Calculus
Problem 28802
1. Use Newton's Law of Cooling to find for coffee cooling from to in 7 minutes. Then, find time to reach using .
See SolutionProblem 28803
Show that the following functions are continuous at specified points: a. at b. at c. at
See SolutionProblem 28807
Find the dimensions of a rectangular field (in ) that minimize fencing costs for 6 million sq ft area, divided in half.
See SolutionProblem 28808
Find the tangent line equation for at . Use the product rule for the derivative.
See SolutionProblem 28814
Jack walked for 2 hours at . Graph it, find the area under the curve, and conclude.
See SolutionProblem 28817
Approximate the area under from 1 to 2 using 10 rectangles with right endpoints. Round to the nearest hundredth.
See SolutionProblem 28818
Find the slope of a tangent line for a function with and on . Options: , , , .
See SolutionProblem 28819
A girl drops a stone (mass ) from a bridge high. Find its speed before hitting the water.
See SolutionProblem 28823
The area of a circle grows at 187 sq ft/sec. When the area is , find the circumference's rate of change.
See SolutionProblem 28828
Find the Riemann sum for on . Which expression simplifies to ? Options:
1.
2.
3. None of these
4.
See SolutionProblem 28829
Find the average rate of change of over the interval . Options: A. 1 B. 2 C. D. -1
See SolutionProblem 28831
A sphere's volume increases at 1276 cm³/s. Find the surface area change rate when the radius is 4 cm. Use and . Round to three decimal places.
See SolutionProblem 28832
Given is differentiable with increasing, , . Which statement about is true? I. II. III.
See SolutionProblem 28834
Find in where the average rate of change of on equals the instantaneous rate.
See SolutionProblem 28839
For the function , which statement about the Mean Value Theorem is correct on ?
See SolutionProblem 28841
Show that the function has an -intercept in the interval using the Intermediate Value theorem.
See SolutionProblem 28843
1. Given , find and .
2. For , does exist?
3. Find the derivatives:
(a)
(b)
(c)
(d)
4. Does satisfy ?
5. Express in terms of :
(a)
(b)
(c)
6. Find using implicit differentiation:
(a) ;
(b) .
7. Find tangent and normal line equations for:
(a) at
(b) at
See SolutionProblem 28844
Find the limit as approaches infinity for the expression $\frac{2+\frac{1}{x+4}}{3-\frac{1}{x^{2}}$.
See SolutionProblem 28847
Marcus takes of medication every , with remaining before the next dose. Find:
a) A recursive formula.
b) The steady amount of medication.
c) The time to reach this steady level.
See SolutionProblem 28849
Use the decay equation to solve these: a) Amount left from 50 mg after 90 s? b) Time to decay to 10% of 50 mg? c) Does initial size affect part b? Explain.
See SolutionProblem 28854
Estimate the limit as approaches -2 for using values . Enter DNE if it doesn't exist.
See SolutionProblem 28863
Lavaughn invested \3 \frac{7}{8} \%4 \frac{1}{4} \%$ quarterly. How much longer for Lavaughn's money to triple than Jeriel's?
See SolutionProblem 28866
Berechne die mittlere Änderungsrate von im Intervall und vergleiche sie mit der Änderungsrate bei .
See SolutionProblem 28868
Berechnen Sie die mittlere Änderungsrate von auf und vergleichen Sie sie mit der Änderungsrate bei .
See SolutionProblem 28872
Find points where the gradient is zero for these curves and determine if they are maxima or minima: , , .
See SolutionProblem 28873
Analyze if the graphs of the functions are increasing/decreasing and concave up/down. Write limit statements for end behavior. a) b) c) d)
See SolutionProblem 28874
1. Find the polynomial that fits the points (-2,1), (-1,4), (2,6).
2. Estimate .
3. Calculate .
4. Estimate .
See SolutionProblem 28875
Untersuche das Wachstum einer Ameisenkolonie mit für . a) Graph zeichnen. b) Zeitpunkt max. Koloniegröße? c) Zeitraum des Schrumpfens? d) Mittlere Wachstumsrate? e) Momentane Wachstumsrate bei ? Maximal und minimal?
See SolutionProblem 28876
A curve has the equation .
a. Express as .
b. Find .
i. Find the normal equation at .
ii. Show the -coordinate of stationary point can be written as , where is rational.
See SolutionProblem 28877
A curve is given by for .
a) Express as .
b) I) Find .
1. Determine the normal at .
百) Show the -coordinate of stationary point can be written as , where is rational.
See SolutionProblem 28878
Find points where the gradient is zero for these curves and determine if they are max or min using the second derivative:
1.
2.
3.
4.
5.
6.
7.
8.
9.
See SolutionProblem 28882
Sophie hat Fieber, beschrieben durch . Beantworte a)-g) zur Temperaturentwicklung.
See SolutionProblem 28889
Gegeben ist . Finde Nullstellen, Tangente bei , Punkte mit waagerechter Tangente und skizziere den Graphen.
See SolutionProblem 28896
Let . Which statements are true on ? I: EVT applies, II: IVT applies with , III: MVT applies.
See SolutionProblem 28897
Bestimme die Koordinaten der Punkte mit waagerechter Tangente für die Funktionen und . Skizziere den Graphen und leite ab.
See SolutionProblem 28898
Gegeben ist die Funktion . Finde Punkte mit waagerechter Tangente und skizziere den Graphen.
See Solution123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337