Calculus

Problem 28501

Differentiate y=x234xy=x^{2} \sqrt{3-4 x} with respect to xx.

See Solution

Problem 28502

Find the limit: limx0ex1x\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}.

See Solution

Problem 28503

Find the limit: limx0sin(4x)x\lim _{x \rightarrow 0} \frac{\sin (4 x)}{x}.

See Solution

Problem 28504

Find the limit: limxπ23sec(x)+5tan(x)\lim _{x \rightarrow \frac{\pi}{2}} \frac{3 \sec (x)+5}{\tan (x)}.

See Solution

Problem 28505

Which statement is guaranteed by the Intermediate Value Theorem for the function ff continuous on [2,4][2,4] with f(2)=10f(2)=10 and f(4)=20f(4)=20?

See Solution

Problem 28506

Dane są zbieżny szereg n=1+an\sum_{n=1}^{+\infty} a_{n} i bezwzględnie zbieżny n=1+bn\sum_{n=1}^{+\infty} b_{n}. Udowodnij zbieżność n=1+cn\sum_{n=1}^{+\infty} c_{n}, gdzie cn:=bn(3+4an+5k=1nak)c_{n}:=b_{n} \cdot\left(3+4 a_{n}+5 \sum_{k=1}^{n} a_{k}\right). Czy jest bezwzględnie zbieżny?

See Solution

Problem 28507

Find the minimum value of f(x)=xlnxf(x)=x \ln x. Options: (A) e-e, (B) -1, (C) 1e-\frac{1}{e}, (D) 0, (E) no minimum.

See Solution

Problem 28508

Differentiate the function (3x2+2)42x1\frac{(3 x^{2}+2)^{4}}{\sqrt{2 x-1}}.

See Solution

Problem 28509

Find the limit as xx approaches 15: limx154=\lim _{x \rightarrow 15} 4=\square

See Solution

Problem 28510

Find the limit: limx0tan1(x)x8x3\lim _{x \rightarrow 0} \frac{\tan ^{-1}(x)-x}{8 x^{3}}.

See Solution

Problem 28511

Evaluate the limit as zz approaches -1 for the expression 7z25z7 z^{2} - 5 z.

See Solution

Problem 28512

Calculate the limit: limxπsin(x)1cos(x)\lim _{x \rightarrow \pi} \frac{\sin (x)}{1-\cos (x)}.

See Solution

Problem 28513

Evaluate the limit as x approaches 5 for the expression 5x - 3. What is the result?

See Solution

Problem 28514

Find the limit as xx approaches infinity of 7xln(150x+ex)\frac{7 x}{\ln(150 x + e^{x})}.

See Solution

Problem 28515

Find the limit as aa approaches 6 for the expression a3216a6\frac{a^{3}-216}{a-6}.

See Solution

Problem 28516

Find the limit as tt approaches 6 for the expression 1t16t6\frac{\frac{1}{t}-\frac{1}{6}}{t-6}.

See Solution

Problem 28517

Find the limit: limx2x26x+8x2\lim _{x \rightarrow 2} \frac{x^{2}-6 x+8}{x-2}

See Solution

Problem 28518

Find the limit: limx0ex+ex2sin(x)+tan(x)\lim _{x \rightarrow 0^{-}} \frac{e^{x}+e^{-x}-2}{\sin (x)+\tan (x)}.

See Solution

Problem 28519

Calculate the limit: limx16x4x16\lim _{x \rightarrow 16} \frac{\sqrt{x}-4}{x-16}.

See Solution

Problem 28520

Find the limit as xx approaches π2\frac{\pi}{2} for the expression (tan(x)sec(x))(\tan (x)-\sec (x)).

See Solution

Problem 28521

Find the remaining mass of a 100-mg Cesium-137 sample after 180 years, given its half-life is 30 years.

See Solution

Problem 28522

Evaluate the limit as aa approaches 5: lima51a+8113a5\lim _{a \rightarrow 5} \frac{\frac{1}{a+8}-\frac{1}{13}}{a-5}.

See Solution

Problem 28523

Find the limit as ss approaches 25 for the expression 25s5s\frac{25-s}{5-\sqrt{s}}.

See Solution

Problem 28524

Find the limit as xx approaches 49 for the expression x7x49\frac{\sqrt{x}-7}{x-49}.

See Solution

Problem 28525

Calculate the limit as xx approaches 4 for the expression x35x2+2x+8x4\frac{x^{3}-5 x^{2}+2 x+8}{x-4}.

See Solution

Problem 28526

Find the limits for the piecewise function f(x)={4xx2 if x22x7 if x>2f(x)=\left\{\begin{array}{ll}4-x-x^{2} & \text { if } x \leq 2 \\ 2 x-7 & \text { if } x>2\end{array}\right. at x=2x=2.

See Solution

Problem 28527

Sketch the graph of f(x)={6x,x<3x,3x<3(x3)2,x3f(x)=\left\{\begin{array}{ll}6-x, & x<-3 \\ x, & -3 \leq x<3 \\ (x-3)^{2}, & x \geq 3\end{array}\right. and find limx3f(x)\lim _{x \rightarrow-3^{-}} f(x).

See Solution

Problem 28528

Is there a limit to the instantaneous rate of change for f(x)=x2f(x)=x^{2}? Explain your reasoning.

See Solution

Problem 28529

Evaluate the limit: limx03x+164x\lim _{x \rightarrow 0} \frac{\sqrt{3x + 16} - 4}{x}

See Solution

Problem 28530

Find the limit as xx approaches 0 for the expression xx\frac{|x|}{x}. What is the result?

See Solution

Problem 28531

Find the limit: limh0(3+h)29h\lim _{h \rightarrow 0} \frac{(3+h)^{2}-9}{h}

See Solution

Problem 28532

Find the lower Riemann sum for f(x)=2x2f(x)=2-x^{2} on [0,1][0,1] using the partition P=[0,12,34,1]P=[0, \frac{1}{2}, \frac{3}{4}, 1].

See Solution

Problem 28533

Find critical numbers for: (a) y=x45(x4)2y=x^{\frac{4}{5}}(x-4)^{2}, (b) g(θ)=4θtanθg(\theta)=4\theta-\tan\theta.

See Solution

Problem 28534

Find the local maximum of f(x)=x6ex f(x) = x^{6} e^{-x} by finding critical points with f(x)=0 f'(x)=0 and using the derivative test.

See Solution

Problem 28535

Solve the differential equation y(x+1)dydx=x(1+y2)y(x+1) \frac{d y}{d x}=x(1+y^{2}).

See Solution

Problem 28536

Find the upper Riemann sum for f(x)=x2f(x)=x^{2} on [1,1][-1,1] using the partition P=[1,12,12,34,1]P=\left[-1,-\frac{1}{2}, \frac{1}{2}, \frac{3}{4}, 1\right].

See Solution

Problem 28537

Estimate the integral 0122x2dx\int_{0}^{12} 2 x^{2} d x using Riemann sums with the right endpoint method and n=6n=6.

See Solution

Problem 28538

Find the lower Riemann sum for f(x)=sin(x)f(x)=\sin(x) on [0,π][0, \pi] using the partition P=[0,π3,3π4,π]P=\left[0, \frac{\pi}{3}, \frac{3 \pi}{4}, \pi\right].

See Solution

Problem 28539

Given the curve on the xy-plane, find the intervals where ff is increasing based on the points provided. (Use interval notation.)

See Solution

Problem 28540

A balloon rises at 8ft/sec8 \mathrm{ft/sec} from 150 feet away. How fast is the distance to the observer increasing at 50 feet high?

See Solution

Problem 28541

Find the diver's speed upon hitting the water if they jump with 2.00m/s2.00 \, \mathrm{m/s} from a 10m10 \, \mathrm{m} board.

See Solution

Problem 28542

A person 2m tall moves away from an 8m light. If their shadow grows at 4/94/9 m/s, find their walking speed in m/s.

See Solution

Problem 28543

An acute angle in a right triangle increases at 3 rad/min. If the hypotenuse is 5 cm5 \mathrm{~cm}, find the rate of the opposite side's increase when it is 3 cm3 \mathrm{~cm}.

See Solution

Problem 28544

A square's sides grow at 3 cm/s3 \mathrm{~cm/s}. What is the area increase rate when sides are 5 cm5 \mathrm{~cm}?
An observer 50 m south of an intersection sees a car moving east at 45 m/s. How fast is it moving away after 5 seconds?

See Solution

Problem 28545

Evaluate the surface integral:
Sf(x,y,z)dS=2π11g(z0+t)dt\iint_{S} f(x, y, z) \, dS = 2\pi \int_{-1}^{1} g(z_{0} + t) \, dt.

See Solution

Problem 28546

Find the radius increase rate of a marshmallow (cylinder) with radius 1 cm1 \mathrm{~cm}, height 3 cm3 \mathrm{~cm}, expanding at 2 cm3/sec2 \mathrm{~cm}^{3}/\mathrm{sec} when height is 6 cm6 \mathrm{~cm}.

See Solution

Problem 28547

A pretzel maker rolls dough into a cylinder. If the length increases at 0.5 cm/sec0.5 \mathrm{~cm/sec}, find the radius change rate at radius 1 cm1 \mathrm{~cm} and length 5 cm5 \mathrm{~cm}.

See Solution

Problem 28548

Check if the function ff is continuous at x=ax=a where f(x)={2x3,x2x2,x>2f(x)=\begin{cases}2x-3 & , x \leq 2 \\ x^2 & , x>2\end{cases} and a=2a=2.

See Solution

Problem 28549

Find the linear approximation of f(x)=3xe2x10f(x)=3 x e^{2 x-10} at x=5x=5.

See Solution

Problem 28550

Find the linear approximation of h(t)=t46t3+3t7h(t)=t^{4}-6 t^{3}+3 t-7 at t=3t=-3.

See Solution

Problem 28551

Determine if f(x)=0f(x)=0 for some xx in [5,1][-5,-1] given f(5)=6f(-5)=-6 and f(1)=6f(-1)=6. Choices: Sometimes true, Always false, Always true.

See Solution

Problem 28552

True or False: If f(x)f(x) is continuous at x=3x=-3 and f(3)=4f(-3)=4, then limx3f(x)=4\lim_{x \to -3} f(x) = 4.

See Solution

Problem 28553

Find the linear approximation for the following functions at the specified points:
1. f(x)=cos(2x)f(x)=\cos(2x) at x=πx=\pi
2. h(z)=ln(z2+5)h(z)=\ln(z^{2}+5) at z=2z=2

See Solution

Problem 28554

Calculate (a) the zero-point energy of a hydrogen atom in a 1D box of length 1.00 cm1.00 \mathrm{~cm} and (b) the ratio to thermal energy kBTk_{B} T at 300 K300 \mathrm{~K}.

See Solution

Problem 28555

Find the linear approximation of f(x)=cos(2x)f(x)=\cos(2x) at the point x=πx=\pi.

See Solution

Problem 28556

Given the piecewise function f(x)={2x+19 if x<5x+86 if x>52 if x=5f(x)=\left\{\begin{array}{ll}2 x+19 & \text { if } x<-5 \\ \sqrt{x+86} & \text { if } x>-5 \\ 2 & \text { if } \quad x=-5\end{array}\right., evaluate statements about continuity at x=5x=-5.

See Solution

Problem 28557

Find the constant kk that makes the function ff continuous at x=0x=0 where:
f(x)={B+x32x+1,x>3Ax,x=3sin(3x9)x3+x3x3,x<3 f(x)=\begin{cases} B+\frac{x-3}{2-\sqrt{x+1}}, & x>3 \\ Ax, & x=3 \\ \frac{\sin(3x-9)}{x-3}+\frac{|x-3|}{|x|-3}, & x<3 \end{cases}

See Solution

Problem 28558

Find the value of the infinite series: n=4(12)n\sum_{n=4}^{\infty}\left(\frac{1}{2}\right)^{n}.

See Solution

Problem 28559

Find the limit: limxπsin(x)1cos(x)=Numb\lim _{x \rightarrow \pi} \frac{\sin (x)}{1-\cos (x)}=N u m b

See Solution

Problem 28560

Find the limit: limxπsin(x)1cos(x)\lim _{x \rightarrow \pi} \frac{\sin (x)}{1-\cos (x)}

See Solution

Problem 28561

Find xx values for which the series n=0(x+9)n2n\sum_{n=0}^{\infty} \frac{(x+9)^{n}}{2^{n}} converges and its sum.

See Solution

Problem 28562

Find the limit as nn approaches infinity for n=112n\sum_{n=1}^{\infty} \frac{1}{2^{n}} and show it equals 1.

See Solution

Problem 28563

Find the limit of cn=ln(9n713n+4)c_{n}=\ln \left(\frac{9 n-7}{13 n+4}\right) as nn approaches infinity.

See Solution

Problem 28564

For problems 1-4, find linear approximations at the specified points. 1. f(x)=cos(2x)f(x)=\cos(2x) at x=πx=\pi 2. h(z)=ln(z2+5)h(z)=\ln(z^2+5) at z=2z=2 3. g(x)=29x3x2x3g(x)=2-9x-3x^2-x^3 at x=1x=-1 4. g(t)=esin(t)g(t)=e^{\sin(t)} at t=4t=-4. For problem 5, approximate sin(2)\sin(2) and sin(15)\sin(15) using h(y)=sin(y+1)h(y)=\sin(y+1) at y=0y=0. For problem 6, approximate 315\sqrt[5]{31} and 35\sqrt[5]{3} using R(t)=t5R(t)=\sqrt[5]{t} at t=32t=32. For problem 7, approximate e4e4e^{-4}e^{-4} using h(x)=e1xh(x)=e^{1-x} at x=1x=1.

See Solution

Problem 28565

Calculate the sum of the series: k=14k+35k1\sum_{k=1}^{\infty} \frac{4^{k+3}}{5^{k-1}}.

See Solution

Problem 28566

Find the volume V=2π02(6xx2)(x+1)dxV = 2\pi \int_{0}^{2} (6 - x - x^2) (x + 1) \, dx.

See Solution

Problem 28567

Find the limit: limncn\lim _{n \rightarrow \infty} c_{n} where cn=ln(9n713n+4)c_{n}=\ln \left(\frac{9 n-7}{13 n+4}\right).

See Solution

Problem 28568

Find the volume of the solid formed by revolving the area between y=secxy=\sec x, y=0y=0, x=π4x=-\frac{\pi}{4}, x=π4x=\frac{\pi}{4} about y=2y=-2. Select one:
π4π4π((secx+2)24)dx \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \pi\left((\sec x+2)^{2}-4\right) d x
none
π4π4π(sec2x2)dx \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \pi\left(\sec ^{2} x-2\right) d x
π4π4π(secx+4)2dx \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \pi(\sec x+4)^{2} d x
π4π4π(secx2)2dx \int_{\frac{\pi}{4}}^{\frac{\pi}{4}} \pi(\sec x-2)^{2} d x

See Solution

Problem 28569

Solve 2ut2=1162ux2\frac{\partial^{2} u}{\partial t^{2}}=\frac{1}{16} \frac{\partial^{2} u}{\partial x^{2}} with B.C. u(0,t)=0u(0, t)=0, ux(1,t)=0\frac{\partial u}{\partial x}(1, t)=0 and I.C. u(x,0)=x2xu(x, 0)=x^{2}-x, ut(x,0)=x+1\frac{\partial u}{\partial t}(x, 0)=x+1 for 0<x<10<x<1. Find u(14,8)u\left(\frac{1}{4}, 8\right).

See Solution

Problem 28570

Find the length of the curve y=x+2y=\sqrt{x+2} for 1x0-1 \leq x \leq 0. Which integral represents this length?

See Solution

Problem 28571

Find the length of the curve y=x+4y=\sqrt{x+4} for 3x2-3 \leq x \leq -2. Select the correct integral:
324x+174x+16dx\int_{-3}^{-2} \sqrt{\frac{4 x+17}{4 x+16}} dx

See Solution

Problem 28572

Find the surface area of the curve x=2y x=2\sqrt{y} from y=14 y=\frac{1}{4} to y=12 y=\frac{1}{2} around the y-axis. Select one:
1. 14124πy+1dy \int_{\frac{1}{4}}^{\frac{1}{2}} 4 \pi \sqrt{y+1} dy
2. None
3. 14122π2y+1dy \int_{\frac{1}{4}}^{\frac{1}{2}} 2 \pi \sqrt{2y+1} dy
4. 14122πy+1dy \int_{\frac{1}{4}}^{\frac{1}{2}} 2 \pi \sqrt{y+1} dy
5. 1412πy+1dy \int_{\frac{1}{4}}^{\frac{1}{2}} \pi \sqrt{y+1} dy

See Solution

Problem 28573

Find the length of the curve y=1xt21dty=\int_{1}^{x} \sqrt{t^{2}-1} d t for 1x31 \leq x \leq \sqrt{3}.

See Solution

Problem 28574

Find the curve length for x=(y+2)2x=(y+2)^{2} from y=1y=1 to y=4y=4: 14(2y+4)dy\int_{1}^{4}(2y+4) dy.

See Solution

Problem 28575

Find f(π2)f^{\prime \prime}\left(\frac{\pi}{2}\right) for f(x)=sin(3x)f(x)=\sin(3x).

See Solution

Problem 28576

Find the length of the curve defined by x=(y1)2x=(y-1)^{2} for 1y41 \leq y \leq 4.

See Solution

Problem 28577

Find the surface area of the curve x=3yx=3 \sqrt{y} from y=19y=\frac{1}{9} to y=29y=\frac{2}{9} rotated about the yy-axis.

See Solution

Problem 28578

Find the length of the curve y=23(x+1)3/2y=\frac{2}{3}(x+1)^{3/2} for 3x43 \leq x \leq 4. Choose the correct answer.

See Solution

Problem 28579

Find the surface area from revolving y=1πsin(5x)y=\frac{1}{\pi} \sin (5 x), 0xπ100 \leq x \leq \frac{\pi}{10} about the xx-axis.

See Solution

Problem 28580

Find the surface area of the curve y=1πsin(x)y=\frac{1}{\pi} \sin (x) from 00 to π2\frac{\pi}{2} revolved around the xx-axis.

See Solution

Problem 28581

Find the length of the curve x=12y+43,1y4x=12 \sqrt{y}+43, 1 \leq y \leq 4. Select the correct integral expression for this length.

See Solution

Problem 28582

Displacement of a slide valve is given by x=Acos(ωt)+Bsin(ωt)x=A \cos (\omega t)+B \sin (\omega t). Find velocity, acceleration, and times when velocity is zero.

See Solution

Problem 28583

Differentiate the function y=x5x26xy=\frac{x \sqrt{5-x^{2}}}{6-x}.

See Solution

Problem 28584

Find the length of the curve x=(y+1)2x=(y+1)^{2} for 1y41 \leq y \leq 4. Choose the correct integral expression.

See Solution

Problem 28585

Find the surface area of the curve x=2cos(5y)x=2 \sqrt{\cos (5 y)} for π20yπ20-\frac{\pi}{20} \leq y \leq \frac{\pi}{20} revolved around the yy-axis.

See Solution

Problem 28586

Find the surface area of the curve y=2πx2y=\frac{2}{\pi x^{2}} from x=1x=1 to x=4x=4 rotated around the xx-axis.

See Solution

Problem 28587

Find the surface area of the curve x=2cos(3y)x=2 \sqrt{\cos (3 y)} from y=π12y=-\frac{\pi}{12} to y=π12y=\frac{\pi}{12} about the yy-axis.

See Solution

Problem 28588

Find the curve length of y=(1/3)(x2+2)3/2y=(1 / 3)(x^{2}+2)^{3 / 2} from x=0x=0 to x=3x=3.

See Solution

Problem 28589

Find dydx\frac{d y}{d x} given x3+y3=3xyx^{3}+y^{3}=3 x y. Options: yx2y2x\frac{y-x^{2}}{y^{2}-x}, x21y2\frac{x^{2}}{1-y^{2}}, x+yx2y2\frac{x+y-x^{2}}{y^{2}}.

See Solution

Problem 28590

Find the length of the curve y=23(x+1)3/2y=\frac{2}{3}(x+1)^{3/2} for 4x54 \leq x \leq 5. Choose the correct answer.

See Solution

Problem 28591

Find the surface area of the curve x=2cos(5y)x=2 \sqrt{\cos (5 y)} from y=π20y=-\frac{\pi}{20} to y=π20y=\frac{\pi}{20} revolved around the yy-axis.

See Solution

Problem 28592

Find the value of kk if y=xekxy=x e^{k x} and d2ydx2=6\frac{d^{2} y}{d x^{2}}=6 at x=0x=0.

See Solution

Problem 28593

Differentiate sin(5y)+e4x\sin(5y) + e^{4x} and find the result: 5cos(5y)dydx+4e4x5 \cos(5y) \frac{dy}{dx} + 4 e^{4x}.

See Solution

Problem 28594

Find the length of the curve y=25(x+3)5/2y=\frac{2}{5}(x+3)^{5/2} for 2x1-2 \leq x \leq -1. Which integral represents it?

See Solution

Problem 28595

Find the surface area of the curve y=1πsin(x)y=\frac{1}{\pi} \sin (x) from 00 to π2\frac{\pi}{2} revolved about the xx-axis.

See Solution

Problem 28596

Analysiere die Funktion O(t)=0,64t3+2,93t23,3t+12,2O(t)=-0,64 \cdot t^{3}+2,93 \cdot t^{2}-3,3 \cdot t+12,2 für 0t30 \leq t \leq 3. a) Zeichne OO, OO', OO''. b) Deute die Nullstellen von OO' und OO''. c) Berechne O(1)O(1), O(1)O'(1), O(1)O''(1) und interpretiere O(1)O(1) und O(1)O'(1).

See Solution

Problem 28597

Find the surface area of the curve y=1πsin(x)y=\frac{1}{\pi} \sin (x), 0xπ20 \leq x \leq \frac{\pi}{2}, revolved around the xx-axis.

See Solution

Problem 28598

Find the surface area of the curve y=1πsin(x)y=\frac{1}{\pi} \sin (x), 0xπ20 \leq x \leq \frac{\pi}{2}, revolved around the xx-axis.

See Solution

Problem 28599

Find the length of the curve y=23(x+1)3/2y=\frac{2}{3}(x+1)^{3 / 2} for 0x10 \leq x \leq 1. Is it 63426 \sqrt{3}-4 \sqrt{2}?

See Solution

Problem 28600

Find the lengths of the following curves from specified intervals: 1. y=(1/3)(x2+2)3/2y=(1/3)(x^2+2)^{3/2}, x=0x=0 to 33; 2. y=x3/2y=x^{3/2}, x=0x=0 to 44; 3. x=(y3/3)+1/(4y)x=(y^3/3)+1/(4y), y=1y=1 to 33; 4. x=(y3/2/3)y1/2x=(y^{3/2}/3)-y^{1/2}, y=1y=1 to 99; 5. x=(y4/4)+1/(8y2)x=(y^4/4)+1/(8y^2), y=1y=1 to 22; 6. x=(y3/6)+1/(2y)x=(y^3/6)+1/(2y), y=2y=2 to 33; 7. y=(3/4)x4/3(3/8)x2/3+5y=(3/4)x^{4/3}-(3/8)x^{2/3}+5, 1x81 \leq x \leq 8; 8. y=(x3/3)+x2+x+1/(4x+4)y=(x^3/3)+x^2+x+1/(4x+4), 0x20 \leq x \leq 2.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord