Calculus

Problem 13401

Find the derivative f(x)f'(x) if f(x)=1x2t2dtf(x)=\int_{-1}^{x^{2}} t^{2} d t.

See Solution

Problem 13402

Find the derivative of P(t)=18240t3+136t2P(t)=-\frac{1}{8240} t^{3}+\frac{1}{36} t^{2}.

See Solution

Problem 13403

Find the derivative f(x)f'(x) if f(x)=1x3t5dtf(x)=\int_{1}^{x^{3}} t^{5} dt.

See Solution

Problem 13404

Find where the function is concave up/down and identify points of inflection for f(x)=6x35x2+5f(x)=6 x^{3}-5 x^{2}+5.

See Solution

Problem 13405

Calculate the integral 1e84xdx\int_{1}^{e^{8}} \frac{4}{x} dx.

See Solution

Problem 13406

Evaluate the integral from 0 to π4\frac{\pi}{4} of sin(4t)\sin(4t).

See Solution

Problem 13407

Evaluate the integral from 1 to 5\sqrt{5} of 71+x2\frac{7}{1+x^{2}} with respect to xx.

See Solution

Problem 13408

Calculate the integral from 0 to π of 10 sin(x) dx.

See Solution

Problem 13409

Find the value of xx where the local maximum of f(x)=0xt2361+cos2(t)dtf(x)=\int_{0}^{x} \frac{t^{2}-36}{1+\cos ^{2}(t)} dt occurs. x=x=

See Solution

Problem 13410

Find f(3)f^{\prime}(3) for the function f(x)=5x34x2x43f(x)=\frac{5 x^{3}-4 x^{2}}{\sqrt[3]{x^{4}}}.

See Solution

Problem 13411

Find where the function f(x)=6x35x2+5f(x)=6 x^{3}-5 x^{2}+5 is concave up/down and its points of inflection.

See Solution

Problem 13412

Find f(x)f^{\prime \prime}(x) for f(x)=0x(t3+7t2+6)dtf(x)=\int_{0}^{x}(t^{3}+7 t^{2}+6) dt.

See Solution

Problem 13413

Evaluate the integral from 1 to 9 of (2x2+5)/x(2x^{2}+5)/\sqrt{x} dx.

See Solution

Problem 13414

Calculate the integral from -4 to 1 of the function 3x7+2x23 x^{7} + 2 x^{2}.

See Solution

Problem 13415

Find the derivative of h(x)=5sin(x)(cos(t5)+t)dth(x)=\int_{-5}^{\sin (x)}\left(\cos \left(t^{5}\right)+t\right) d t. What is h(x)h^{\prime}(x)?

See Solution

Problem 13416

Graph the function f(x)=x(x2.4)3f(x)=x(x-2.4)^{3} and find its inflection point(s).

See Solution

Problem 13417

Calculate the integral from 3 to 2 of sin(t)dt\sin(t) \, dt.

See Solution

Problem 13418

Find the derivative of f(x)=3x(13t21)8dtf(x)=\int_{3}^{x}\left(\frac{1}{3} t^{2}-1\right)^{8} dt. What is f(x)f'(x)?

See Solution

Problem 13419

Find the derivative of F(x)=x3sin(t2)dtF(x)=\int_{x}^{3} \sin(t^{2}) dt. What is F(x)F'(x)?

See Solution

Problem 13420

Find the derivative of f(x)=3xt3+33dtf(x)=\int_{-3}^{x} \sqrt{t^{3}+3^{3}} dt. What is f(x)f'(x)?

See Solution

Problem 13421

Find the partial derivatives fx\frac{\partial f}{\partial x} and fy\frac{\partial f}{\partial y} for these functions: 1- f(x,y)=exy+xf(x, y)=e^{xy}+x, 2- f(x,y)=ln(x+y)f(x, y)=\ln(x+y).

See Solution

Problem 13422

Berechnen Sie die Produktionsmenge xx, bei der die Grenzkosten 25/25 \,€/ Stück sind, gegeben die Kostenfunktion K(x)=0,00002x30,02x2+21,4x+1200K(x)=0,00002 x^{3}-0,02 x^{2}+21,4 x+1200.

See Solution

Problem 13423

Find the partial derivatives fx\frac{\partial f}{\partial x} and fy\frac{\partial f}{\partial y} for these functions: 1- f(x,y)=exy+xf(x, y)=e^{xy+x} 2- f(x,y)=ln(x+y)f(x, y)=\ln(x+y) 3- f(x,y)=(3y+xy)4f(x, y)=(3y+xy)^{4} 4- f(x,y)=yln(xy)f(x, y)=y \ln(xy) 5- f(x,y)=ycos(xy)f(x, y)=y \cos(xy).

See Solution

Problem 13424

Find the value of xx where the local maximum of f(x)=0xt2251+cos2(t)dtf(x)=\int_{0}^{x} \frac{t^{2}-25}{1+\cos ^{2}(t)} d t occurs. x= x=

See Solution

Problem 13425

Find the partial derivatives fx\frac{\partial f}{\partial x} and fy\frac{\partial f}{\partial y} for these functions: 1- f(x,y)=exy+xf(x, y)=e^{xy+x}, 2- f(x,y)=ln(x+y)f(x, y)=\ln(x+y), 3- f(x,y)=(3y+xy)4f(x, y)=(3y+xy)^{4}, 4- f(x,y)=yln(xy)f(x, y)=y \ln(xy), 5- f(x,y)=ycos(xy)f(x, y)=y \cos(xy).

See Solution

Problem 13426

Find the partial derivatives fx\frac{\partial f}{\partial x} and fy\frac{\partial f}{\partial y} for these functions: 1- f(x,y)=exy+xf(x, y)=e^{xy+x} 2- f(x,y)=ln(x+y)f(x, y)=\ln(x+y) 3- f(x,y)=(3y+xy)4f(x, y)=(3y+xy)^{4} 4- f(x,y)=yln(xy)f(x, y)=y \ln(xy) 5- f(x,y)=ycos(xy)f(x, y)=y \cos(xy).

See Solution

Problem 13427

Find the slope of the tangent line to 9x3+xy+9y4=7359 x^{3}+x y+9 y^{4}=735 at the point (1,3)(1,-3).

See Solution

Problem 13428

Find the partial derivatives fx\frac{\partial f}{\partial x} and fy\frac{\partial f}{\partial y} for: 1- f(x,y)=exy3+xf(x, y)=\mathrm{e}^{x y^{3}+x}, 2- f(x,y)=Ln(x+y)f(x, y)=\operatorname{Ln}(x+y).

See Solution

Problem 13429

Find the slope of the tangent line to 9x3+xy+9y4=7359 x^{3}+x y+9 y^{4}=735 at (1,3)(1,-3). The slope is \square.

See Solution

Problem 13430

Bestimme die Wendepunkte und Sattelpunkte der Funktionen: f(x)=x3+3x2f(x)=x^{3}+3 x^{2}, f(x)=0,3x3+8,1f(x)=-0,3 x^{3}+8,1, f(x)=13x34xf(x)=\frac{1}{3} x^{3}-4 x, f(x)=19x3x2f(x)=\frac{1}{9} x^{3}-x^{2}, f(x)=x39x2+27x19f(x)=x^{3}-9 x^{2}+27 x-19, f(x)=0,2x3+3x29,6xf(x)=0,2 x^{3}+3 x^{2}-9,6 x, f(x)=18x43x2f(x)=\frac{1}{8} x^{4}-3 x^{2}, f(x)=0,25x42x3+4,5x2f(x)=0,25 x^{4}-2 x^{3}+4,5 x^{2}. Zeichne die Graphen und markiere die Wendepunkte.

See Solution

Problem 13431

Berechnen Sie die Ableitungen f(x)f'(x) und f(x)f''(x) für die Funktion f(x)=x3+3x2f(x) = x^3 + 3x^2.

See Solution

Problem 13432

Bestimme die erste Ableitung der Funktionen: f(x)=x2+3x4f(x)=x^{2}+3x^{4} und f(x)=3x614x2f(x)=3x^{6}-14x^{2}.

See Solution

Problem 13433

Finde die erste Ableitung der folgenden Funktionen: a) f(x)=x2+3x4f(x)=x^{2}+3 x^{4} b) f(x)=3x614x2f(x)=3 x^{6}-14 x^{2}

See Solution

Problem 13434

Evaluate these integrals: (i) sec5(θ2)tan(θ2)dθ\int \sec ^{5}\left(\frac{\theta}{2}\right) \tan \left(\frac{\theta}{2}\right) d \theta; (ii) cost1+costdt\int \frac{\cos t}{1+\cos t} d t.

See Solution

Problem 13435

Find the moment about the yy-axis for the area under y=cosxy=\cos x, from x=0x=0 to x=π2x=\frac{\pi}{2}.

See Solution

Problem 13436

Untersuchen Sie lokale Extremalpunkte und skizzieren Sie die Graphen für: a) f(x)=2x2+3x5f(x)=2 x^{2}+3 x-5, b) f(x)=13x3+12x23xf(x)=\frac{1}{3} x^{3}+\frac{1}{2} x^{2}-3 x, c) f(x)=14x32f(x)=\frac{1}{4} x^{3}-2.

See Solution

Problem 13437

Compute the differentials of the function f(x,y)=x2e5y+xf(x, y) = x^{2} e^{5y} + x.

See Solution

Problem 13438

Calculate the integral from 1 to 2 of 2x\frac{2}{\sqrt{x}} with respect to xx.

See Solution

Problem 13439

Calculate the integral from 1 to 2 of x2+3x2\frac{x^{2}+3}{x^{2}} with respect to xx.

See Solution

Problem 13440

Bilde die erste Ableitung ohne negative Exponenten für: a) fa(x)=4x3+3x22x1f_{a}(x)=4 x^{3}+3 x^{2}-2 x-1, b) fb(x)=x2(x5)f_{b}(x)=x^{2}(x-5), c) fc(x)=x31xf_{c}(x)=x^{3} \sqrt{\frac{1}{x}}, d) fd(x)=x27f_{d}(x)=\sqrt{x^{2}-7}.

See Solution

Problem 13441

Finde die Seitenlänge der quadratischen Grundfläche eines pyramidenförmigen Zelts, das den Rauminhalt maximiert, bei 3 m3 \mathrm{~m} Stäben.

See Solution

Problem 13442

Bestimme die Ableitungen der Funktionen: a) fa(x)=ax3+bx2+cx+df_{a}(x)=a x^{3}+b x^{2}+c x+d, b) fb(x)=x6xf_{b}(x)=\frac{x-6}{\sqrt{x}}, c) fc(x)=(x24)x2+4f_{c}(x)=\left(x^{2}-4\right) \sqrt{x^{2}+4}.

See Solution

Problem 13443

Bestimme für die Funktion fa(t)=14t3at2+a2tf_{a}(t)=\frac{1}{4} t^{3}-a t^{2}+a^{2} t die Zeitpunkte ohne Wasserfluss, Maxima, Minima und starke Abfälle. Zeige, dass Fa(t)=116t4a3t3+a22t2F_{a}(t)=\frac{1}{16} t^{4}-\frac{a}{3} t^{3}+\frac{a^{2}}{2} t^{2} eine Stammfunktion ist. Finde den Zeitpunkt tt, an dem Fa1=Fa2F_{a1}=F_{a2}.

See Solution

Problem 13444

Gegeben ist die Funktion f(x)=516x4+5x3f(x)=-\frac{5}{16} x^{4}+5 x^{3}.
a) Finde die Nullstellen von ff. b) Welche Symmetrie hat ff? c) Bestimme Extrem- und Wendepunkte von ff. d) Nachweis und Berechnung des Sattelpunktes, falls vorhanden. e) Zeige, dass ff für x>12x>12 streng monoton fallend ist. f) Finde die xx-Werte, wo die Steigung 1 beträgt und erkläre, warum die Gleichung nicht einfach gelöst werden kann.

See Solution

Problem 13445

Oblicz granicę dla ciągu an=n(3n7)2(n+2+2)4a_{n}=\frac{n(\sqrt{3 n}-7)^{2}}{(\sqrt{n+2}+2)^{4}} lub wyjaśnij, dlaczego nie istnieje.

See Solution

Problem 13446

Find the surface area generated by revolving y=2xy=2\sqrt{x} from x=6x=6 to x=9x=9 about the xx-axis.

See Solution

Problem 13447

Find the surface area from revolving y=2xy=2 \sqrt{x} around the xx-axis for 6x96 \leq x \leq 9.

See Solution

Problem 13448

Find the volume of the solid formed by revolving the area between y=xy=x, y=11y=11, and x=0x=0 around y=12y=12.

See Solution

Problem 13449

Find the local maxima and minima of f(x)=x2sinxf(x)=x-2 \sin x for 0x2π0 \leq x \leq 2\pi.

See Solution

Problem 13450

Approximate the arc length of y=sin2xy=\sin 2x from 00 to 2π2\pi. Round to three decimal places. Choices: (A) 10.340 (B) 5.270 (C) 7.640 (D) 10.540 (E) 11.740

See Solution

Problem 13451

Find the volume of the solid formed by revolving the area between y=1xy=\frac{1}{x}, y=0y=0, x=8x=8, and x=15x=15 around the xx-axis.

See Solution

Problem 13452

Find the volume of the solid formed by revolving the region bounded by y=x3y=x^{3}, y=0y=0, and x=9x=9 around x=18x=18. Options: (A) 118,0985π\frac{118,098}{5} \pi, (B) 177,1475π\frac{177,147}{5} \pi, (C) 59,0495π\frac{59,049}{5} \pi, (D) 354,2945π\frac{354,294}{5} \pi, (E) 236,1965π\frac{236,196}{5} \pi.

See Solution

Problem 13453

Find the volume of the solid formed by revolving the region bounded by y=2xy=2-x, y=0y=0, and x=0x=0 around the xx-axis.

See Solution

Problem 13454

Find the average value of f(x,y)=yf(x, y) = y over yy from -2 to 2 and xx to 4. Options: (A) 0 (B) 1.3 (C) 10 (D) 2

See Solution

Problem 13455

Find the acceleration of the particle at time t=πt=\pi given x(t)=sin(2t)cos(3t)x(t)=\sin (2 t)-\cos (3 t).

See Solution

Problem 13456

Find the volume of the solid formed by revolving the area between y=sinxy=\sin x, y=0y=0, from 00 to π2\frac{\pi}{2} around y=11y=11.

See Solution

Problem 13457

Calculate the area between f(x)=14xx2+1f(x)=\frac{14 x}{x^{2}+1} and y=0y=0 for 0x50 \leq x \leq 5. Round to three decimal places.

See Solution

Problem 13458

Find the volume of the solid formed by revolving the area between y=19x2y=19 x^{2}, y=0y=0, and x=2x=2 around x=2x=2.

See Solution

Problem 13459

Find the area of the surface formed by revolving y=18x3y=\frac{1}{8} x^{3} from 00 to 88 around the xx-axis.

See Solution

Problem 13460

Find the volume of the solid formed by revolving the area between y=x5y=x^{5} and y=32y=32 around the yy-axis.

See Solution

Problem 13461

Calculate the integral 0305(yexxy)dxdy\int_{0}^{3} \int_{0}^{5}\left(y e^{x}-x-y\right) d x d y. Choose the correct answer from the options.

See Solution

Problem 13462

Find the volume of the solid formed by revolving the region bounded by y=x+156,y=x,y=0y=\sqrt{x+156}, y=x, y=0 around the xx-axis using the shell method. Choose the correct answer from the options provided.

See Solution

Problem 13463

Find the volume of the solid formed by revolving the area bounded by y=x45y=x^{\frac{4}{5}}, y=1y=1, and x=0x=0 around the yy-axis.

See Solution

Problem 13464

Find the volume of the solid formed by revolving the region bounded by y=x6y=x^{6}, x=0x=0, and y=64y=64 around the xx-axis using the shell method.

See Solution

Problem 13465

Find the volume of the solid formed by revolving the area between y=15x2y=\frac{15}{x^{2}}, y=0y=0, x=1x=1, and x=8x=8 around the xx-axis. Round to two decimal places.

See Solution

Problem 13466

Find the volume of the solid formed by revolving the area between y=8y=8 and y=16x216y=16-\frac{x^{2}}{16} around the xx-axis.

See Solution

Problem 13467

Find the tangent to f(x)=x3f(x)=x^{3} parallel to the line g:3xy=1g: 3x-y=1.

See Solution

Problem 13468

Find the derivative of f(x)=(x3x)(3x2+1)f(x)=(x^{3}-x)(3x^{2}+1).

See Solution

Problem 13469

Find the limit: limx+4x24xx22x8\lim _{x \rightarrow+4} \frac{x^{2}-4 x}{x^{2}-2 x-8}.

See Solution

Problem 13470

Find the limit: limx4(x22x8)\lim _{x \rightarrow-4}\left(x^{2}-2 x-8\right). What is the answer?

See Solution

Problem 13471

Find the derivative of the constant function f(x)=5f(x)=5 using first principles.

See Solution

Problem 13472

Calculate the integral from 0 to 1 and 0 to 2-y: 0102yxdxdy\int_{0}^{1} \int_{0}^{2-y} x \, dx \, dy.

See Solution

Problem 13473

Find the volume of the solid formed by revolving the area bounded by y=3x3,y=0,x=3y=3 x^{3}, y=0, x=3 around the xx-axis.

See Solution

Problem 13474

Find the area between f(x)=8xx2+1f(x)=\frac{8 x}{x^{2}+1} and y=0y=0 from 0x40 \leq x \leq 4. Options: (A) A=15ln4A=15 \ln 4, (B) A=4ln17A=4 \ln 17, (C) A=17ln4A=17 \ln 4, (D) A=8ln17A=8 \ln 17, (E) A=4ln15A=4 \ln 15.

See Solution

Problem 13475

Find the volume of the solid formed by revolving the region in the first quadrant bounded by x23+y23=323x^{\frac{2}{3}}+y^{\frac{2}{3}}=3^{\frac{2}{3}} about (i) the xx-axis and (ii) the yy-axis.

See Solution

Problem 13476

Find the limit as xx approaches aa of f(x)f(a)xa\frac{f(x)-f(a)}{x-a} for f(x)=3x5f(x)=3x-5.

See Solution

Problem 13477

Identify the integrand, limits, and variable in the integral: 13.67y3dy\int_{1}^{3.6} \sqrt{7 y-3} d y.
Answer: The integrand is 7y3\sqrt{7 y-3}, the lower bound is 11, the upper bound is 3.63.6, and the variable of integration is yy.

See Solution

Problem 13478

Express the limit of Ln=1ni=1n(3+i1n)L_{n}=\frac{1}{n} \sum_{i=1}^{n}\left(3+\frac{i-1}{n}\right) as a definite integral.
01(3+x)dx\int_{0}^{1} \left(3+x\right) dx

See Solution

Problem 13479

Express the limit as an integral: limni=1n(10(xi)57xi9)Δx\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(10\left(x_{i}^{*}\right)^{5}-7 x_{i}^{*}-9\right) \Delta x over [3,4][3,4].

See Solution

Problem 13480

Which option shows the limit definition of the integral 179xdx\int_{1}^{7} 9 x d x using a left-endpoint Riemann sum?

See Solution

Problem 13481

Identify the integrand, limits, and variable in the integral: 14π8sin(7t)tdt\int_{1}^{4 \pi}-\frac{8 \sin (7 t)}{t} d t.
Answer: Integrand is \square, lower bound is \square, upper bound is \square, variable is \square.

See Solution

Problem 13482

Find the derivatives: 1) f(2)f^{\prime}(2) for f(x)=sinxf(x)=\sin \sqrt{x}; 2) f(1.3)f^{\prime}(1.3) for f(x)=ln(15x)f(x)=\ln \left(\frac{1}{5-x}\right).

See Solution

Problem 13483

Zeige, dass FF eine Stammfunktion von ff ist und nenne drei weitere Stammfunktionen für die folgenden Paare: a) F(x)=2x3F(x)=2 x^{3}, f(x)=6x2f(x)=6 x^{2}; b) F(x)=5x4+2F(x)=5 x^{4}+2, f(x)=20x3f(x)=20 x^{3}; c) F(x)=215x53F(x)=\frac{2}{15} x^{5}-3, f(x)=23x4f(x)=\frac{2}{3} x^{4}; d) F(x)=2x43x3+5F(x)=2 x^{4}-3 x^{3}+5, f(x)=8x39x2f(x)=8 x^{3}-9 x^{2}.

See Solution

Problem 13484

1. Find f(2)f^{\prime}(2) for f(x)=sinxf(x)=\sin \sqrt{x}.
2. Find f(1.3)f^{\prime}(1.3) for f(x)=ln(15x)f(x)=\ln \left(\frac{1}{5-x}\right).
3. Write the tangent line equation to y=xx3+1y=\sqrt{\frac{x}{x^{3}+1}} at x=1x=1.
4. Estimate f(3)f^{\prime}(3) from the table of f(x)f(x) values.
5. Estimate w(100)w^{\prime}(100) from the table of w(x)w(x) values.

See Solution

Problem 13485

Évaluez la limite suivante : limt3t292t2+7t+3\lim _{t \rightarrow-3} \frac{t^{2}-9}{2 t^{2}+7 t+3}.

See Solution

Problem 13486

Find the limit: limh0(5+h)225h\lim _{h \rightarrow 0} \frac{(-5+h)^{2}-25}{h}.

See Solution

Problem 13487

Calculate the average rate of change of f(x)=3f(x)=3 over the interval [2,0][-2,0].

See Solution

Problem 13488

Find the volume of the solid formed by rotating a right triangle (sides 3 and 5) about the side of length 3.

See Solution

Problem 13489

Sketch the graph of y=27xx3y=27x-x^{3} using its derivatives. Verify with a graphing calculator.

See Solution

Problem 13490

Analyze case D: with f<0f' < 0 and f<0f'' < 0, determine if the function is increasing/decreasing and find points of inflection.

See Solution

Problem 13491

Find the limit: limt0(1t1t2+t)\lim _{t \rightarrow 0}\left(\frac{1}{t}-\frac{1}{t^{2}+t}\right).

See Solution

Problem 13492

Calculate the integral from 2 to 4 of (x2+1)2(x^{2}+1)^{2} dx.

See Solution

Problem 13493

Graph f(x)=e2x2x1f(x)=\frac{e^{2 x}}{2 x-1}. Find the domain: A. (,12)(12,)\left(-\infty, \frac{1}{2}\right) \cup\left(\frac{1}{2}, \infty\right), B. (0,12)(12,)\left(0, \frac{1}{2}\right) \cup\left(\frac{1}{2}, \infty\right), C. (,0)(0,)(-\infty, 0) \cup(0, \infty), D. (,)(-\infty, \infty).

See Solution

Problem 13494

Find the limit: limx4x2+95x+4\lim _{x \rightarrow-4} \frac{\sqrt{x^{2}+9}-5}{x+4}.

See Solution

Problem 13495

Given the curve 2y26=ysinx2 y^{2}-6=y \sin x for y>0y>0:
(a) Prove that dydx=ycosx4ysinx\frac{d y}{d x}=\frac{y \cos x}{4 y-\sin x}.
(b) Find the tangent line equation at (0,3)(0, \sqrt{3}).
(c) Find where the tangent line is horizontal for 0xπ0 \leq x \leq \pi.
(d) Determine if ff has a relative min, max, or neither at the point from (c). Justify.

See Solution

Problem 13496

Find the integral of (3x+2)5(3 x+2)^{5} with respect to xx.

See Solution

Problem 13497

Calculate the integral from 3 to 9 of x3(x4)\sqrt[3]{x}(x-4).

See Solution

Problem 13498

Find the position function s(t)s(t) and the velocity function v(t)v(t) for a particle with acceleration a(t)=6ta(t)=6t and s(0)=0s(0)=0.

See Solution

Problem 13499

Ordne den Funktionen f(x)f(x) die passenden Stammfunktionen F(x)F(x) zu: f(x)=2xf(x)=2 x, x4x^{4}, 4x3+3x24 x^{3}+3 x^{2}, 10x4210 x^{4}-2, 149x64x3\frac{14}{9} x^{6}-4 x^{3}.

See Solution

Problem 13500

Graph f(x)=e2x2x1f(x)=\frac{e^{2 x}}{2 x-1}. Find critical points using f(x)=4(x1)e2x(2x1)2f^{\prime}(x)=\frac{4(x-1)e^{2 x}}{(2 x-1)^{2}}. Choices: A. No points. B. At x=x=\square.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord