Calculus

Problem 32301

Find y(e)y^{\prime}(e) if y=xlnxy=x^{\ln x}.

See Solution

Problem 32302

Find the derivative of f(x)=ln(2exsinx)f(x)=\ln(2 e^{-x} \sin x). What is f(x)f^{\prime}(x)?

See Solution

Problem 32303

Find the derivative dydx\frac{d y}{d x} for y=sin(ex2)y=\sin \left(e^{x^{2}}\right).

See Solution

Problem 32304

Find the derivative f(0)f^{\prime}(0) for f(x)=ln(sec(x)+tan(x))f(x)=\ln (\sec (x)+\tan (x)). Choose from: 1, -1, 0, π2\frac{\pi}{2}.

See Solution

Problem 32305

Find the derivative f(0)f^{\prime}(0) for the function f(x)=ln(sec(x)+tan(x))f(x)=\ln (\sec (x)+\tan (x)). Choices: π2\frac{\pi}{2}, 1, 0, 1-1.

See Solution

Problem 32306

Find the integral csc(5x)dx\int \csc (5 x) d x and choose the correct answer from the options given.

See Solution

Problem 32307

Find the second derivative d2ydx2\frac{d^{2} y}{d x^{2}} given x2+y2=1x^{2}+y^{2}=1. Choices include: xy2\frac{-x}{y^{2}}, x2y2y3\frac{x^{2}-y^{2}}{y^{3}}, x2+y2y3\frac{x^{2}+y^{2}}{y^{3}}, 1y3\frac{-1}{y^{3}}.

See Solution

Problem 32308

Evaluate the integral of π6sec(2x)dx\frac{\pi}{6} \sec (2 x) d x. Choose the correct answer from the options provided.

See Solution

Problem 32309

Find f(2)f^{\prime}(2) for the function f(x)=ln(x23)f(x)=\ln \left(x^{2}-3\right). Choices: ee, 4, 1, 2.

See Solution

Problem 32310

Find dydx\frac{d y}{d x} at the point (1,1) for the equation x23+y23=2yx^{\frac{2}{3}}+y^{\frac{2}{3}}=2 \sqrt{y}.

See Solution

Problem 32311

Find dydx\frac{d y}{d x} for the equation ey=6x+3ye^{y}=6 x+3 y. Choose the correct option from the list.

See Solution

Problem 32312

Find the tangent line equation to f(x)=e2xf(x)=e^{2 x} at the point (0,1)(0,1). Choose from the options.

See Solution

Problem 32314

Find f(0)f^{\prime}(0) for f(x)=1e2xt2+lntdtf(x)=\int_{1}^{e^{2 x}} t^{2}+\ln t \, dt. Write a number only.

See Solution

Problem 32315

Find f(e)f^{\prime}(e) for the function f(x)=xlnxf(x)=x^{\ln x}. Options: 2, 0, 1, ee.

See Solution

Problem 32316

Given x2+y2=1x^{2}+y^{2}=1, find the second derivative d2ydx2\frac{d^{2} y}{d x^{2}}. Choices are:
1. 1y3\frac{-1}{y^{3}}
2. xy2\frac{-x}{y^{2}}
3. x2y2y3\frac{x^{2}-y^{2}}{y^{3}}
4. x2+y2y3\frac{x^{2}+y^{2}}{y^{3}}

See Solution

Problem 32317

Find the slope of the tangent line for f(x)=etanxf(x)=e^{\tan x} at x=0x=0.

See Solution

Problem 32318

Find the derivative of the function f(x)=ln(ex+1)f(x)=\ln \left(e^{-x}+1\right). What is f(x)f^{\prime}(x)?

See Solution

Problem 32319

Find the integral of sec(5x)dx\sec(5x) \, dx and choose the correct answer from the options provided.

See Solution

Problem 32320

Find the derivative of f(x)=ln(2exsinx)f(x)=\ln(2 e^{-x} \sin x). What is f(x)f^{\prime}(x)?

See Solution

Problem 32321

Find the integral of csc(5x)dx\csc(5x) \, dx.

See Solution

Problem 32322

Calculate the integral ee24(lnx)3xdx\int_{e}^{e^{2}} \frac{4(\ln x)^{3}}{x} dx. Provide just the numerical answer.

See Solution

Problem 32323

Find the first derivative dydx\frac{d y}{d x} at the point (1,1)(1,1) for the equation x23+y23=2yx^{\frac{2}{3}}+y^{\frac{2}{3}}=2 \sqrt{y}. Options: 2, 0, 12\frac{1}{2}, -2.

See Solution

Problem 32324

Find the slope of the tangent line of f(x)=etanxf(x)=e^{\tan x} at x=0x=0. Choices: 1-1, 1, 1e\frac{-1}{e}, e.

See Solution

Problem 32325

Find the derivative of y=sin(ex2)y=\sin(e^{x^{2}}) with respect to xx: dydx\frac{dy}{dx}.

See Solution

Problem 32326

Find the first derivative dydx\frac{d y}{d x} at the point (1,1) for the equation x23+y23=2yx^{\frac{2}{3}}+y^{\frac{2}{3}}=2 \sqrt{y}.

See Solution

Problem 32327

Find the integral of sec(5x)dx\sec(5x) \, dx. Choose the correct answer from the options provided.

See Solution

Problem 32328

Find dydx\frac{d y}{d x} for the equation ey=6x+3ye^{y}=6 x+3 y.

See Solution

Problem 32329

Find the second derivative d2ydx2\frac{d^{2} y}{d x^{2}} if x2+y2=1x^{2}+y^{2}=1. Options: A) 1y3\frac{-1}{y^{3}} B) x2+y2y3\frac{x^{2}+y^{2}}{y^{3}} C) x2y2y3\frac{x^{2}-y^{2}}{y^{3}} D) xy2\frac{-x}{y^{2}}

See Solution

Problem 32330

Find the derivative f(x)f^{\prime}(x) if f(x)=ln(2exsinx)f(x)=\ln(2 e^{-x} \sin x).

See Solution

Problem 32331

Find dydx\frac{d y}{d x} for x2y42y=3x^{2} y^{4}-2 y=3 at the point (2,1)(2,1). Options: 2, -2, 20, 12\frac{1}{2}.

See Solution

Problem 32332

Find dydx\frac{d y}{d x} for x=ycos(2x)x=y \cos (2 x) at the point (π2,π2)\left(\frac{\pi}{2}, \frac{-\pi}{2}\right). Options: 1-1, 12\frac{1}{2}, 0, 1.

See Solution

Problem 32333

Find f(e)f^{\prime}(e) if f(x)=xlnxf(x)=x^{\ln x}. Choices: 1, 0, e, 2.

See Solution

Problem 32334

Evaluate the integral 01x22x3dx\int_{0}^{1} x^{2} 2^{x^{3}} d x and choose between: a. 1ln(4)\frac{1}{\ln (4)} b. 1ln(8)\frac{1}{\ln (8)}

See Solution

Problem 32335

Find the integral csc(5x)dx\int \csc (5 x) d x and choose the correct answer from the options provided.

See Solution

Problem 32336

Find the derivative of f(x)=ln(2exsinx)f(x)=\ln(2 e^{-x} \sin x). What is f(x)f^{\prime}(x)?

See Solution

Problem 32337

Find (f1)(3)\left(f^{-1}\right)^{\prime}(-3) given f(3)=5,f(4)=3,f(3)=14,f(4)=12f(-3)=5, f(4)=-3, f^{\prime}(-3)=\frac{-1}{4}, f^{\prime}(4)=\frac{1}{2}.

See Solution

Problem 32338

Find dydx\frac{d y}{d x} if ey=6x+3ye^{y}=6 x+3 y. Options: 6xey+3\frac{6 x}{e^{y}+3}, 6ey+3\frac{6}{e^{y}+3}, 6ey+3y\frac{6}{e^{y}+3 y}, 6ey3\frac{6}{e^{y}-3}.

See Solution

Problem 32339

Find dydx\frac{d y}{d x} for y=lntanxy=\ln \sqrt{\tan x} at x=π4x=\frac{\pi}{4}. What is the value?

See Solution

Problem 32341

Find dydx\frac{d y}{d x} for the equation ey=6x+3ye^{y}=6 x+3 y. Options: 6ey+3\frac{6}{e^{y}+3}, 6xey+3\frac{6 x}{e^{y+3}}, 6ey3\frac{6}{e^{y}-3}, 6ey+3y\frac{6}{e^{y}+3 y}.

See Solution

Problem 32342

Find the derivative of the function f(x)=xlnxf(x)=x^{\ln x} at the point x=ex=e. What is f(e)f^{\prime}(e)?

See Solution

Problem 32343

Find the tangent line to the curve f(x)=e2xf(x)=e^{2 x} at the point (0,1)(0,1). Choose the correct equation.

See Solution

Problem 32344

Find dydx\frac{d y}{d x} for y=lntanxy=\ln \sqrt{\tan x} at x=π4x=\frac{\pi}{4}.

See Solution

Problem 32345

Find dydx\frac{d y}{d x} at the point (1,1) for the equation x23+y23=2yx^{\frac{2}{3}}+y^{\frac{2}{3}}=2 \sqrt{y}.

See Solution

Problem 32346

Find the derivative of f(x)=ln(ex+1)f(x)=\ln(e^{-x}+1): f(x)=?f^{\prime}(x)=? Choose from: 11+ex\frac{-1}{1+e^{x}}, exex+1\frac{e^{-x}}{e^{-x}+1}, 1ex+1\frac{1}{e^{-x}+1}, 1ex+1\frac{-1}{e^{-x}+1}.

See Solution

Problem 32347

Calculate the integral 0π6sec(2x)dx\int_{0}^{\frac{\pi}{6}} \sec (2 x) d x and choose the correct answer from the options.

See Solution

Problem 32348

Solve the differential equation: y+3y40y=6x2y^{\prime \prime}+3 y^{\prime}-40 y=6 x^{2}.

See Solution

Problem 32349

Bestimmen Sie die Definitionsmenge der Funktionen und die mittlere Änderungsrate in den Intervallen I1=[1;0],I2=[0;1],I3=[1;3],I4=[0;3]I_{1}=[-1 ; 0], I_{2}=[0 ; 1], I_{3}=[1 ; 3], I_{4}=[0 ; 3] für ff.

See Solution

Problem 32350

Calculate the integral 019x22x3dx\int_{0}^{1} 9 x^{2} 2^{x^{3}} d x. Choose from: (a) 6ln2\frac{6}{\ln 2}, (b) 1ln2\frac{1}{\ln 2}, (c) ln2\ln 2, (d) 3ln2\frac{3}{\ln 2}.

See Solution

Problem 32351

Find the derivative of xexexx e^{x}-e^{x} and choose the correct option.

See Solution

Problem 32352

إذا كانت Δص=8هـهـ24\Delta ص = \frac{8هـ - هـ^2}{4}، فما قيمة ق(هـ)ق'(هـ) في الفترة [5,5+هـ][5, 5+هـ]؟

See Solution

Problem 32353

A conical container (radius 99 ft, height 3636 ft) has liquid at 3131 ft. Find work to pump it to rim and 55 ft above rim.

See Solution

Problem 32354

Evaluate the limit: limh089+h89h\lim _{h \rightarrow 0} \frac{\frac{8}{9+h}-\frac{8}{9}}{h} by direct substitution. Simplify to limh0()\lim _{h \rightarrow 0}(\square).

See Solution

Problem 32355

Find the radius of a loop for a pilot in an aerobatic plane experiencing weightlessness at 310 m/s310 \mathrm{~m/s} with gravity 9.8 m/s29.8 \mathrm{~m/s}^2. Answer in km\mathrm{km}.

See Solution

Problem 32356

Wheat is pumped into a silo at f(t)=8+5cos(t25)f(t)=8+5 \cos \left(\frac{t}{25}\right) and removed at g(t)=t+1g(t)=\sqrt{t+1}.
a. Gallons pumped in 60 min? b. Find f(60)f^{\prime}(60) and explain its meaning. c. Is wheat amount increasing or decreasing at t=60t=60? Why? d. Write A(t)A(t) for total gallons in the silo. e. Find wheat amount after 120 min using A(t)A(t). f. When is wheat amount maximum in [0,120][0, 120]? Justify.

See Solution

Problem 32357

Solve the equation dRdx=a(R2+1)\frac{d R}{d x}=a\left(R^{2}+1\right) for RR, using constant CC.

See Solution

Problem 32358

Calculate W=624π48031(36h2h3)dhW=\frac{62 \cdot 4 \pi}{48} \cdot \int_{0}^{31} (36 h^{2}-h^{3}) \, dh.

See Solution

Problem 32359

Find the derivative of f(x)=ln(2exsinx)f(x)=\ln(2 e^{-x} \sin x). What is f(x)f^{\prime}(x)?

See Solution

Problem 32360

33. Eingesperrtes Rechteck: Bestimme die Koordinaten von Punkt P auf f(x)=1+4x2f(x)=1+\frac{4}{x^{2}}, um a) Fläche und b) Umfang minimal zu halten.

See Solution

Problem 32361

Bestimmen Sie die Stammfunktion F(x)=(ax+b)e0,5xF(x) = (a \cdot x + b) e^{-0,5x} von ff durch Koeffizientenvergleich und berechnen Sie AA über I=[0,7]I=[0, 7].

See Solution

Problem 32362

Find the derivative of y=ex(sinx+cosx)y=e^{x}(\sin x+\cos x) with respect to xx.

See Solution

Problem 32363

Find the tangent line to the curve f(x)=e2xf(x)=e^{2 x} at the point (0,1)(0,1). Select the correct equation.

See Solution

Problem 32364

Find f(e)f^{\prime}(e) if f(x)=xlnxf(x)=x^{\ln x}. Choices: 0, 1, ee, 2.

See Solution

Problem 32365

Find the tangent line to f(x)=e5x f(x) = e^{-5x} at x=0 x = 0 and the area of the triangle it forms in the first quadrant.

See Solution

Problem 32366

Solve the differential equation 7x8yx2+1dydx=07x - 8y\sqrt{x^2 + 1} \frac{dy}{dx} = 0 with y(0)=1y(0) = 1. Find y=y =.

See Solution

Problem 32368

Find f(0)f'(0) if f(x)=1e2x(t2+lnt)dtf(x)=\int_{1}^{e^{2 x}} (t^{2}+\ln t) dt. Write a number only Answer:

See Solution

Problem 32369

Bestimme die unbestimmten Integrale: a) 7dx\int 7 \, dx b) (13x2+5x3)dx\int\left(\frac{1}{3} x^{2}+5 x-3\right) \, dx

See Solution

Problem 32370

Evaluate the integral x225dx\int \sqrt{x^{2}-25} d x and choose the best technique: A, B, C, D, or E?

See Solution

Problem 32371

Find the first derivative dydx\frac{d y}{d x} of siny=x3+y2+8\sin y = x^{3}+y^{2}+8 at the point (2,0)(-2,0).

See Solution

Problem 32372

Find the relative maximum point of f(x)=13x32x2+3x+1f(x)=\frac{1}{3} x^{3}-2 x^{2}+3 x+1. Use f(x)f^{\prime}(x) and f(x)f^{\prime \prime}(x).

See Solution

Problem 32373

Berechnen Sie die Integrale: a) 02(2x+1)dx\int_{0}^{2}(2 x+1) d x, b) 130,5x3dx\int_{-1}^{3} 0,5 x^{3} d x, c) 04(x2x3)dx\int_{0}^{4}\left(x^{2}-\frac{x}{3}\right) d x.

See Solution

Problem 32374

Evaluate the limit: limx9x3x9\lim _{x \rightarrow 9} \frac{\sqrt{x}-3}{x-9} by simplifying it for direct substitution.

See Solution

Problem 32375

Find the relative maximum point of the function f(x)=13x32x2+3x+1f(x)=\frac{1}{3} x^{3}-2 x^{2}+3 x+1. Use f(x)f^{\prime}(x) and f(x)f^{\prime \prime}(x).

See Solution

Problem 32376

Evaluate the limit: limh0225+h15h\lim _{h \rightarrow 0} \frac{\sqrt{225+h}-15}{h} using direct substitution. Simplify your answer.

See Solution

Problem 32377

Evaluate the integral cos2(x)dx\int \cos ^{2}(x) d x. Which method is most efficient? A. u=sin(x)u=\sin(x) B. cos2(x)=12(1+cos(2x))\cos ^{2}(x)=\frac{1}{2}(1+\cos(2x)) C. u=cos(x)u=\cos(x) D. Not integrable E. 13cos3(x)+C\frac{1}{3}\cos^{3}(x)+C

See Solution

Problem 32378

Determine if the limit exists: limx8x5x7\lim _{x \rightarrow \infty} \frac{8 x}{5 x-7}. If yes, find its value.

See Solution

Problem 32379

Find the derivative of the inverse function at 1, given f(1)=1f(-1)=1, f(1)=0f(1)=0, f(1)=15f'(-1)=\frac{1}{5}, f(1)=15f'(1)=\frac{-1}{5}. Write a number only.
Answer: 5-5

See Solution

Problem 32380

Determine if the limit exists:
limx3x3+2x25x49x37 \lim _{x \rightarrow \infty} \frac{3 x^{3}+2 x-2}{5 x^{4}-9 x^{3}-7}
Choose A (find value) or B (limit does not exist).

See Solution

Problem 32381

Is it true or false that if f(x)f(x) is continuous at x=ax=a, then limxaf(x)=f(a)\lim_{x \rightarrow a} f(x)=f(a)? Explain.

See Solution

Problem 32382

Differentiate these expressions with respect to x x : y=(4x3+5x)2 y=(4 x^{3}+5 x)^{2} and y=(6x35x)2 y=(6 x^{3}-5 x)^{-2} .

See Solution

Problem 32383

Find f(2)f^{\prime}(2) using the limit definition of the derivative for f(x)=x2+5xf(x)=x^{2}+5x.

See Solution

Problem 32384

Find the limit as xx approaches -2 for the expression x2+53x+2\frac{\sqrt{x^{2}+5}-3}{x+2}.

See Solution

Problem 32385

Find the limit: limx0(x+1)21x\lim _{x \rightarrow 0} \frac{(x+1)^{2}-1}{x} for x0x \neq 0.

See Solution

Problem 32386

Find the volume of a solid between y=0y=0 and y=2y=2 with circular cross-sections from x=10y2x=\sqrt{10} y^{2}.

See Solution

Problem 32387

Find the volume of a solid between planes at y=0y=0 and y=2y=2 with circular cross-sections defined by x=10y2x=\sqrt{10} y^{2}.

See Solution

Problem 32388

Find the 3rd iteration interval for h(x)=x43x+1h(x) = x^4 - 3x + 1 using the bisection method on [0,1][0,1].

See Solution

Problem 32389

Find the mass MM and center of mass xˉ\bar{x} of a wire from 1-1 to 11 with density δ(x)=7+3x2\delta(x)=7+3 x^{2}. Set up the mass integral.

See Solution

Problem 32390

Determinați constanta aa pentru ca f(x)f(x) să fie densitate de probabilitate și scrieți funcția de repartiție.

See Solution

Problem 32391

Max untersucht die Ableitung von f(x)=x6f(x)=x^{6} als Produkt x2x4x^{2} \cdot x^{4}. Vervollständigen Sie die Tabelle und formulieren Sie eine Ableitungsregel.

See Solution

Problem 32392

Finde die xx-Werte, wo die Ableitungen der Funktionen g(x)g(x), h(x)h(x), p(x)p(x), q(x)q(x) und r(x)r(x) gleich 0 sind.

See Solution

Problem 32393

Bestimmen Sie die Extremstellen der Funktion f(x)=(3x9)e0.5xf(x) = (3x - 9) \cdot e^{0.5x}.

See Solution

Problem 32394

Max untersucht die Ableitung von f(x)=x6f(x)=x^{6} als Produkt u(x)v(x)u(x) \cdot v(x).
a) Vervollständige die Tabelle für Ableitungen.
b) Formuliere die Ableitungsregel für f(x)=u(x)v(x)f(x) = u(x) \cdot v(x).

See Solution

Problem 32395

Ergänzen Sie die Ableitungen für die Funktionen: a) f(x)=(3x1)exf(x)=(3x-1)e^{x}, b) g(x)=5x2exg(x)=5x^{2}e^{x}, c) f(x)=(13x)(2x)f(x)=(1-3x)(2-x). Geben Sie zuerst u(x)u(x) und v(x)v(x) an und leiten Sie dann ab.

See Solution

Problem 32396

Vervollständigen Sie die Ableitungen für die Funktionen f(x)f(x) und g(x)g(x) sowie die Produkte u(x)u(x) und v(x)v(x).

See Solution

Problem 32397

Leiten Sie die Funktionen ab, nutzen Sie die Produktregel:
1. f(x)=(3x1)ex,f(x)=3ex+f(x)=(3 x-1) \cdot e^{x}, f^{\prime}(x)=3 e^{x}+
2. g(x)=5x2ex,g(x)=10x+g(x)=5 x^{2} \cdot e^{x}, g^{\prime}(x)=10 x+
3. f(x)=(13x)(2x)=3(2x)+f(x)=(1-3 x) \cdot(2-x)=-3(2-x)+

Geben Sie u(x)u(x) und v(x)v(x) an und leiten Sie ab:
a) f(x)=(2x3x)exf(x)=\left(2 x^{3}-x\right) \cdot e^{x} b) f(x)=(x21)(2x2+5)f(x)=\left(x^{2}-1\right)\left(2 x^{2}+5\right) c) f(x)=(5x24)exf(x)=\left(5 x^{2}-4\right) \cdot e^{x}

See Solution

Problem 32398

Find the derivative yy^{\prime} if y=lnty=\sqrt{\ln \sqrt{t}}. Choose from the options provided.

See Solution

Problem 32399

Bestimmen Sie die Koordinaten und Art des lokalen Extrempunkts der Funktion f(x)=1,6(5x)ex4f(x)=1,6 \cdot(5-x) \cdot e^{x-4}. Finde Punkt QQ mit maximalem Anstieg für 0xQ40 \leq x_{Q} \leq 4.

See Solution

Problem 32400

Determine if the series n=1n3n4+z\sum_{n=1}^{\infty} \frac{n^{3}}{n^{4}+z} converges or diverges for fixed zC\Rz \in \mathbb{C} \backslash \mathbb{R}.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord