Calculus

Problem 21101

Evaluate 16tan2xsec22xdx\int 16 \tan 2 x \sec ^{2} 2 x d x using substitutions u=tan2xu=\tan 2 x and u=sec2xu=\sec 2 x. Compare results.

See Solution

Problem 21102

Find the radius of convergence, RR, and interval, II, for the series n=1n!(6x1)n\sum_{n=1}^{\infty} n !(6 x-1)^{n}.

See Solution

Problem 21103

Find the displacement of a ball with velocity v(t)=32t+73v(t)=-32 t+73 from t=0t=0 to t=2t=2 seconds. Displacement is \square feet.

See Solution

Problem 21104

Determine if the sequence an=1+9n8na_{n}=1+\frac{9^{n}}{8^{n}} has a limit. If yes, find it; if not, state it's divergent.

See Solution

Problem 21105

Calculate the Riemann sum R(f,P,C)R(f, P, C) for f(x)=xf(x)=x, P={1,1.3,1.7,2}P=\{1,1.3,1.7,2\}, and C={1.2,1.5,1.8}C=\{1.2,1.5,1.8\}. Round to two decimal places.

See Solution

Problem 21106

Find the ball's displacement from t=0t=0 to t=2t=2 using v(t)=32t+73v(t)=-32t+73. Then, find its position at t=2t=2 given s(0)=12s(0)=12.

See Solution

Problem 21107

Find the derivative dydx\frac{d y}{d x} for the function y=x2sinx+2xcosx2sinxy=x^{2} \sin x+2 x \cos x-2 \sin x.

See Solution

Problem 21108

Determine if the sequence an=5nn+4a_{n}=\frac{5 \sqrt{n}}{\sqrt{n}+4} converges or diverges. If it converges, find the limit.

See Solution

Problem 21109

Find the sky diver's velocity after 3 seconds and 5 seconds using v(t)=56(1e0.15t)v(t)=56(1-e^{-0.15 t}). Round to whole numbers.

See Solution

Problem 21110

Find the absolute extreme values of f(x)=2x333x2+168xf(x)=2 x^{3}-33 x^{2}+168 x on [3,8][3,8]. Use a graphing tool to verify.

See Solution

Problem 21111

Prove tannxdx=tann1xn1tann2xdx\int \tan ^{n} x d x=\frac{\tan ^{n-1} x}{n-1}-\int \tan ^{n-2} x d x for n1n \neq 1. Evaluate 0π33tan3xdx\int_{0}^{\frac{\pi}{3}} 3 \tan ^{3} x d x. Start by factoring: tannxdx=(tan2x)()dx\int \tan ^{n} x d x=\int\left(\tan ^{2} x\right)(\square) d x.

See Solution

Problem 21112

Evaluate 16tan2xsec22xdx\int 16 \tan 2 x \sec ^{2} 2 x d x using u=tan2xu=\tan 2 x and u=sec2xu=\sec 2 x. Reconcile results.

See Solution

Problem 21113

Approximate the area under f(x)=12x2f(x)=\frac{1}{2} x^{2} from 1 to 3 using 10 left rectangles. Then find the exact area using integration.

See Solution

Problem 21114

Find the maximum value of f(6)f(6) given f(2)=5f(2)=5, ff is continuous on [2,6][2,6], and f(x)18f'(x) \leq 18.

See Solution

Problem 21115

Prove the formula for positive integers n1n \neq 1:
secnxdx=secn2xtanxn1+n2n1secn2xdx \int \sec^{n} x \, dx = \frac{\sec^{n-2} x \tan x}{n-1} + \frac{n-2}{n-1} \int \sec^{n-2} x \, dx
Use integration by parts with u=secn2xu=\sec^{n-2} x, dv=sec2xdxdv=\sec^{2} x \, dx. Find vv and dudu.

See Solution

Problem 21116

Prove f(x)=x34x2+5f(x)=x^{3}-4x^{2}+5 meets Mean Value Theorem conditions on [0,2][0, 2] and find cc. c= Done c=\square \quad \square \quad \text { Done }

See Solution

Problem 21117

Find where the function f(x)=5x3+15x2+120x+3f(x)=-5 x^{3}+15 x^{2}+120 x+3 is increasing or decreasing.

See Solution

Problem 21118

Find the absolute max and min of g(x)=4x2g(x)=-\sqrt{4-x^{2}} on [1,2][-1, 2] and graph it.

See Solution

Problem 21119

Find the limit: an=6n+7nna_{n}=\sqrt[n]{6^{n}+7^{n}}, as nn approaches infinity. What is limnan\lim_{n \rightarrow \infty} a_{n}?

See Solution

Problem 21120

Prove the integral formula for positive integers n1n \neq 1:
secnxdx=secn2xtanxn1+n2n1secn2xdx\int \sec^{n} x \, dx = \frac{\sec^{n-2} x \tan x}{n-1} + \frac{n-2}{n-1} \int \sec^{n-2} x \, dx
Find vv and dud u using u=secn2xu=\sec^{n-2} x and dv=sec2xdxd v=\sec^{2} x \, dx:
v=tanx and du=dxv=\tan x \text{ and } d u=\square \, dx

See Solution

Problem 21121

Calculate the average value of sinx\sin x from 00 to π\pi using Riemann sums. Then find the average speed of an object traveling at speed sint\sin t from 00 to π\pi. Compare both results.

See Solution

Problem 21122

Find the max and min of g(x)=4cscxg(x)=4 \csc x on [π4,3π4]\left[\frac{\pi}{4}, \frac{3\pi}{4}\right]. Graph the function.

See Solution

Problem 21123

Show that f(x)=x34x2+5f(x)=x^{3}-4 x^{2}+5 meets the Mean Value Theorem on [0,2][0, 2] and find cc. c= Done c=\square \text { Done }

See Solution

Problem 21124

Use Rolle's Theorem on f(x)=2x36x22x+6f(x)=2 x^{3}-6 x^{2}-2 x+6 to find cc in (1,3)(-1,3) where f(c)=0f'(c)=0.

See Solution

Problem 21125

Find the average sales from day 0 to day 2 for the function S(x)=200x+9x2S(x) = 200x + 9x^2.

See Solution

Problem 21126

Approximate the area under f(x)=2x2f(x)=2 x^{2} from 1-1 to 33 using a Riemann sum with n=4n=4 midpoints. Area \approx \square.

See Solution

Problem 21127

Apply Rolle's Theorem to f(x)=2x36x22x+6f(x)=2 x^{3}-6 x^{2}-2 x+6 and find cc in (1,3)(-1,3) where f(c)=0f'(c)=0. Options: a) c=1+133,1133c=1+\frac{1}{3} \sqrt{3}, 1-\frac{1}{3} \sqrt{3} b) c=123c=1-2 \sqrt{3} c) c=1233,1+233c=1-\frac{2}{3} \sqrt{3}, 1+\frac{2}{3} \sqrt{3} d) Rolle's theorem does not apply.

See Solution

Problem 21128

Approximate the area under f(x)=3x3f(x)=3 x^{3} from x=4x=4 to x=6x=6 using a Riemann sum with n=5n=5 left endpoints. Area: \square.

See Solution

Problem 21129

Let g(x)=π2xsintdtg(x)=\int_{\frac{\pi}{2}}^{x} \sin t \, dt. Show g(3π2)=0g\left(\frac{3 \pi}{2}\right)=0 and find xx where g(x)<0g(x)<0 in [0,2π][0,2\pi].

See Solution

Problem 21130

Evaluate the integral: 0π/65cos53xsin23xdx=\int_{0}^{\pi / 6} 5 \cos ^{5} 3 x \sin ^{2} 3 x d x=\square (Type an exact answer.)

See Solution

Problem 21131

Approximate the area under f(x)=2x3f(x)=2 x^{3} from x=4x=4 to x=6x=6 using a Riemann sum with n=5n=5 left endpoints. Area: \square.

See Solution

Problem 21132

Solve: (1tt+1t3t)dt=\int \left( \frac{1}{t} \sqrt{t} + \frac{1}{t^{3} \sqrt{t}} \right) dt =

See Solution

Problem 21133

Find the number cc that satisfies the mean value theorem for f(x)=1+3x13f(x)=1+3 x^{\frac{1}{3}} on [8,1][-8,1].

See Solution

Problem 21134

Find where the function f(x)=x4x2f(x)=x-4 x^{-2} is decreasing. Options: a) never decreasing b) all real numbers c) 02x<00-2 \leq x<0 d) 02<x<00-2<x<0

See Solution

Problem 21135

Find the max and min of g(x)=4cscxg(x)=4 \csc x on [π4,3π4]\left[\frac{\pi}{4}, \frac{3\pi}{4}\right] and graph it.

See Solution

Problem 21136

Find where the function f(x)=x4x2f(x)=x-4 x^{-2} is decreasing. Options: a) never b) all real c) 02x<00-2 \leq x<0 d) 02<x<00-2<x<0

See Solution

Problem 21137

If ff is continuous on [a,b][a, b] and f(x)>0f^{\prime}(x) > 0 for all xx in (a,b)(a, b), what can we conclude about ff? a) ff is increasing on [a,b][a, b] b) ff is increasing on (a,b)(a, b) c) f(x)f(x) is decreasing on [a,b][a, b] d) f(x)f(x) is decreasing on (a,b)(a, b)

See Solution

Problem 21138

Calculate the area under the curve y=2xy=2x from x=2x=2 to x=4x=4. The area is \square.

See Solution

Problem 21139

Calculate the sum of the series: n=14n+110n\sum_{n=1}^{\infty} \frac{4^{n+1}}{10^{n}}

See Solution

Problem 21140

Calculate the area under the curve y=x+5y=\sqrt{x}+5 from x=0x=0 to x=4x=4. The area is \square.

See Solution

Problem 21141

Find the critical points of f(x)=2x2512xf(x)=2 x^{2}-512 \sqrt{x}. Choose A for points or B if none exist.

See Solution

Problem 21142

Calculate the area under the curve y=2xy=2x from x=3x=3 to x=6x=6 and find the antiderivative F(x)F(x).

See Solution

Problem 21143

Calculate 10 partial sums of the series n=14n+110n\sum_{n=1}^{\infty} \frac{4^{n+1}}{10^{n}} and round to five decimal places.

See Solution

Problem 21144

Find cc such that f(6)f(2)62=f(c)\frac{f(6)-f(2)}{6-2}=f^{\prime}(c) for f(x)=ln(x1)f(x)=\ln(x-1) on [2,6][2,6].
c=c=\square

See Solution

Problem 21145

Find cc such that f(0)f(2)0(2)=f(c)\frac{f(0)-f(-2)}{0-(-2)}=f^{\prime}(c) for f(x)=5x22x3f(x)=5x^{2}-2x-3 on [2,0][-2,0]. Answer: \square.

See Solution

Problem 21146

Find the critical points of the function f(x)=2x2512xf(x)=2 x^{2}-512 \sqrt{x}. What is f(x)=f^{\prime}(x)=\square?

See Solution

Problem 21147

Find the insect population after 4 days if it grows at 180+10t+0.6t2180 + 10t + 0.6t^{2} per day, starting with 80 insects.

See Solution

Problem 21148

Find the total bicycles produced from week 2 to week 3 given the rate 95+108t26t95 + 108 t^{2} - 6 t.

See Solution

Problem 21149

Encuentra la población de bacterias después de 5 horas si comienza con 85 y crece a un ritmo del 12%12\% por hora.

See Solution

Problem 21150

Calculate the displacement from t=2t=2 to t=7t=7 for v(t)=0.01t2+tv(t)=0.01 t^{2}+t m/s. Round to two decimal places.

See Solution

Problem 21151

Find the average rate of change of f(x)=5x2f(x)=\sqrt{5x-2} for 0.5x30.5 \leq x \leq 3.

See Solution

Problem 21152

Find the displacement and distance traveled of a particle with velocity v(t)=2412tv(t)=24-12t (in m/s) over [0,9][0,9].

See Solution

Problem 21153

A substance grows at a rate of 14%14\% daily. If it starts at 228 grams, find its mass after 2 days, rounded to 1 decimal.

See Solution

Problem 21154

Evaluate the sequence an=9n3n+1a_{n}=\frac{9 n}{3 n+1} for convergence and the series n=1an\sum_{n=1}^{\infty} a_{n} for convergence.

See Solution

Problem 21155

Is the series n=13n2+n3\sum_{n=1}^{\infty} \frac{3}{n^{2}+n^{3}} convergent or divergent?

See Solution

Problem 21156

Find the displacement and distance traveled by a particle with velocity v(t)=3t230t+27v(t)=3 t^{2}-30 t+27 from t=0t=0 to t=10t=10.

See Solution

Problem 21157

Is the series n=14πn\sum_{n=1}^{\infty} \frac{4}{\pi^{n}} convergent or divergent? If convergent, find the sum.

See Solution

Problem 21158

Find the average rate of change of w(t)=5t25t+1w(t) = 5t^{2} - 5t + 1 over the interval [2,1][-2,1].

See Solution

Problem 21159

Graph the function f(x)=4x25f(x)=-4x^2-5 on [0,1][0,1] and find its average value. Choose the correct graph: A, B, or C. Average value: \square.

See Solution

Problem 21160

What is the relationship between an antiderivative FF of ff and the area function AA of ff?
A. A=f(x)A=f(x) B. AA is a derivative of f,A(x)=f(x)f, A(x)=f^{\prime}(x) C. AA is an antiderivative of f;A(x)=f(x)f; A^{\prime}(x)=f(x)

See Solution

Problem 21161

Graph the function f(x)=4x26f(x) = -4x^{2} - 6 on [0,2][0,2] and find its average value over this interval. Choose the correct graph.

See Solution

Problem 21162

What is the relationship between the antiderivative FF of ff and the area function AA of ff?
A. A(x)=F(x)A(x)=F^{\prime}(x) B. F(x)=A(x)F(x)=A^{\prime}(x) C. F(x)=A(x)F(x)=A(x) D. Both FF and AA are antiderivatives of ff, differing by a constant CC.

See Solution

Problem 21163

Evaluate the integral 12x3+4xx4+8x2+6dx\int_{1}^{2} \frac{x^{3}+4 x}{x^{4}+8 x^{2}+6} d x.

See Solution

Problem 21164

Analyze the end behavior of the function p(x)=7x2+1p(x)=-7x^{2}+1 using limits.

See Solution

Problem 21165

Evaluate the integral from 0 to π8\frac{\pi}{8} of sin(8t)\sin(8t) dt.

See Solution

Problem 21166

Determine the upper and lower bounds for the integral I=031x3+6dxI=\int_{0}^{3} \frac{1}{\sqrt{x^{3}+6}} d x.

See Solution

Problem 21167

Evaluate r(θ)=θ+sin2(θ3)8r(\theta)=\theta+\sin^{2}\left(\frac{\theta}{3}\right)-8 at 3π-3\pi and 3π3\pi. Find r(3π)=r(-3\pi)=\square.

See Solution

Problem 21168

Show that the function r(θ)=θ+sin2(θ3)8r(\theta)=\theta+\sin ^{2}\left(\frac{\theta}{3}\right)-8 has one zero in (,)(-\infty, \infty). Find r(θ)r'(\theta).

See Solution

Problem 21169

Find and graph the area function A(x)=10x(t+10)dtA(x)=\int_{-10}^{x} (t+10) dt and verify A(x)=f(x)A'(x)=f(x).

See Solution

Problem 21170

Evaluate the integral from 2 to 4 of the function (2x + 3): 24(2x+3)dx\int_{2}^{4}(2 x+3) d x.

See Solution

Problem 21171

Find the derivative of y=2xex2ex4y=2 x e^{-x}-2 e^{x^{4}}. What is dydx\frac{d y}{d x}?

See Solution

Problem 21172

Evaluate the integral from -2 to 2:
22(21x322x2)dx\int_{-2}^{2}\left(21 x^{3}-22 x^{2}\right) d x
using
0bx2dx=13b3\int_{0}^{b} x^{2} d x=\frac{1}{3} b^{3} and 0bx3dx=14b4\int_{0}^{b} x^{3} d x=\frac{1}{4} b^{4}.

See Solution

Problem 21173

Find the derivative of y=2xexex2y=2 x e^{-x}-e^{x^{2}}. What is dydx\frac{d y}{d x} in terms of ee?

See Solution

Problem 21174

Calculate the integral from π/3\pi / 3 to π/2\pi / 2: π/3π/2sinxdx\int_{\pi / 3}^{\pi / 2} \sin x \, dx.

See Solution

Problem 21175

Evaluate the integral using the Fundamental Theorem of Calculus: 0128dx1x2\int_{0}^{\frac{1}{2}} \frac{8 d x}{\sqrt{1-x^{2}}}

See Solution

Problem 21176

Find critical points of ff given f(x)=(x+2)exf^{\prime}(x)=(x+2)e^{-x}. Determine intervals of increase/decrease and local extrema.

See Solution

Problem 21177

Find critical points of ff given f(x)=x2(x5)x+8f'(x)=\frac{x^{2}(x-5)}{x+8}, and determine intervals of increase/decrease.

See Solution

Problem 21178

Find the half-life of a radioactive substance with a decay rate of 5.9%5.9\% per day using the continuous decay model.

See Solution

Problem 21179

Calculate the elasticity of demand from the function q=3105pq=310-5p when the price p=33p=33.

See Solution

Problem 21180

Determine where the function f(x)=1x2+1f(x)=\frac{1}{x^{2}+1} is increasing. Verify with a number line analysis.

See Solution

Problem 21181

Using Boyle's law (PV=CPV=C), find the rate of pressure increase when P=80lb/in2P=80 \mathrm{lb/in}^2, V=90in3V=90 \mathrm{in}^3, and dV/dt=14in3/sdV/dt=-14 \mathrm{in}^3/\mathrm{s}.

See Solution

Problem 21182

Find the marginal profit from the profit function P(x)=x2+12x32P(x)=-x^{2}+12x-32 at x=6x=6.

See Solution

Problem 21183

A baby weighs 6 lbs at birth and 9 lbs at 3 months. How much will she weigh at 6 months if weight increases proportionally? (A) 11.9 (B) 12.8 (C) 13.5 (D) 14.6

See Solution

Problem 21184

Berechnen Sie die Fläche zwischen p(x)=0,5x2+1p(x) = 0,5 x^{2} + 1 und der xx-Achse im Intervall I=[1,2]I = [-1, 2] durch Integration.

See Solution

Problem 21185

A 16 ft fence is 4 ft from a building. Find the shortest ladder length over the fence to the wall.
1. Find L(θ)=L(\theta)=.
2. Find L(θ)=L'(\theta)=.
3. Find L(θmin)L(\theta_{\min}) \approx \quad feet (5 decimal places).

See Solution

Problem 21186

Differentiate f(x)=ln(sinx)f(x)=\ln (\sin x).

See Solution

Problem 21187

Bestimmen Sie die Teilintervalle und die Gesamtfläche zwischen der Funktion f(x)=x3+x22xf(x)=x^{3}+x^{2}-2 x und der xx-Achse im Intervall I=[2;2]I=[-2 ; 2].

See Solution

Problem 21188

Gegeben ist die Funktion f(x)=13x332x210xf(x)=\frac{1}{3} x^{3}-\frac{3}{2} x^{2}-10 x. Finde die Nullstellen (auf 2 Dezimalstellen) und die Extremstellen.

See Solution

Problem 21189

Gegeben ist die Funktion f(x)=13x332x210xf(x)=\frac{1}{3} x^{3}-\frac{3}{2} x^{2}-10 x.
a) Finde die Nullstellen von ff (2 Dezimalstellen). b) Bestimme die Extremstellen und deren Art. c) Zeige, dass die Tangente bei B(0,0)B(0,0) t(x)=10xt(x)=-10 x ist. d) Finde den weiteren Schnittpunkt CC der Tangente und ff. e) Skizziere das Dreieck im 4. Quadranten und berechne dessen Fläche.

See Solution

Problem 21190

Graph f(x)=4x26f(x)=-4x^{2}-6 on [0,2][0,2] and find its average value. Choose the correct graph and calculate the average value.

See Solution

Problem 21191

Graph f(t)=(t8)2f(t)=(t-8)^{2} and calculate its average value on [0,15][0,15].

See Solution

Problem 21192

Bestimmen Sie die Ableitung von f(x)=3x5f(x)=\frac{3}{x^{5}}.

See Solution

Problem 21193

Bestimmen Sie die Ableitung von f(x)=x35f(x)=\sqrt[5]{x^{3}}.

See Solution

Problem 21194

Find the derivative of the integral 1sinx6t5dt \int_{1}^{\sin x} 6 t^{5} dt . Use both evaluation and direct differentiation methods.

See Solution

Problem 21195

Find the integral: excos2(ex)dx\int \frac{e^{x}}{\cos ^{2}\left(e^{x}\right)} d x

See Solution

Problem 21196

Evaluate the integral using the Fundamental Theorem of Calculus: 9π/29π/2(cosx3)dx\int_{-9 \pi / 2}^{9 \pi / 2}(\cos x-3) d x.

See Solution

Problem 21197

Calculate the heat conduction rate in watts through a 3.00 m23.00 \mathrm{~m}^{2} window, 0.00635 m0.00635 \mathrm{~m} thick, with temps 5.00C5.00^{\circ} \mathrm{C} and 10.0C-10.0^{\circ} \mathrm{C}. Thermal conductivity is 0.84 W/(mC)0.84 \mathrm{~W} /\left(\mathrm{m} \cdot{ }^{\circ} \mathrm{C}\right). Answer: 5952.8 W5952.8 \mathrm{~W}.

See Solution

Problem 21198

Use integration by parts to evaluate the integral ln(x)x4 dx\int \frac{\ln (x)}{x^{4}} \mathrm{~d} x. Find ff, gg', ff', and gg.

See Solution

Problem 21199

Find ff and gg' for x2sin(2x)dx\int x^{2} \sin (2 x) dx using integration by parts, then compute the integral.

See Solution

Problem 21200

Berechnen Sie die Fläche zwischen den Funktionen f(x)=13x2+3f(x)=\frac{1}{3} x^{2}+3 und g(x)=x2+1g(x)=-x^{2}+1 im Intervall I=[2,3]I=[-2, 3] durch Integration.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord