Calculus
Problem 31807
For the function , find slopes of secant lines and predict the tangent slope at .
See SolutionProblem 31810
A 10 m wire with radius changing from m to m holds a kg load. Find its length increase using .
See SolutionProblem 31811
For the function , find slopes of secant lines for intervals near and conjecture the tangent slope.
See SolutionProblem 31812
For , find slopes of secant lines for intervals and predict the tangent slope at .
See SolutionProblem 31813
A ball is thrown with an initial velocity of . Its height is .
(a) Find average velocity from for:
(i) 0.5 s
(ii) 0.1 s
(iii) 0.05 s
(iv) 0.01 s
(b) Estimate instantaneous velocity at .
See SolutionProblem 31821
Find the derivative of . Choose the correct answer from the options provided.
See SolutionProblem 31828
Simplify the energy functional, find the weak form, derive the boundary value problem, and interpret the PDE and conditions.
See SolutionProblem 31829
Find the integral of . Choose the correct answer from the options provided.
See SolutionProblem 31834
Find the integral of . Choose the correct answer from the options provided.
See SolutionProblem 31837
Evaluate the integral and choose the correct answer from the options given.
See SolutionProblem 31846
Find the integral of . Choose the correct answer from the options provided.
See SolutionProblem 31861
Find the limit as approaches 6 for the constant function 8. What is the result? A. B. Limit does not exist.
See SolutionProblem 31864
Given the piecewise function , find the limits as approaches -9 from the left, right, and overall.
See SolutionProblem 31865
Find the average velocity of the object given by over these intervals: (a) , (b) , (c) , (d) where .
See SolutionProblem 31867
Find average velocities for over intervals , , , , . What is the instantaneous velocity at ?
See SolutionProblem 31868
Evaluate the integral: . Choose the correct answer from the options provided.
See SolutionProblem 31872
5 (4.5pts) Plate equations
5.1 (2.5pts) Airy stress function
Given plane stress and , solve the biharmonic equation for in .
1. (1.5pts) Why is and the biharmonic equation a suitable simplification?
2. (1pts) Identify valid solutions for the biharmonic problem from the options:
- 15
-
-
-
-
-
-
See SolutionProblem 31874
A hemispherical tank has water depth . Volume is . At , find when water flows in at .
See SolutionProblem 31877
Solve the Laplace equation in volume with Dirichlet and Neumann conditions. Derive the weak formulation.
See SolutionProblem 31878
Find the derivative of . Choose the correct option from the following: or others.
See SolutionProblem 31881
Given a rectangle in the -plane with thickness , find stress boundary conditions for the biharmonic equation.
1. What are the stress boundary conditions?
2. Sketch the system with boundary conditions.
3. Does satisfy the boundary value problem? Justify.
See SolutionProblem 31882
Find average velocities for over intervals , , , , . Conjecture instantaneous velocity at .
See SolutionProblem 31884
Solve the Laplace equation in .
1. Find the weak formulation with Neumann and Dirichlet conditions.
2. Is appropriate for test functions? Justify.
3. Can this PDE be linked to an energy functional? Explain.
4. Identify exact solution candidates from the list provided.
See SolutionProblem 31887
Approximate at using linearization. Choose: a. 2.25 b. 2.15 c. 2.20 d. None e. 2.25
See SolutionProblem 31891
Euler-Bernoulli beam problem:
1. Find weak formulation of with boundary terms.
2. State Dirichlet and Neumann conditions and their physical meaning.
3. Discuss continuity requirements for approximations and Lagrange elements usage.
See SolutionProblem 31892
Soit la fonction définie par
1) Est-ce que est continue en 1 ?
2) Est-ce que est dérivable en 1 ?
3) Justifiez que est dérivable pour .
4) Calculez pour .
5) Calculez et .
See SolutionProblem 31893
Soit la fonction définie par :
pour et .
1) est-elle continue en 1 ?
2) est-elle dérivable en 1 ?
3) Justifie que est dérivable pour .
4) Calcule pour .
5) Calcule et .
See SolutionProblem 31894
1) Soit la fonction . Quelle est une primitive de parmi les options suivantes ?
a) ; b) ; c) ; d) .
2) Dans le plan complexe, les points , , et forment-ils un triangle équilatéral, rectangle, isocèle et rectangle, ou aucune des réponses ?
3) Dans l'espace avec le repère , les points , , et sont sur la droite de vecteur directeur et le plan .
See Solution123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337