Calculus

Problem 28801

Calculate the limit: limt0e2t1sin(t)\lim _{t \rightarrow 0} \frac{e^{2 t}-1}{\sin (t)}.

See Solution

Problem 28802

1. Use Newton's Law of Cooling to find kk for coffee cooling from 200F200^{\circ} \mathrm{F} to 180F180^{\circ} \mathrm{F} in 7 minutes. Then, find time to reach 140F140^{\circ} \mathrm{F} using kk.

See Solution

Problem 28803

Show that the following functions are continuous at specified points: a. g(x)=x(x23x+5)g(x)=x(x^{2}-3x+5) at x=0x=0 b. f(x)=x24(x2+4x+4)(x2+2x+1)f(x)=\frac{x^{2}-4}{(x^{2}+4x+4)(x^{2}+2x+1)} at x=2x=2 c. g(x)=2x23x21g(x)=\frac{\sqrt{2-x^{2}}}{3x^{2}-1} at x=1x=-1

See Solution

Problem 28804

Find the derivative dydx\frac{d y}{d x} for the function y=x2cot(x)y=x^{2} \cot (x).

See Solution

Problem 28805

Find the derivative dydx\frac{d y}{d x} for the function y=sec(x)xy=\frac{\sec (x)}{x}.

See Solution

Problem 28806

Find the derivative dydx\frac{d y}{d x} for the function (x+cos(x))(1sin(x))(x+\cos (x))(1-\sin (x)).

See Solution

Problem 28807

Find the dimensions of a rectangular field (in ft\mathrm{ft}) that minimize fencing costs for 6 million sq ft area, divided in half.

See Solution

Problem 28808

Find the tangent line equation for y=xtan(x)y=x \tan (x) at x=π4x=\frac{\pi}{4}. Use the product rule for the derivative.

See Solution

Problem 28809

Find the value of (cos2(x))\left(\frac{\square \cos ^{2}(x)}{\square \square}\right) if ddx(cot(x))=csc2(x)\frac{d}{dx}(\cot(x))=-\csc^2(x).

See Solution

Problem 28810

Find the second derivative d2ydx2\frac{d^{2} y}{d x^{2}} for the function y=x14sin(x)y=x-\frac{1}{4} \sin (x).

See Solution

Problem 28811

Find the integral of tan7(x)sec4(x)\tan ^{7}(x) \sec ^{4}(x) with respect to xx.

See Solution

Problem 28812

Calculate the average rate of change for f(x)=xf(x)=\sqrt{x} from x1=81x_{1}=81 to x2=144x_{2}=144. Answer: \square.

See Solution

Problem 28813

Explain the discontinuity types for these functions: a. g(x)=x2+4x2x2g(x)=\frac{x^{2}+4}{x^{2}-x-2} at x=2x=2 b. h(x)=x2+4x+3x2x2h(x)=\frac{x^{2}+4x+3}{x^{2}-x-2} at x=1x=-1 c. f(x)={3x1,x22x,x>2f(x)=\begin{cases}3x-1, & x \leq 2 \\ 2x, & x>2\end{cases} at x=2x=2

See Solution

Problem 28814

Jack walked for 2 hours at 3mi/hr3 \mathrm{mi}/\mathrm{hr}. Graph it, find the area under the curve, and conclude.

See Solution

Problem 28815

Estimate the area under the curve of f f on [0,8] [0,8] using 4 left endpoints: f(0),f(2),f(4),f(6) f(0), f(2), f(4), f(6) .

See Solution

Problem 28816

A kid shoots an arrow with mass 122 g122 \mathrm{~g} at 13.75 m/s13.75 \mathrm{~m/s}. How high does it rise?

See Solution

Problem 28817

Approximate the area under y=2x2y=\frac{2}{x^{2}} from 1 to 2 using 10 rectangles with right endpoints. Round to the nearest hundredth.

See Solution

Problem 28818

Find the slope of a tangent line for a function f(x)f(x) with f(0)=0f(0)=0 and f(5)=10f(5)=10 on (0,5)(0,5). Options: 1010, 55, 22, 5-5.

See Solution

Problem 28819

A girl drops a stone (mass 325 g325 \mathrm{~g}) from a bridge 36.1 m36.1 \mathrm{~m} high. Find its speed before hitting the water.

See Solution

Problem 28820

Find the limit as xx approaches 3 for 2tan(62x)3ex33\frac{2 \tan (6-2 x)}{3 e^{x-3}-3} and simplify your answer.

See Solution

Problem 28821

Evaluate the limit: limni=1n4n(24+20ni)\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{4}{n}\left(24+\frac{20}{n} i\right).

See Solution

Problem 28822

Why does the function f(x)=xf(x)=|x| not meet the Mean Value Theorem conditions on [5,5][-5,5]?

See Solution

Problem 28823

The area of a circle grows at 187 sq ft/sec. When the area is 16π16 \pi, find the circumference's rate of change.

See Solution

Problem 28824

Find the integral of 2x32 x^{3} with respect to xx. What is 2x3dx\int 2 x^{3} d x?

See Solution

Problem 28825

Find the limit v=limx22x282f(2x)+xv = \lim _{x \rightarrow 2} \frac{2 x^{2}-8}{2 f(2 x)+x} using the given values of ff and ff'.

See Solution

Problem 28826

Find the limit as xx approaches 2 for 3tan(42x)2x32ln(x1)\frac{3 \tan (4-2 x)-2 x^{3}}{2 \ln (x-1)}. Simplify your answer.

See Solution

Problem 28827

Find the simplified form of Δx\Delta x for the Riemann sum of f(x)=x3+5x22x+3f(x)=x^{3}+5 x^{2}-2 x+3 on [1,6][-1,6]. Options: 6n\frac{6}{n}, 7n\frac{7}{n}, 1n-\frac{1}{n}, 5n\frac{5}{n}.

See Solution

Problem 28828

Find the Riemann sum for f(x)=x3+5x22x+3f(x)=x^{3}+5 x^{2}-2 x+3 on [1,6][-1,6]. Which expression simplifies to f(xi)f(x_{i})? Options:
1. 963ni+98n2i2+343n3i39-\frac{63}{n} i+\frac{98}{n^{2}} i^{2}+\frac{343}{n^{3}} i^{3}
2. 1+343n3i3+35n2i2+31+\frac{343}{n^{3}} i^{3}+\frac{35}{n^{2}} i^{2}+3
3. None of these
4. i3+5i22i+3i^{3}+5 i^{2}-2 i+3

See Solution

Problem 28829

Find the average rate of change of f(x)=(x2)2+3f(x)=(x-2)^{2}+3 over the interval 1x21 \leq x \leq 2. Options: A. 1 B. 2 C. 32\frac{3}{2} D. -1

See Solution

Problem 28830

Evaluate the limit: limni=1n6n((5+6ni)2+3(5+6ni)+9)\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{6}{n}\left(\left(5+\frac{6}{n} i\right)^{2}+3\left(5+\frac{6}{n} i\right)+9\right) and find the answer.

See Solution

Problem 28831

A sphere's volume increases at 1276 cm³/s. Find the surface area change rate when the radius is 4 cm. Use V=43πr3V=\frac{4}{3} \pi r^{3} and S=4πr2S=4 \pi r^{2}. Round to three decimal places.

See Solution

Problem 28832

Given ff is differentiable with f(x)f^{\prime}(x) increasing, f(4)=10f(4)=-10, f(6)=6f(6)=6. Which statement about c[4,6]c \in [4,6] is true? I. f(c)=8f^{\prime}(c)=8 II. f(c)=0f(c)=0 III. f(c)=0f^{\prime}(c)=0

See Solution

Problem 28833

Find the slope of the secant line for f(x)=x32x2+3f(x)=x^{3}-2x^{2}+3 if c=2c=2 satisfies the Mean Value Theorem.

See Solution

Problem 28834

Find xx in (0,π)(0, \pi) where the average rate of change of f(x)=sinxf(x)=\sin x on [0,π][0, \pi] equals the instantaneous rate.

See Solution

Problem 28835

Find the value of x=cx=c guaranteed by the Mean Value Theorem for y=x3x22x+1y=x^{3}-x^{2}-2x+1 on [1,4][-1,4].

See Solution

Problem 28836

Find the value of x=cx=c guaranteed by the Mean Value Theorem for y=x3x22x+1y=x^{3}-x^{2}-2x+1 on [1,4][-1, 4].

See Solution

Problem 28837

Find the value of cc that satisfies the Mean Value Theorem for f(x)=3x22x+4f(x)=3 x^{2}-2 x+4 on [0,2][0,2].

See Solution

Problem 28838

Find the average rate of change of g(x)=4x2+x1g(x)=4 x^{2}+x-1 on the interval 0.5x10.5 \leq x \leq 1.

See Solution

Problem 28839

For the function y=x3x22xy=x^{3}-x^{2}-2x, which statement about the Mean Value Theorem is correct on [1,2][-1,2]?

See Solution

Problem 28840

Estimate the instantaneous rate of change of f(x)=12(x+1)23f(x)=\frac{1}{2}(x+1)^{2}-3 at x=1x=1 using the interval method.

See Solution

Problem 28841

Show that the function f(x)=x4+x4f(x)=x^{4}+x-4 has an xx-intercept in the interval (1,2)(1,2) using the Intermediate Value theorem.

See Solution

Problem 28842

Calculate the integral 14(2x+4)dx\int_{1}^{4}(-2 x+4) d x.

See Solution

Problem 28843

1. Given f(0)=7,f(0)=2,g(0)=6,g(0)=10f(0)=7, f'(0)=2, g(0)=6, g'(0)=-10, find (fg)(0)(fg)'(0) and (fg)(0)\left(\frac{f}{g}\right)'(0).
2. For f(x)={x2+xx12x2x>1f(x)=\left\{\begin{array}{cc}x^{2}+x & x \leq 1 \\ 2x^{2} & x>1\end{array}\right., does f(1)f'(1) exist?
3. Find the derivatives: (a) y=sin(3+x)2y=\sin(3+x)^{2} (b) y=2secx1+secxy=\frac{2 \sec x}{1+\sec x} (c) y=x2x+2y=\sqrt{\frac{x-2}{x+2}} (d) y=(x6+3)2(2x)4y=(x^{6}+3)^{2}(2-x)^{4}
4. Does y=2xx2y=\sqrt{2x-x^{2}} satisfy y3y+1=0y^{3}y''+1=0?
5. Express ff' in terms of gg': (a) f(x)=x3g(x)f(x)=x^{3}g(x) (b) f(x)=g(x2)f(x)=g(x^{2}) (c) f(x)=cosg(x)f(x)=\cos g(x)
6. Find dydx\frac{dy}{dx} using implicit differentiation: (a) y3xy+2cosxy=2y^{3}-xy+2\cos xy=2; (b) tanxy=2yx\tan\frac{x}{y}=2y-x.
7. Find tangent and normal line equations for: (a) y=x5xy=x\sqrt{5-x} at (1,2)(1,2) (b) y=1+4sinxy=\sqrt{1+4\sin x} at (0,1)(0,1)

See Solution

Problem 28844

Find the limit as xx approaches infinity for the expression $\frac{2+\frac{1}{x+4}}{3-\frac{1}{x^{2}}$.

See Solution

Problem 28845

Find the limit: limx2x+53x32x\lim _{x \rightarrow \infty} \frac{2 x+5}{3 x^{3}-2 x}.

See Solution

Problem 28846

Differentiate the function f(x)=x6.51x7.5f(x) = x^{6.5} - \frac{1}{x^{7.5}}.

See Solution

Problem 28847

Marcus takes 350mg350 \mathrm{mg} of medication every 6h6 \mathrm{h}, with 32%32 \% remaining before the next dose. Find:
a) A recursive formula. b) The steady amount of medication. c) The time to reach this steady level.

See Solution

Problem 28848

Evaluate the integral: dxx+x23\int \frac{d x}{\sqrt{x}+\sqrt[3]{x^{2}}}

See Solution

Problem 28849

Use the decay equation A(t)=A0(12)t3.1A(t)=A_{0}\left(\frac{1}{2}\right)^{\frac{t}{3.1}} to solve these: a) Amount left from 50 mg after 90 s? b) Time to decay to 10% of 50 mg? c) Does initial size affect part b? Explain.

See Solution

Problem 28850

Find the derivative of the loss function
E(w)=n=1N{tnlnyn+(1tn)ln(1yn)} E(w)=-\sum_{n=1}^{N}\left\{t_{n} \ln y_{n}+\left(1-t_{n}\right) \ln \left(1-y_{n}\right)\right\}
with respect to aka_{k}, showing
Eak=(1yk2)(yktk) \frac{\partial E}{\partial a_{k}}=\left(1-y_{k}^{2}\right)\left(y_{k}-t_{k}\right) .

See Solution

Problem 28851

Find the limit: limx211(8)x+15,0007(8)x9\lim _{x \rightarrow \infty} \frac{2 \sqrt{11}(8)^{x}+15,000}{7(8)^{x}-9}.

See Solution

Problem 28852

Find the limit: limx95x7\lim _{x \rightarrow-\infty} \frac{9}{5^{x}-7}.

See Solution

Problem 28853

Find the derivative of the function f(x)=ln[x6(x+5)9(x3+1)10]f(x)=\ln \left[x^{6}(x+5)^{9}(x^{3}+1)^{10}\right].

See Solution

Problem 28854

Estimate the limit as xx approaches -2 for 8x+16x26x16\frac{8x + 16}{x^2 - 6x - 16} using values x=1.9,1.99,1.999,1.9999,2.1,2.01,2.001,2.0001x=-1.9,-1.99,-1.999,-1.9999,-2.1,-2.01,-2.001,-2.0001. Enter DNE if it doesn't exist.

See Solution

Problem 28855

Find the derivative f(x)f^{\prime}(x) of the function f(x)=arcsin6(2x+4)f(x)=\arcsin^{6}(2x+4).

See Solution

Problem 28856

Evaluate the integral: 1e52xdx\int_{1}^{e^{5}} \frac{2}{x} \, dx exactly.

See Solution

Problem 28857

Sketch the graph of f(x)={6x, if x<3x, if 3x<3(x3)2 if x3f(x)=\left\{\begin{array}{ll}6-x, & \text { if } x<-3 \\ x, & \text { if }-3 \leq x<3 \\ (x-3)^{2} & \text { if } x \geq 3\end{array}\right. and find these limits: limx3f(x)\lim _{x \rightarrow-3^{-}} f(x), limx3+f(x)\lim _{x \rightarrow-3^{+}} f(x), limx3f(x)\lim _{x \rightarrow 3^{-}} f(x), limx3+f(x)\lim _{x \rightarrow 3^{+}} f(x), limx3f(x)\lim _{x \rightarrow 3} f(x).

See Solution

Problem 28858

Find the derivative of the loss function E(w)=n=1N{tnlnyn+(1tn)ln(1yn)}E(\mathbf{w})=-\sum_{n=1}^{N}\left\{t_{n} \ln y_{n}+\left(1-t_{n}\right) \ln \left(1-y_{n}\right)\right\} with respect to aka_{k}, showing Eak=(1yk2)(yktk)\frac{\partial E}{\partial a_{k}}=\left(1-y_{k}^{2}\right)\left(y_{k}-t_{k}\right).

See Solution

Problem 28859

Find δ\delta for f(x)=x23\mathrm{f}(x)=x^{\frac{2}{3}} as x8x \rightarrow 8 with ε=0.01\varepsilon = 0.01 such that f(x)L<ε|f(x)-L|<\varepsilon.

See Solution

Problem 28860

Find δ\delta for ε=0.1\varepsilon=0.1 in the limit: limx64x+6=30\lim _{x \rightarrow 6} 4 x+6=30.

See Solution

Problem 28861

Estimate f(2.03)f(2.03) using linearization with f(x)=4x3x22f^{\prime}(x)=\frac{4 x^{3}}{x^{2}-2} and f(2)=5f(2)=5.

See Solution

Problem 28862

Find the integral of x252x3x^{2} \cdot 5^{2x^{3}} with respect to xx.

See Solution

Problem 28863

Lavaughn invested \310at310 at 3 \frac{7}{8} \%continuousinterest.Jerielinvested$310at continuous interest. Jeriel invested \$310 at 4 \frac{1}{4} \%$ quarterly. How much longer for Lavaughn's money to triple than Jeriel's?

See Solution

Problem 28864

Check if the function y=2xx2y=\sqrt{2x-x^{2}} satisfies the equation y3y+1=0y^{3} y^{\prime \prime}+1=0.

See Solution

Problem 28865

Find the limit: limx(2x+52x)3x7\lim _{x \rightarrow \infty}\left(\frac{2 x+5}{2 x}\right)^{3 x-7}.

See Solution

Problem 28866

Berechne die mittlere Änderungsrate von f(x)=x2f(x)=x^{2} im Intervall [a1;a+1][a-1 ; a+1] und vergleiche sie mit der Änderungsrate bei aa.

See Solution

Problem 28867

Find the limit as xx approaches 0 for the expression 1cosxx2\frac{1-\cos x}{x^{2}}.

See Solution

Problem 28868

Berechnen Sie die mittlere Änderungsrate von f(x)=x2f(x)=x^{2} auf [a1;a+1][a-1; a+1] und vergleichen Sie sie mit der Änderungsrate bei aa.

See Solution

Problem 28869

Evaluate 6×4=246^{\prime} \times 4=24^{\prime} and find the derivative of y=x5xy=x \sqrt{5-x}, i.e., yy^{\prime}.

See Solution

Problem 28870

Find the limit as xx approaches infinity: limx((x+3)4x+3)54x\lim _{x \rightarrow \infty}\left(\frac{(x+3)-4}{x+3}\right)^{5-4 x}.

See Solution

Problem 28871

Find the derivative of the function y=x5xy=x \sqrt{5-x}, denoted as yy^{\prime}.

See Solution

Problem 28872

Find points where the gradient is zero for these curves and determine if they are maxima or minima: y=4x2+6xy=4 x^{2}+6 x, y=9+xx2y=9+x-x^{2}, y=x3x2x+1y=x^{3}-x^{2}-x+1.

See Solution

Problem 28873

Analyze if the graphs of the functions are increasing/decreasing and concave up/down. Write limit statements for end behavior. a) f(x)=2(4)xf(x)=2(4)^{x} b) g(x)=2(0.4)xg(x)=2(0.4)^{x} c) f(x)=2(4)xf(x)=-2(4)^{x} d) g(x)=2(0.4)xg(x)=-2(0.4)^{x}

See Solution

Problem 28874

1. Find the polynomial f(x)f(x) that fits the points (-2,1), (-1,4), (2,6).
2. Estimate f(1)f(1).
3. Calculate 12f(x)dx\int_{-1}^{2} f(x) \, dx.
4. Estimate ddxf(x)x=1\left.\frac{d}{dx} f(x)\right|_{x=1}.

See Solution

Problem 28875

Untersuche das Wachstum einer Ameisenkolonie mit N(t)=164t3932t2+32t+1N(t)=\frac{1}{64} t^{3}-\frac{9}{32} t^{2}+\frac{3}{2} t+1 für 0t90 \leq t \leq 9. a) Graph zeichnen. b) Zeitpunkt max. Koloniegröße? c) Zeitraum des Schrumpfens? d) Mittlere Wachstumsrate? e) Momentane Wachstumsrate bei t=5t=5? Maximal und minimal?

See Solution

Problem 28876

A curve has the equation y=12+z222,x>0y=\frac{12+z^{2} \sqrt{2}}{2}, x>0.
a. Express 12+x22x\frac{12+x^{2} \sqrt{2}}{x} as 12x3+x412 x^{3}+x^{4}.
b. Find dydx\frac{d y}{d x}.
i. Find the normal equation at x=4x=4.
ii. Show the xx-coordinate of stationary point PP can be written as kk, where kk is rational.

See Solution

Problem 28877

A curve is given by y=12+z222y=\frac{12+z^{2} \sqrt{2}}{2} for x>0x>0.
a) Express 12+z2xz\frac{12+z^{2} \sqrt{x}}{z} as [2z3+x4[2 z^{3}+x^{4}. b) I) Find dydx\frac{d y}{d x}.
1. Determine the normal at z=4z=4. 百) Show the zz-coordinate of stationary point PP can be written as rtrt, where kk is rational.

See Solution

Problem 28878

Find points where the gradient is zero for these curves and determine if they are max or min using the second derivative:
1. y=4x2+6xy=4x^2+6x
2. y=x(x24x3)y=x(x^2-4x-3)
3. y=x3xy=x-3\sqrt{x}
4. y=9+xx2y=9+x-x^2
5. y=x3x2x+1y=x^3-x^2-x+1
6. y=x+1xy=x+\frac{1}{x}
7. y=x2+54xy=x^2+\frac{54}{x}
8. y=x12(x6)y=x^{\frac{1}{2}}(x-6)
9. y=x412x2y=x^4-12x^2

See Solution

Problem 28879

Evaluate the integral: sinxcosxdxcos2xsin2x\int \frac{\sin x \cos x \, dx}{\cos^{2} x - \sin^{2} x}.

See Solution

Problem 28880

Calculate the integral: 3x+2(3x2+4x+2)4dx\int \frac{3 x+2}{(3 x^{2}+4 x+2)^{4}} d x

See Solution

Problem 28881

Bestimme die Tangentengleichung der Funktion k(x)=x3+2lnxk(x)=x^{3}+2 \ln x im Punkt x=1x=1.

See Solution

Problem 28882

Sophie hat Fieber, beschrieben durch f(t)=1,5te0,5t+1+37f(t)=1,5 \cdot t \cdot e^{-0,5 t+1}+37. Beantworte a)-g) zur Temperaturentwicklung.

See Solution

Problem 28883

Evaluate the integral: (4+sinx)5cosxdx\int(4+\sin x)^{5} \cos x \, dx

See Solution

Problem 28884

Find the derivative dydx\frac{d y}{d x} for these functions: a) y=4x+x2(x+2)y=\frac{4}{x}+\frac{x^{2}}{(x+2)}, b) y=x2(4x2+1)+2x3y=\sqrt{x-2}(4 x^{2}+1)+2 x^{3}.

See Solution

Problem 28885

Find the integral of xelnxx e^{\ln x} with respect to xx: xelnxdx\int x e^{\ln x} dx.

See Solution

Problem 28886

Evaluate the integral: xdx(4x2+1)1/5\int \frac{x \, dx}{(4x^{2}+1)^{1/5}}

See Solution

Problem 28887

Ergänzen Sie die Ableitungen: a) f(x)=sin(x)+x2f'(x)=\square \cdot \sin (x)+x^{2}, b) f(x)=cos(4x)(2x3)f'(x)=\square \cdot \cos (4 x)-(2 x-3).

See Solution

Problem 28888

Bestimmen Sie die Ableitung: a) f(x)=x2sin(x)f(x)=x^{2} \cdot \sin (x); b) f(x)=0x3f(x)=0 x-3.

See Solution

Problem 28889

Gegeben ist f(x)=(x1)(x3)2f(x)=(x-1)(x-3)^{2}. Finde Nullstellen, Tangente bei P(1f(1))P(1 \mid f(1)), Punkte mit waagerechter Tangente und skizziere den Graphen.

See Solution

Problem 28890

Find the absolute extrema of f(x)=2x36xf(x)=2 x^{3}-6 x on the interval [2,0][-2,0].

See Solution

Problem 28891

Find the derivative of the function: f(x)=x3(x+5)f(x) = \sqrt[3]{x} - (\sqrt{x} + 5).

See Solution

Problem 28892

Find the limit: limx01x+1x\lim _{x \rightarrow 0} \frac{1-\sqrt{x+1}}{x}.

See Solution

Problem 28893

Find the derivative dydx\frac{dy}{dx} for: y=x3(x2+5)4y = x^{3}(x^{2} + 5)^{4} and y=x5+1xx1x+2y = x^{-5} + \frac{1}{x} - \frac{x-1}{x+2}.

See Solution

Problem 28894

Find the value of the series: n=1lnnn\sum_{n=1}^{\infty} \frac{\ln n}{n}.

See Solution

Problem 28895

Differentiate the function: f(x)=7x2(1x2+1)f(x) = \frac{7x}{2} \left( \frac{1}{x^2 + 1} \right).

See Solution

Problem 28896

Let f(x)=xf(x)=|x|. Which statements are true on [2,1][-2,1]? I: EVT applies, II: IVT applies with f(c)=1.5f(c)=1.5, III: MVT applies.

See Solution

Problem 28897

Bestimme die Koordinaten der Punkte mit waagerechter Tangente für die Funktionen f(x)=(2x3)cos(x)f(x)=(2x-3) \cdot \cos(x) und f(x)=1xsin(x)f(x)=\frac{1}{x} \cdot \sin(x). Skizziere den Graphen und leite ff ab.

See Solution

Problem 28898

Gegeben ist die Funktion f(x)=(x1)(x3)2f(x) = (x-1)(x-3)^2. Finde Punkte mit waagerechter Tangente und skizziere den Graphen.

See Solution

Problem 28899

Resuelve la integral cos2(x)sin(x)dx\int \cos^2(x) \sin(x) \, dx.

See Solution

Problem 28900

Find the value(s) of xx where f(x)f(x) has a point of inflection given f(x)=(3x+1)23f^{\prime}(x)=(3 x+1)^{\frac{2}{3}}.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord