that f(x)=cos(x)f'''(x) = \cos(x), with conditions f(0)=8f(0)=8, f(0)=3f'(0)=3, f(0)=3f''(0)=3.

See Solution

Problem 23958

Evaluate the integral: (e4x+2ex)dx\int\left(e^{4 x}+2 e^{-x}\right) d x

See Solution

Problem 23959

Find the limits as xx approaches 2: (a) lim[f(x)+4g(x)]\lim [f(x)+4 g(x)] (b) lim[g(x)]3\lim [g(x)]^{3} (c) limf(x)\lim \sqrt{f(x)} (d) lim4f(x)g(x)\lim \frac{4 f(x)}{g(x)} (e) limg(x)h(x)\lim \frac{g(x)}{h(x)} (f) limg(x)h(x)f(x)\lim \frac{g(x) h(x)}{f(x)} If DNE, state that.

See Solution

Problem 23960

Given the limits, find the following:
(a) limx2[f(x)+4g(x)]\lim _{x \rightarrow 2}[f(x)+4 g(x)] (b) limx2[g(x)]3\lim _{x \rightarrow 2}[g(x)]^{3} (c) limx2f(x)\lim _{x \rightarrow 2} \sqrt{f(x)} (d) limx24f(x)g(x)\lim _{x \rightarrow 2} \frac{4 f(x)}{g(x)} (e) limx2g(x)h(x)\lim _{x \rightarrow 2} \frac{g(x)}{h(x)}

See Solution

Problem 23961

Find the max and min of f(x)=4+81x3x3f(x)=4+81 x-3 x^{3} on [0,4][0,4]. What are the values?

See Solution

Problem 23962

Calculate the value of ee^{-\infty}.

See Solution

Problem 23963

Given the function h(x)=x1x2x12h(x) = \frac{x-1}{x^2-x-12}, find intercepts, asymptotes, and behavior at vertical asymptotes.

See Solution

Problem 23964

Find the limit: limxln(x+5)\lim _{x \rightarrow \infty} \ln (x+5).

See Solution

Problem 23965

Find the intercepts and asymptotes of h(x)=x1x2x12h(x) = \frac{x-1}{x^{2}-x-12}. Use limits for vertical asymptote behavior.

See Solution

Problem 23966

A 110110-kg roller coaster starts at rest at 15.5m15.5 \, \mathrm{m} and goes over hill C at 6.8m6.8 \, \mathrm{m}. Find its speed.

See Solution

Problem 23967

Use the Mean Value Theorem for y=sin(3x) y = \sin(3x) on the interval [0,π] [0, \pi] .

See Solution

Problem 23968

Find the limit: limx2sin(xπ)\lim _{x \rightarrow-2} \sin (x \pi).

See Solution

Problem 23969

What is the average amount in your account after investing \$20000 at 12\% interest compounded continuously for 2 years?

See Solution

Problem 23970

Find f(2022)(x)f^{(2022)}(x) given that f(2020)(x)=cot1(x)+x2f^{(2020)}(x)=\cot^{-1}(x)+x^{2}.

See Solution

Problem 23971

Find the function for the power series: k=0(1)kxk13k\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{k}}{13^{k}}. What is f(x)=f(x)=\square?

See Solution

Problem 23972

Find the limit: limx8(3+x3)(25x2+x3)\lim _{x \rightarrow 8}(3+\sqrt[3]{x})(2-5 x^{2}+x^{3}). If none, enter DNE.

See Solution

Problem 23973

Find limx8f(x)g(x)h(x)\lim _{x \rightarrow 8} \frac{f(x)}{g(x)-h(x)} given limx8f(x)=18\lim _{x \rightarrow 8} f(x)=18, limx8g(x)=6\lim _{x \rightarrow 8} g(x)=6, and limx8h(x)=4\lim _{x \rightarrow 8} h(x)=4.

See Solution

Problem 23974

Find the limit: limx1x24x+3x1\lim _{x \rightarrow 1} \frac{x^{2}-4 x+3}{x-1}. If it doesn't exist, write DNE.

See Solution

Problem 23975

Evaluate the limit: limx3x23xx22x3\lim _{x \rightarrow 3} \frac{x^{2}-3 x}{x^{2}-2 x-3}. If it doesn't exist, write DNE.

See Solution

Problem 23976

Evaluate the limit: limh09+h3h\lim _{h \rightarrow 0} \frac{\sqrt{9+h}-3}{h}. If it doesn't exist, write DNE.

See Solution

Problem 23977

Evaluate the limit: limh0(4+h)216h\lim _{h \rightarrow 0} \frac{(-4+h)^{2}-16}{h}. If it doesn't exist, enter DNE.

See Solution

Problem 23978

Find limx8f(x)g(x)h(x)\lim _{x \rightarrow 8} \frac{f(x)}{g(x)-h(x)} given limx8f(x)=18\lim _{x \rightarrow 8} f(x)=18, limx8g(x)=6\lim _{x \rightarrow 8} g(x)=6, limx8h(x)=4\lim _{x \rightarrow 8} h(x)=4. It equals 9. Justify using limit laws. Select all that apply: A, B, C, D, E, F, G.

See Solution

Problem 23979

Determine if the sequence {(0.015)n}\{(-0.015)^{n}\} converges or diverges, and if so, describe its behavior. What is the limit?

See Solution

Problem 23980

Find the limit of the sequence {n4n5+1}\left\{\frac{n^{4}}{n^{5}+1}\right\} or state if it diverges.

See Solution

Problem 23981

For which values of rr does the sequence {rn}\{r^n\} converge or diverge? Select the correct option.

See Solution

Problem 23982

Find the limit as xx approaches -7: limx78x+56x+7\lim _{x \rightarrow-7} \frac{8 x+56}{|x+7|}.

See Solution

Problem 23983

Evaluate the integral: 13tan5xsec4xdx=\int 13 \tan^{5} x \sec^{4} x \, dx = \square

See Solution

Problem 23984

Find the limit: limx0sin6xx\lim _{x \rightarrow 0} \frac{\sin 6 x}{x}. If no answer, enter DNE.

See Solution

Problem 23985

Evaluate the integral: 5tan5xsec4xdx=\int 5 \tan^{5} x \sec^{4} x \, dx = \square

See Solution

Problem 23986

Calculate the integral: 2x34x8(x2x)(x2+4)dx\int \frac{2 x^{3}-4 x-8}{(x^{2}-x)(x^{2}+4)} \, dx

See Solution

Problem 23987

Find the infinite limit: limx4x+5x+4\lim _{x \rightarrow-4^{-}} \frac{x+5}{x+4}. Is it \infty or -\infty?

See Solution

Problem 23988

Find the limit of the sequence sin3n4n-\frac{\sin 3 n}{4 n} or state if it diverges.
A. The limit is \square. B. The sequence diverges.

See Solution

Problem 23989

Find the half-life of a substance that decays as A=A0e0.021tA=A_{0} e^{-0.021 t}. Round to two decimal places.

See Solution

Problem 23990

Estimate Walmart's total revenue from January 2004 to January 2014 using R(t)=172e0.08tR(t)=172 e^{0.08 t} in billion dollars.

See Solution

Problem 23991

How long for \$ 1625 to double at 6.5\% continuous compounding? Round to two decimal places.

See Solution

Problem 23992

Find the intercepts and asymptotes of the function f(x)=x2+x2x29f(x)=\frac{x^{2}+x-2}{x^{2}-9} and describe behavior at vertical asymptotes using limits.

See Solution

Problem 23993

Find the infinite limit: limx8ex(x8)3\lim _{x \rightarrow 8^{-}} \frac{e^{x}}{(x-8)^{3}}.

See Solution

Problem 23994

Find f(x)f^{\prime}(x) for the following functions: (i) f(x)=(2x13+x)5+tan(cosx+sinx)f(x)=\left(\frac{2 x-1}{3+\sqrt{x}}\right)^{5}+\tan (\cos x+\sin x) (ii) f(x)=5(cotx+5)f(x)=\frac{5}{(\cot x+5)} (iii) f(x)=sin1(2x+3)+tan1(x)+ln(x2+1)+2xf(x)=\sin^{-1}(2 x+3)+\tan^{-1}(\sqrt{x})+\ln (x^{2}+1)+2^{x} (iv) f(x)=sec(4lnx)csc1(12x)f(x)=\sec (4 \ln x)-\csc^{-1}(1-2 x) (v) f(x)=(4x56x)(31x)3(cosxcotx)f(x)=\left(4 x^{5}-6 x\right)\left(3-\frac{1}{x}\right)^{3}(\cos x-\cot x) (vi) f(x)=(x2+2)(x+1)f(x)=\left(x^{2}+2\right)^{(x+1)}

See Solution

Problem 23995

Evaluate the limit using continuity: limx916+x16+x\lim _{x \rightarrow 9} \frac{16+\sqrt{x}}{\sqrt{16+x}}

See Solution

Problem 23996

Find the left and right limits of the function f(x)f(x) at a=0a=0, where f(x)=exf(x)=e^{x} for x<0x<0 and f(x)=x2f(x)=x^{2} for x0x \geq 0.

See Solution

Problem 23997

Determine the intervals where the function f(x)=x312x236xf^{\prime}(x)=-x^{3}-12 x^{2}-36 x is decreasing.

See Solution

Problem 23998

Find the discontinuities of the function y=41+e7/xy=\frac{4}{1+e^{7/x}} for x=x=\square.

See Solution

Problem 23999

Find the approximation of f(81.1)f(81.1) using the tangent line to f(x)=x34f(x)=-x^{\frac{3}{4}} at x=81x=81.

See Solution

Problem 24000

Find the area of the shaded region under the curve y=4(sinx)1+cosxy=4(\sin x) \sqrt{1+\cos x} over the interval [0,2π][0, 2\pi].

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord