Calculus
Problem 13404
Find where the function is concave up/down and identify points of inflection for .
See SolutionProblem 13422
Berechnen Sie die Produktionsmenge , bei der die Grenzkosten Stück sind, gegeben die Kostenfunktion .
See SolutionProblem 13425
Find the partial derivatives and for these functions: 1- , 2- , 3- , 4- , 5- .
See SolutionProblem 13430
Bestimme die Wendepunkte und Sattelpunkte der Funktionen: , , , , , , , . Zeichne die Graphen und markiere die Wendepunkte.
See SolutionProblem 13436
Untersuchen Sie lokale Extremalpunkte und skizzieren Sie die Graphen für: a) , b) , c) .
See SolutionProblem 13440
Bilde die erste Ableitung ohne negative Exponenten für: a) , b) , c) , d) .
See SolutionProblem 13441
Finde die Seitenlänge der quadratischen Grundfläche eines pyramidenförmigen Zelts, das den Rauminhalt maximiert, bei Stäben.
See SolutionProblem 13443
Bestimme für die Funktion die Zeitpunkte ohne Wasserfluss, Maxima, Minima und starke Abfälle. Zeige, dass eine Stammfunktion ist. Finde den Zeitpunkt , an dem .
See SolutionProblem 13444
Gegeben ist die Funktion .
a) Finde die Nullstellen von .
b) Welche Symmetrie hat ?
c) Bestimme Extrem- und Wendepunkte von .
d) Nachweis und Berechnung des Sattelpunktes, falls vorhanden.
e) Zeige, dass für streng monoton fallend ist.
f) Finde die -Werte, wo die Steigung 1 beträgt und erkläre, warum die Gleichung nicht einfach gelöst werden kann.
See SolutionProblem 13448
Find the volume of the solid formed by revolving the area between , , and around .
See SolutionProblem 13450
Approximate the arc length of from to . Round to three decimal places. Choices: (A) 10.340 (B) 5.270 (C) 7.640 (D) 10.540 (E) 11.740
See SolutionProblem 13451
Find the volume of the solid formed by revolving the area between , , , and around the -axis.
See SolutionProblem 13452
Find the volume of the solid formed by revolving the region bounded by , , and around . Options: (A) , (B) , (C) , (D) , (E) .
See SolutionProblem 13453
Find the volume of the solid formed by revolving the region bounded by , , and around the -axis.
See SolutionProblem 13454
Find the average value of over from -2 to 2 and to 4. Options: (A) 0 (B) 1.3 (C) 10 (D) 2
See SolutionProblem 13456
Find the volume of the solid formed by revolving the area between , , from to around .
See SolutionProblem 13458
Find the volume of the solid formed by revolving the area between , , and around .
See SolutionProblem 13460
Find the volume of the solid formed by revolving the area between and around the -axis.
See SolutionProblem 13462
Find the volume of the solid formed by revolving the region bounded by around the -axis using the shell method. Choose the correct answer from the options provided.
See SolutionProblem 13463
Find the volume of the solid formed by revolving the area bounded by , , and around the -axis.
See SolutionProblem 13464
Find the volume of the solid formed by revolving the region bounded by , , and around the -axis using the shell method.
See SolutionProblem 13465
Find the volume of the solid formed by revolving the area between , , , and around the -axis. Round to two decimal places.
See SolutionProblem 13466
Find the volume of the solid formed by revolving the area between and around the -axis.
See SolutionProblem 13473
Find the volume of the solid formed by revolving the area bounded by around the -axis.
See SolutionProblem 13475
Find the volume of the solid formed by revolving the region in the first quadrant bounded by about (i) the -axis and (ii) the -axis.
See SolutionProblem 13477
Identify the integrand, limits, and variable in the integral: .
Answer: The integrand is , the lower bound is , the upper bound is , and the variable of integration is .
See SolutionProblem 13480
Which option shows the limit definition of the integral using a left-endpoint Riemann sum?
See SolutionProblem 13481
Identify the integrand, limits, and variable in the integral: .
Answer: Integrand is , lower bound is , upper bound is , variable is .
See SolutionProblem 13483
Zeige, dass eine Stammfunktion von ist und nenne drei weitere Stammfunktionen für die folgenden Paare: a) , ; b) , ; c) , ; d) , .
See SolutionProblem 13484
1. Find for .
2. Find for .
3. Write the tangent line equation to at .
4. Estimate from the table of values.
5. Estimate from the table of values.
See SolutionProblem 13488
Find the volume of the solid formed by rotating a right triangle (sides 3 and 5) about the side of length 3.
See SolutionProblem 13489
Sketch the graph of using its derivatives. Verify with a graphing calculator.
See SolutionProblem 13490
Analyze case D: with and , determine if the function is increasing/decreasing and find points of inflection.
See SolutionProblem 13495
Given the curve for :
(a) Prove that .
(b) Find the tangent line equation at .
(c) Find where the tangent line is horizontal for .
(d) Determine if has a relative min, max, or neither at the point from (c). Justify.
See SolutionProblem 13498
Find the position function and the velocity function for a particle with acceleration and .
See Solution123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337