Calculus

Problem 31801

Find the limits: a. limy0.254y14y3y2\lim _{y \rightarrow 0.25^{-}} \frac{4 y-1}{\left|4 y^{3}-y^{2}\right|} b. limx0tan(5x)5x\lim _{x \rightarrow 0} \frac{\tan (5 x)}{5 x}

See Solution

Problem 31802

Find the limit: limx23x27x+2x4\lim _{x \rightarrow 2} \frac{3 x^{2}-7 x+2}{x-4}.

See Solution

Problem 31803

Find the antiderivative F(x)F(x) of f(x)=8x38x5f(x)=\frac{8}{x^{3}}-\frac{8}{x^{5}} such that F(1)=0F(1)=0.

See Solution

Problem 31804

Evaluate the integral from 5 to 25 of 1x(lnx)2\frac{1}{x(\ln x)^{2}} dx. What is the result?

See Solution

Problem 31805

Find the limit: limy0.254y14y3y2\lim _{y \rightarrow 0.25^{-}} \frac{4 y-1}{|4 y^{3}-y^{2}|}

See Solution

Problem 31806

Find the antiderivative F(x)F(x) of f(x)=8x38x5f(x)=\frac{8}{x^{3}}-\frac{8}{x^{5}} with F(1)=0F(1)=0. What is F(x)F(x)?

See Solution

Problem 31807

For the function f(x)=4x2f(x)=-4 x^{2}, find slopes of secant lines and predict the tangent slope at x=3x=3.

See Solution

Problem 31808

Find f(2)f(2) if f(x)=10x+4sin(x)f^{\prime \prime}(x)=10 x+4 \sin (x), f(0)=3f(0)=3, and f(0)=3f^{\prime}(0)=3.

See Solution

Problem 31809

Find the slope of the secant line for f(x)=17cosxf(x) = 17 \cos x on [π2,π][\frac{\pi}{2}, \pi] and conjecture the tangent slope.

See Solution

Problem 31810

A 10 m wire with radius changing from 5×1045 \times 10^{-4} m to 9.8×1049.8 \times 10^{-4} m holds a 3.143.14 kg load. Find its length increase using Y=2×1011Nm2Y=2 \times 10^{11} \mathrm{Nm}^{-2}.

See Solution

Problem 31811

For the function f(x)=4x2f(x)=-4 x^{2}, find slopes of secant lines for intervals near x=3x=3 and conjecture the tangent slope.

See Solution

Problem 31812

For f(x)=3x2f(x)=-3x^{2}, find slopes of secant lines for intervals and predict the tangent slope at x=3x=3.

See Solution

Problem 31813

A ball is thrown with an initial velocity of 52ft/s52 \mathrm{ft/s}. Its height is y=52t16t2y=52t-16t^{2}.
(a) Find average velocity from t=2t=2 for: (i) 0.5 s (ii) 0.1 s (iii) 0.05 s (iv) 0.01 s
(b) Estimate instantaneous velocity at t=2t=2.

See Solution

Problem 31814

Given f(x)=2cos(x)f^{\prime \prime}(x)=-2 \cos (x), find f(x)f^{\prime}(x) and f(x)f(x) using constants C and D.

See Solution

Problem 31815

Find the function f(t)f(t) given that f(t)=2et+3sin(t)f^{\prime \prime}(t)=2 e^{t}+3 \sin (t), f(0)=9f(0)=-9, and f(π)=9f(\pi)=9.

See Solution

Problem 31816

Calculate the integral 12lnx3xdx\int_{1}^{2} \frac{\ln x^{3}}{x} d x and select the correct answer from the options.

See Solution

Problem 31817

Find the integral of 11+ex\frac{1}{1+e^{x}}. Choose the correct answer from the options given.

See Solution

Problem 31818

Find the slope of the secant line for f(x)=17cosxf(x) = 17 \cos x between x=π2x = \frac{\pi}{2} and x=πx = \pi.

See Solution

Problem 31819

Find the derivative of y=2xy=2^{x}. Options: y=2xln2y' = 2^{x} \ln 2, y=2xlnxy' = 2^{x} \ln x, y=2xln2y' = \frac{2^{x}}{\ln 2}, y=2xln2y' = 2^{-} x \ln 2, None.

See Solution

Problem 31820

Find the derivative of y=tlnty=\frac{t}{\ln t}. Choose the correct option from the list.

See Solution

Problem 31821

Find the derivative of y=tlnty=t \cdot \ln t. Choose the correct answer from the options provided.

See Solution

Problem 31822

Find the derivative of xex+exx e^{x} + e^{x}. What is the result?

See Solution

Problem 31823

Find the derivative of y=lntty=\frac{\ln t}{t}. Choose the correct option from the list.

See Solution

Problem 31824

Find the derivative of xexexx e^{x} - e^{x}. What is it?

See Solution

Problem 31825

Find the derivative of xex+ex-x e^{x}+e^{x}. What is it?

See Solution

Problem 31826

Evaluate the integral from 5 to 25: 525dxx(lnx)2\int_{5}^{25} \frac{d x}{x(\ln x)^{2}}. What is the result?

See Solution

Problem 31827

Find the derivative of y=lntty=\frac{\ln t}{t}.

See Solution

Problem 31828

Simplify the energy functional, find the weak form, derive the boundary value problem, and interpret the PDE and conditions.

See Solution

Problem 31829

Find the integral of 21+ex\frac{2}{1+e^{x}}. Choose the correct answer from the options provided.

See Solution

Problem 31830

Evaluate the integral 525dxx(lnx)2\int_{5}^{25} \frac{d x}{x(\ln x)^{2}} and choose the correct answer from the options.

See Solution

Problem 31831

Find the derivative of xex+ex-x e^{x}+e^{x}. What is it?

See Solution

Problem 31832

Find the integral of 2ex1+ex\frac{2 e^{x}}{1+e^{x}}. Choose the correct answer from the options given.

See Solution

Problem 31833

Find the derivative of y=3xy=3^{x}. Options: y=3xln3y'=\frac{3^{x}}{\ln 3}, y=3xlny'=3^{x} \ln, y=3xlnxy'=3^{x} \ln x, None, y=3xln3y'=3^{-x} \ln 3.

See Solution

Problem 31834

Find the integral of 11+ex\frac{1}{1+e^{x}}. Choose the correct answer from the options provided.

See Solution

Problem 31835

Evaluate the integral from 3 to 9 of 1x(lnx)2dx\frac{1}{x(\ln x)^{2}} \, dx. What is the result?

See Solution

Problem 31836

Find the derivative of y=3xy=3^{-x}. Choices: y=3xln3y'=-3^{-x} \ln 3, y=3xln3y'=\frac{3^{x}}{\ln 3}, etc.

See Solution

Problem 31837

Evaluate the integral 11+ex\int \frac{1}{1+e^{x}} and choose the correct answer from the options given.

See Solution

Problem 31838

Find the integral of 2ex1+ex\frac{2 e^{x}}{1+e^{x}}. What is the result?

See Solution

Problem 31839

Find the limit: limx0tan(5x)5x\lim _{x \rightarrow 0} \frac{\tan (5 x)}{5 x}.

See Solution

Problem 31840

Find the limit as xx approaches -4 for 3x32x2+3x+83x^3 - 2x^2 + 3x + 8 or state if it doesn't exist.

See Solution

Problem 31841

Find the derivative of y=2xy=2^{-x}. What is yy^{\prime}? Options: 2xln2-2^{-x} \ln 2, 2xln2\frac{2^{x}}{\ln 2}, 2xlnx2^{x} \ln x, None, 2xln22^{-x} \ln 2.

See Solution

Problem 31842

Calculate the integral from 5 to 25 of 1x(lnx)2dx\frac{1}{x(\ln x)^{2}} \, dx. Options include 1ln2\frac{1}{\ln 2}, ln25\ln 25, etc.

See Solution

Problem 31843

Find the derivative of y=3xy=3^{-x}. Choose the correct option.

See Solution

Problem 31844

Find the limit: limx44x3x8\lim _{x \rightarrow 4} \frac{-4 x}{\sqrt{3 x-8}}. Choose A for the limit value or B if it does not exist.

See Solution

Problem 31845

Evaluate the integral from 5 to 25: 525dxx(lnx)2\int_{5}^{25} \frac{d x}{x(\ln x)^{2}}. What is the result?

See Solution

Problem 31846

Find the integral of ex1+ex\frac{e^{x}}{1+e^{x}}. Choose the correct answer from the options provided.

See Solution

Problem 31847

Calculez les intégrales I=0ln2(e2xex2)dxI=\int_{0}^{\ln 2}\left(\frac{\mathrm{e}^{2 x}-\mathrm{e}^{-x}}{2}\right) \mathrm{d} x et J=01(sin(5x)1x+1)dxJ=\int_{0}^{1}\left(\sin (5 x)-\frac{1}{x+1}\right) \mathrm{d} x. Trouvez une primitive FF de f(x)=1+x+xxf(x)=\frac{1+\sqrt{x}+x}{x}.

See Solution

Problem 31848

Evaluate the integral from 2 to 4: 24dxx(lnx)2\int_{2}^{4} \frac{d x}{x(\ln x)^{2}}. What is the result?

See Solution

Problem 31849

Find the derivative of y=tln(t)y = t \cdot \ln(t). Choose the correct option from the list.

See Solution

Problem 31850

Find the derivative of xexexx e^{x} - e^{x}. What is the result?

See Solution

Problem 31851

Find the limit: limh017+h17h\lim _{h \rightarrow 0} \frac{\frac{1}{7+h}-\frac{1}{7}}{h} and simplify your answer.

See Solution

Problem 31852

Find the limit: limx24x2+7x+68x4\lim _{x \rightarrow 2} \frac{4 x^{2}+7 x+6}{8 x-4} or state if it doesn't exist.

See Solution

Problem 31853

Find the limit: limy0.254y14y3y2\lim _{y \rightarrow 0.25^{-}} \frac{4 y-1}{|4 y^{3}-y^{2}|}.

See Solution

Problem 31854

Find the limit: limx5x225x+5\lim _{x \rightarrow-5} \frac{x^{2}-25}{x+5}. Simplify it to limx5\lim _{x \rightarrow-5} \square.

See Solution

Problem 31855

Find the limit: limh0(12+h)2144h\lim _{h \rightarrow 0} \frac{(12+h)^{2}-144}{h} and simplify your answer.

See Solution

Problem 31856

Find the limit: limh0436+5h+9\lim _{h \rightarrow 0} \frac{4}{\sqrt{36+5 h}+9}. A: Simplify your answer; B: Limit does not exist.

See Solution

Problem 31857

Find the limit: limx169x13x169\lim _{x \rightarrow 169} \frac{\sqrt{x}-13}{x-169} or state if it doesn't exist.

See Solution

Problem 31858

Find the limit: limt5(t2+8t+4)\lim _{t \rightarrow 5}\left(t^{2}+8 t+4\right). A. Simplify your answer. B. It doesn't exist.

See Solution

Problem 31859

Find the limit as xx approaches 5 for 2x82x - 8. Is it A. 2x8=2x - 8 = \square or B. limit does not exist?

See Solution

Problem 31860

Evaluate the integral 39dxx(lnx)2\int_{3}^{9} \frac{d x}{x(\ln x)^{2}}. What is the result?

See Solution

Problem 31861

Find the limit as xx approaches 6 for the constant function 8. What is the result? A. limx68=\lim _{x \rightarrow 6} 8=\square B. Limit does not exist.

See Solution

Problem 31862

Find the limit: limx4x23x4x4\lim _{x \rightarrow 4} \frac{x^{2}-3 x-4}{x-4}. Simplify it to limx4()\lim _{x \rightarrow 4}(\square).

See Solution

Problem 31863

Find the limit: limh0256+h16h\lim _{h \rightarrow 0} \frac{\sqrt{256+h}-16}{h} or state if it doesn't exist.

See Solution

Problem 31864

Given the piecewise function f(x)={x2+9,x<9x+9,x9f(x)=\left\{\begin{array}{ll}x^{2}+9, & x<-9 \\ \sqrt{x+9}, & x \geq-9\end{array}\right., find the limits as xx approaches -9 from the left, right, and overall.

See Solution

Problem 31865

Find the average velocity of the object given by s(t)=7t2+28ts(t)=-7 t^{2}+28 t over these intervals: (a) [1,6][1,6], (b) [1,5][1,5], (c) [1,4][1,4], (d) [1,1+h][1,1+h] where h>0h>0.

See Solution

Problem 31866

Given f(x)={x2+9,x<9x+9,x9f(x)=\left\{\begin{array}{ll}x^{2}+9, & x<-9 \\ \sqrt{x+9}, & x \geq-9\end{array}\right., find the limits as xx approaches -9.

See Solution

Problem 31867

Find average velocities for s(t)=16t2+106ts(t)=-16 t^{2}+106 t over intervals [1,2][1,2], [1,1.5][1,1.5], [1,1.1][1,1.1], [1,1.01][1,1.01], [1,1.001][1,1.001]. What is the instantaneous velocity at t=1t=1?

See Solution

Problem 31868

Evaluate the integral: 4siny1cosydy\int \frac{4 \sin y}{1-\cos y} d y. Choose the correct answer from the options provided.

See Solution

Problem 31869

Find the derivative of lny=ln[t(t+1)(t2)]\ln y=\ln [t(t+1)(t-2)]. Choose the correct option.

See Solution

Problem 31870

Find the integral: 4siny1cosydy=\int \frac{4 \sin y}{1-\cos y} d y=. Choose the correct answer from the options provided.

See Solution

Problem 31871

Evaluate the integral from 2 to 16: 216dx2xlnx\int_{2}^{16} \frac{d x}{2 x \sqrt{\ln x}}. Choose the correct answer.

See Solution

Problem 31872

5 (4.5pts) Plate equations 5.1 (2.5pts) Airy stress function
Given plane stress σi3=0\sigma_{i 3}=0 and f=0f=0, solve the biharmonic equation ΔΔλ=0\Delta \Delta \lambda=0 for λ\lambda in AR2A \subseteq \mathbb{R}^{2}.
1. (1.5pts) Why is λ\lambda and the biharmonic equation a suitable simplification?
2. (1pts) Identify valid solutions for the biharmonic problem from the options: - 15 - ln(x2+y2)\ln(x^{2}+y^{2}) - exp(x)cosh(y)\exp(x) \cosh(y) - cos(x+y)sinh(y)cosh(x)\cos(x+y) \sinh(y) \cosh(x) - exp(5)sin(5x)\exp(5) \sin(5x) - y6x4y^{6}-x^{4} - ysin(2x)exp(2y)y \sin(2x) \exp(2y)

See Solution

Problem 31873

Find the gradient f\nabla f of f(x,y,z)=x2+2xyz3f(x, y, z)=x^{2}+2xy-z^{3} at the point (1,1,1)(1,1,1). Choices: a. 4i+j4 i+j, b. 4i+2j3k4 i+2 j-3 k, c. 4ij4 i-j, d. None.

See Solution

Problem 31874

A hemispherical tank has water depth hh. Volume is V=π(3023h)(h+1)2V=\pi\left(30-\frac{2}{3} h\right)(h+1)^{2}. At h=10h=10, find dhdt\frac{dh}{dt} when water flows in at 6π m3/s6\pi \mathrm{~m}^{3}/\mathrm{s}.

See Solution

Problem 31875

Evaluate the integral from 2 to 16: 216dx2xlnx\int_{2}^{16} \frac{d x}{2 x \sqrt{\ln x}}. Choose the correct answer.

See Solution

Problem 31876

Calculate the integral from 5 to 25 of 1x(lnx)2\frac{1}{x(\ln x)^{2}} and choose the correct answer.

See Solution

Problem 31877

Solve the Laplace equation Δw=0\Delta w = 0 in volume VV with Dirichlet w=gw = g and Neumann wn=h\frac{\partial w}{\partial n} = h conditions. Derive the weak formulation.

See Solution

Problem 31878

Find the derivative of y=3xy=3^{-x}. Choose the correct option from the following: y=3xln3y'=-3^{-x} \ln 3 or others.

See Solution

Problem 31879

Find the derivative of y=3xy=3^{x}. What is yy^{\prime}?

See Solution

Problem 31880

Find df1dx\frac{d f^{-1}}{d x} for f(x)=x32f(x)=x^{3}-2 at x=1x=-1 (where f(1)=1f(1)=-1). Choose from the options.

See Solution

Problem 31881

Given a rectangle A=[2a,h]A=[2a, h] in the xyx-y-plane with thickness t=1t=1, find stress boundary conditions for the biharmonic equation.
1. What are the stress boundary conditions?
2. Sketch the system with boundary conditions.
3. Does λ=2mz(y/h)3\lambda=2 m_{z}(y/h)^{3} satisfy the boundary value problem? Justify.

See Solution

Problem 31882

Find average velocities for s(t)=16t2+106ts(t)=-16 t^{2}+106 t over intervals [1,2][1,2], [1,1.5][1,1.5], [1,1.1][1,1.1], [1,1.01][1,1.01], [1,1.001][1,1.001]. Conjecture instantaneous velocity at t=1t=1.

See Solution

Problem 31883

Find the limits: b) limx2x3+x23x3+x+2\lim _{x \rightarrow \infty} \frac{2 x^{3}+x^{2}-3}{x^{3}+x+2} c) limxx+12x2+5x\lim _{x \rightarrow \infty} \frac{x+1}{2 x^{2}+5 x}.

See Solution

Problem 31884

Solve the Laplace equation Δw=0\Delta w=0 in VR3V \subseteq \mathbb{R}^{3}.
1. Find the weak formulation with Neumann and Dirichlet conditions.
2. Is v=curlϕ\mathbf{v}=\operatorname{curl} \phi appropriate for test functions? Justify.
3. Can this PDE be linked to an energy functional? Explain.
4. Identify exact solution candidates from the list provided.

See Solution

Problem 31885

Find the limit: limx1(7x)73\lim _{x \rightarrow-1}(7-x)^{\frac{7}{3}} or state if it does not exist.

See Solution

Problem 31886

Find dydx\frac{dy}{dx} for the function y=x21y = x^2 - 1.

See Solution

Problem 31887

Approximate f(x,y)=x2+y2f(x, y)=x^{2}+y^{2} at (1.05,1.05)(1.05,1.05) using linearization. Choose: a. 2.25 b. 2.15 c. 2.20 d. None e. 2.25

See Solution

Problem 31888

Find the derivative of f(x)=3x1f(x) = 3x - 1 using the limit definition: f(x)=limh0f(x+h)f(x)hf'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.

See Solution

Problem 31889

Simplify the energy functional: V12ε:C:εufdVANutdA\int_{V} \frac{1}{2} \varepsilon: \mathbb{C}: \varepsilon - \mathbf{u} \cdot \mathbf{f} dV - \int_{A_{N}} \mathbf{u} \cdot \mathrm{t} dA with given kinematics.

See Solution

Problem 31890

Find the nature of the critical point (2,1)(-2,1) for the function f(x,y)=x22y24x+4y+6f(x, y)=-x^{2}-2 y^{2}-4 x+4 y+6.

See Solution

Problem 31891

Euler-Bernoulli beam problem:
1. Find weak formulation of EId4 dx4w=qE I \frac{\mathrm{d}^{4}}{\mathrm{~d} x^{4}} w=q with boundary terms.
2. State Dirichlet and Neumann conditions and their physical meaning.
3. Discuss continuity requirements for approximations and Lagrange elements usage.

See Solution

Problem 31892

Soit la fonction ff définie par
f(x)={x2+x+22x1si x134pour x=1f(x) = \begin{cases} \frac{\sqrt{x^{2}+x+2}-2}{x-1} & \text{si } x \neq 1 \\ \frac{3}{4} & \text{pour } x=1 \end{cases}
1) Est-ce que ff est continue en 1 ? 2) Est-ce que ff est dérivable en 1 ? 3) Justifiez que ff est dérivable pour x1x \neq 1. 4) Calculez f(x)f^{\prime}(x) pour x1x \neq 1. 5) Calculez limxf(x)\lim_{x \to -\infty} f(x) et limx+f(x)\lim_{x \to +\infty} f(x).

See Solution

Problem 31893

Soit la fonction ff définie par :
f(x)=x2+x+22x1f(x) = \frac{\sqrt{x^{2}+x+2}-2}{x-1} pour x1x \neq 1 et f(1)=34f(1) = \frac{3}{4}.
1) ff est-elle continue en 1 ? 2) ff est-elle dérivable en 1 ? 3) Justifie que ff est dérivable pour x1x \neq 1. 4) Calcule f(x)f'(x) pour x1x \neq 1. 5) Calcule limxf(x)\lim_{x \to -\infty} f(x) et limx+f(x)\lim_{x \to +\infty} f(x).

See Solution

Problem 31894

1) Soit la fonction f(x)=3x13x22x1f(x)=\frac{3 x-1}{3 x^{2}-2 x-1}. Quelle est une primitive de ff parmi les options suivantes ?
a) F(x)=16x2+4x2F(x)=\frac{-1}{-6 x^{2}+4 x-2}; b) F(x)=16x2+4x+2F(x)=\frac{1}{6 x^{2}+4 x+2}; c) F(x)=x6x3F(x)=\frac{x}{6 x-3}; d) F(x)=3x1F(x)=3 x-1.
2) Dans le plan complexe, les points AA, BB, et CC forment-ils un triangle équilatéral, rectangle, isocèle et rectangle, ou aucune des réponses ?
3) Dans l'espace avec le repère (0,I,J,K)(0, I, J, K), les points A(1,2,1)A(-1, 2, 1), B(1,6,1)B(1, -6, -1), et C(2,2,2)C(2, 2, 2) sont sur la droite (D)(D) de vecteur directeur u(1,1,3)\vec{u}(1, 1, -3) et le plan (P)(P).

See Solution

Problem 31895

Find the first-order partial derivatives of f(x,y)=x34xy2+y4f(x, y) = x^{3} - 4xy^{2} + y^{4}.

See Solution

Problem 31896

Find the slope of the tangent line for y=2cosxy=2^{\cos x} at x=π2x=\frac{\pi}{2}. Choices: 1/ln21 / \ln 2, ln12\ln \frac{1}{2}, ln2\ln 2, 1/ln31 / \ln 3.

See Solution

Problem 31897

Differentiate the function: (2e2x+e3)2e3x\frac{(2 e^{2 x}+e^{3})^{2}}{e^{3 x}} with respect to xx.

See Solution

Problem 31898

Find the derivative of the function y=(2e2x+e3)2e3xy = \frac{(2e^{2x} + e^3)^2}{e^{3x}}.

See Solution

Problem 31899

Find the first-order partial derivatives of f(x,y)=4exy+tan1(yx)f(x, y)=4 e^{\frac{x}{y}}+\tan ^{-1}\left(\frac{y}{x}\right).

See Solution

Problem 31900

Find: limnk=1nnn2+k2\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{n}{n^{2}+k^{2}}

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord