Calculus

Problem 7501

Untersuche die Funktion f(x)=(x4)xf(x)=(x-4) \cdot \sqrt{x} für x0x \geq 0 auf Monotonieverhalten und finde die innere Extremstelle.

See Solution

Problem 7502

Find the rate of change of the revenue function R(Q)=100Q2+500R(Q)=100 Q^{2}+500 at production level Q0Q_{0}: ΔR(Q0)/ΔQ\Delta R(Q_{0}) / \Delta Q.

See Solution

Problem 7503

Untersuchen Sie das Krümmungsverhalten der folgenden Funktionen: a) f(x)=x2+2x+4f(x)=-x^{2}+2 x+4 b) f(x)=x3xf(x)=x^{3}-x c) f(x)=x33x29x5f(x)=x^{3}-3 x^{2}-9 x-5 d) f(x)=x4+x2f(x)=x^{4}+x^{2} e) f(x)=x46x2f(x)=x^{4}-6 x^{2} f) f(x)=14x4+3x22f(x)=\frac{1}{4} x^{4}+3 x^{2}-2 g) f(x)=13x620x2f(x)=\frac{1}{3} x^{6}-20 x^{2} h) f(x)=120x5+12x4+32x3f(x)=\frac{1}{20} x^{5}+\frac{1}{2} x^{4}+\frac{3}{2} x^{3} i) f(x)=(x+2)2(x1)23f(x)=(x+2)^{2} \cdot(x-1)^{2}-3

See Solution

Problem 7504

Evaluate the integral (3x2+6x+5)tan1xdx\int(3 x^{2}+6 x+5) \tan^{-1} x \, dx.

See Solution

Problem 7505

Evaluate the integral 1edxx(lnx)1/3\int_{1}^{e} \frac{d x}{x(\ln x)^{1 / 3}}.

See Solution

Problem 7506

Prove that 1edxx(lnx)1/3=32\int_{1}^{e} \frac{d x}{x(\ln x)^{1 / 3}}=\frac{3}{2}.

See Solution

Problem 7507

Evaluate the integral from 0 to 9: 09x12dx\int_{0}^{9} x^{\frac{1}{2}} d x.

See Solution

Problem 7508

Evaluate the integral: 1x2+2x+5dx\int_{-\infty}^{\infty} \frac{1}{x^{2}+2 x+5} \, dx

See Solution

Problem 7509

Calculate the integral 01xdx\int_{0}^{1} \sqrt{x} \, dx.

See Solution

Problem 7510

Calculate the integral from -1 to 0 of exe^{x}, i.e., 10exdx\int_{-1}^{0} e^{x} d x.

See Solution

Problem 7511

Berechne 23(4x23x+5)dx+23(3x5)dx\int_{-2}^{3}\left(4 x^{2}-3 x+5\right) d x + \int_{-2}^{3}(3 x-5) d x.

See Solution

Problem 7512

Choose negative values for aa and dd (a<d<0a < d < 0) and observe which axis solution trajectories approach as they stabilize at the origin. Prove your observation.

See Solution

Problem 7513

Show that (3x2+6x+5)tan1xdx=(x3+3x2+5x)tan1xx223x2ln(x2+1)+3tan1x+C\int(3 x^{2}+6 x+5) \tan^{-1} x \, dx = (x^{3}+3 x^{2}+5 x) \tan^{-1} x - \frac{x^{2}}{2}-3 x-2 \ln(x^{2}+1)+3 \tan^{-1} x + C using integration by parts.

See Solution

Problem 7514

Berechne die bestimmten Integrale und deute die Ergebnisse am Graphen von ff: a) 22x4dx\int_{2}^{2} x^{4} d x, b) 226x5dx\int_{-2}^{2} 6 x^{5} d x, c) 34dx\int_{-3}^{4} d x, d) 3442dx\int_{-3}^{4} 4 \sqrt{2} d x, e) 340dx\int_{-3}^{4} 0 d x, f) 121x2dx\int_{1}^{2} \frac{1}{x^{2}} d x, g) 211x2dx\int_{-2}^{-1} \frac{1}{x^{2}} d x, h) 121xdx\int_{1}^{2} \frac{1}{x} d x, i) 0.511xdx\int_{0.5}^{1} \frac{1}{x} d x, k) 211xdx\int_{-2}^{-1} \frac{1}{x} d x, l) 09xdx\int_{0}^{9} \sqrt{x} d x, m) 191xdx\int_{1}^{9} \frac{1}{\sqrt{x}} d x, n) 0θxxdx\int_{0}^{\theta} x \sqrt{x} d x, o) 0π/2sinxdx\int_{0}^{\pi / 2} \sin x d x, p) 0π/2cosxdx\int_{0}^{\pi / 2} \cos x d x, q) 12lnxdx\int_{1}^{2} \ln x d x, r) 0.51lnxdx\int_{0.5}^{1} \ln x d x, s) 0.52lnxdx\int_{0.5}^{2} \ln x d x, t) 10exdx\int_{-1}^{0} e^{x} d x, u) 10000exdx\int_{-1000}^{0} e^{x} d x.

See Solution

Problem 7515

Bestimmen Sie den Wert von kR+k \in \mathbb{R}^{+} für a) kk3x2dx=16\int_{-k}^{k} 3 x^{2} d x=16 und b) 24kxdx=18\int_{-2}^{4} k x d x=18.

See Solution

Problem 7516

Berechne die Integrale und erläutere die Ergebnisse am Graphen von ff: a) 22x4dx\int_{2}^{2} x^{4} d x, b) 226x5dx\int_{-2}^{2} 6 x^{5} d x, c) 34dx\int_{-3}^{4} d x, d) 3442dx\int_{-3}^{4} 4 \sqrt{2} d x, e) 340dx\int_{-3}^{4} 0 d x, f) 121x2dx\int_{1}^{2} \frac{1}{x^{2}} d x, g) 211x2dx\int_{-2}^{-1} \frac{1}{x^{2}} d x, h) 121xdx\int_{1}^{2} \frac{1}{x} d x, i) 0.511xdx\int_{0.5}^{1} \frac{1}{x} d x, k) 211xdx\int_{-2}^{-1} \frac{1}{x} d x, l) 00xdx\int_{0}^{0} \sqrt{x} d x, m) 191xdx\int_{1}^{9} \frac{1}{\sqrt{x}} d x, n) 0θxxdx\int_{0}^{\theta} x \sqrt{x} d x, o) 0π/2sinxdx\int_{0}^{\pi / 2} \sin x d x, p) 0.51lnxdx\int_{0.5}^{1} \ln x d x, q) 12lnxdx\int_{1}^{2} \ln x d x, r) 0.52lnxdx\int_{0.5}^{2} \ln x d x, s) 10exdx\int_{-1}^{0} e^{x} d x, t) 0π/2cosxdx\int_{0}^{\pi / 2} \cos x d x, u) 10000exdx\int_{-1000}^{0} e^{x} d x.

See Solution

Problem 7517

Calculate the integral sin4xcos6xdx\int \sin^{4} x \cos^{6} x \, dx.

See Solution

Problem 7518

Calculate the integrals: 1) 12x3+x2+2x2dx\int_{1}^{2} \frac{x^{3}+x^{2}+2}{x^{2}} dx and 2) π4π4cosxdx\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos x dx.

See Solution

Problem 7519

Finde den Wert von kR+k \in \mathbb{R}^{+} für: a) k3x2dx=16\int^{k} 3 x^{2} d x=16 und b) 24kxdx=18\int_{-2}^{4} k x d x=18.

See Solution

Problem 7520

Berechnen Sie die 1. und 2. Ableitung der Funktionen und die Definitionsmengen Dt,DfD_{t}, D_{f}. a) f(x)=x42xf(x)=\sqrt[4]{x}-2x b) f(x)=x2+1x2f(x)=\frac{x^{2}+1}{x^{2}}

See Solution

Problem 7521

Find the limit: limΔx04x+Δx4xΔx\lim _{\Delta x \rightarrow 0} \frac{\frac{4}{\sqrt{x+\Delta x}}-\frac{4}{\sqrt{x}}}{\Delta x}.

See Solution

Problem 7522

Find the limit: limΔx04x+Δx4xΔx\lim _{\Delta x \rightarrow 0} \frac{\frac{4}{\sqrt{x+\Delta x}}-\frac{4}{\sqrt{x}}}{\Delta x}. Options: A) 2xx\frac{2}{x \sqrt{x}}, B) 2xx\frac{-2}{x \sqrt{x}}, C) 8xx\frac{8}{x \sqrt{x}}, D) 8xx\frac{-8}{x \sqrt{x}}.

See Solution

Problem 7523

Calculate the integral: x+x2/3+x1/6x(1+x1/3)dx\int \frac{x+x^{2 / 3}+x^{1 / 6}}{x\left(1+x^{1 / 3}\right)} d x

See Solution

Problem 7524

Find g(0)g^{\prime}(0) if g(x)=f(x)3f(x)g(x)=f(x)^{3 f(x)} and the tangent line at x=0x=0 is y=3x+2y=3x+2.

See Solution

Problem 7525

Find values of a,bRa, b \in \mathbb{R} for which the function
f(x)={sin(3x)ax if x>0b if x=0arctan(1x) if x<0 f(x)=\left\{\begin{array}{ll} \frac{\sin (3 x)}{a x} & \text { if } x>0 \\ b & \text { if } x=0 \\ \arctan \left(\frac{1}{x}\right) & \text { if } x<0 \end{array}\right.
is continuous.

See Solution

Problem 7526

Find the tangent line equation using implicit differentiation for y2(y24)=x2(x25)y^{2}(y^{2}-4)=x^{2}(x^{2}-5) at (0,2)(0,-2).

See Solution

Problem 7527

Find the derivative of the inverse function for f(x)=exex2f(x)=\frac{e^{x}-e^{-x}}{2} using (f1)(x)=1f(f1(x))\left(f^{-1}\right)^{\prime}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}.

See Solution

Problem 7528

Trova le equazioni degli asintoti per la curva: f(x)=x+x22x+5f(x)=x+\sqrt{x^{2}-2 x+5}.

See Solution

Problem 7529

Find the limit: limx1(11x21x2)\lim _{x \rightarrow 1}\left(\frac{1}{1-x}-\frac{2}{1-x^{2}}\right).

See Solution

Problem 7530

Find the average value fave f_{\text {ave }} of f(x)=2bax2a2f(x)=2 \frac{b}{a} \sqrt{x^{2}-a^{2}} over [a,2a][a, 2a].

See Solution

Problem 7531

Calculate the integral of sin4xcos6x\sin^{4} x \cos^{6} x with respect to xx: sin4xcos6xdx\int \sin^{4} x \cos^{6} x \, dx.

See Solution

Problem 7532

Find the tangent line equation for y=13xy=\sqrt{1-3x} at the point (1,2)(-1,2).

See Solution

Problem 7533

Berechnen Sie die Punkte, wo der Graph von f(x)=2x2+...f(x)=2 x^{2}+... a) eine Tangente mit Steigung 4 hat, b) dieselbe Steigung wie g(x)=x34x1g(x)=x^{3}-4 x-1.

See Solution

Problem 7534

Find the derivative of f(t)=1t2+1f(t)=\frac{1}{t^{2}+1} using the limit definition: f(x)=limh0f(x+h)f(x)hf'(x) = \lim_{h\to0} \frac{f(x+h) - f(x)}{h}.

See Solution

Problem 7535

Find points cc where the Mean Value Theorem applies for f(x)=x3f(x)=x^{3} on [19,19][-19,19]. Answer: c=\mathrm{c}= (exact values).

See Solution

Problem 7536

Calculate the average rate of change of f(x)=5x33x2+7f(x)=5 x^{3}-3 x^{2}+7 from x=3x=-3 to x=2x=2.

See Solution

Problem 7537

Find the derivative of y=(x3+4)53x42y=\frac{(x^{3}+4)^{5}}{3 x^{4}-2} using the chain rule.

See Solution

Problem 7538

Find the slope and equation of the tangent line for f(x)=x25f(x)=x^{2}-5 at x=3x=3.

See Solution

Problem 7539

Find the tangent line equation for g(x)=xg(x)=\sqrt{x} at x=16x=16 using g(x)=12xg^{\prime}(x)=\frac{1}{2 \sqrt{x}}.

See Solution

Problem 7540

Find the tangent line equation for f(x)=4xf(x)=\frac{4}{x} at x=7x=-7. Use f(x)=4x2f^{\prime}(x)=\frac{-4}{x^{2}}.

See Solution

Problem 7541

Find the derivative of y=((x+5)51)4y=((x+5)^{5}-1)^{4} using the chain rule.

See Solution

Problem 7542

Check if Rolle's theorem applies to f(x)=sin8xf(x)=-\sin 8 x on [π8,π4]\left[\frac{\pi}{8}, \frac{\pi}{4}\right] and find guaranteed point(s).

See Solution

Problem 7543

Find the derivative of y=(5x33)54x534y=\left(5 x^{3}-3\right)^{5} \sqrt[4]{-4 x^{5}-3} using the chain rule.

See Solution

Problem 7544

Check if Rolle's theorem applies to f(x)=sin7xf(x)=-\sin 7 x on [π7,2π7]\left[\frac{\pi}{7}, \frac{2 \pi}{7}\right] and find guaranteed point(s).

See Solution

Problem 7545

Find all functions yy such that y=9x89y' = 9x^8 - 9, including the constant CC.

See Solution

Problem 7546

Find points cc where the Mean Value Theorem applies for f(x)=x3f(x)=x^{3} on [18,18][-18,18]. Answer: c=\mathrm{c}=

See Solution

Problem 7547

Find the critical points of ff if f(x)=x+13f^{\prime}(x)=x+13 and determine where ff is increasing or decreasing.

See Solution

Problem 7548

Find critical points of ff where f(x)=x11f^{\prime}(x)=x-11. Determine intervals where ff is increasing or decreasing.

See Solution

Problem 7549

Determine where the function f(x)=4sin2xf(x)=-4 \sin ^{2} x is increasing or decreasing on the interval [π,π][-\pi, \pi]. Find f(x)f^{\prime}(x).

See Solution

Problem 7550

Find critical points of ff if f(x)=x+11f^{\prime}(x)=x+11 and determine where ff is increasing or decreasing.

See Solution

Problem 7551

Ein ICE bremst ab. Gegeben ist die Funktion s(t)=15t2+80ts(t)=-\frac{1}{5} t^{2}+80 t. Berechne: a) Bremszeit, b) Bremsweg, c) Anfangsgeschwindigkeit, d) Zeitpunkt bei 100 km/h100 \mathrm{~km/h}, e) Geschwindigkeit nach 2000 m2000 \mathrm{~m}.

See Solution

Problem 7552

Given g(x)=5xg^{\prime \prime}(x)=5-x, find intervals where gg is concave up/down and identify inflection points.

See Solution

Problem 7553

Calculate the average value favgf_{avg} of f(x)=2bax2a2f(x)=2 \frac{b}{a}-\sqrt{x^{2}-a^{2}} over [a,2a][a, 2a] for positive aa and bb.

See Solution

Problem 7554

Bestimme die Ableitung faf_{a}^{\prime} und berechne f2(1)f_{2}^{\prime}(1) für die Funktionen a) bis f).

See Solution

Problem 7555

Find functions whose derivative is y=9x84y' = 9x^8 - 4. Express yy using the constant C\mathrm{C}.

See Solution

Problem 7556

Determine where the function f(t)=t15(t299)f(t)=t^{\frac{1}{5}}(t^{2}-99) is increasing and decreasing.

See Solution

Problem 7557

Determine where the function f(x)=cos2xf(x)=-\cos ^{2} x is increasing and decreasing on the interval [π,π][-\pi, \pi].

See Solution

Problem 7558

Warum erscheint der Term cos(ax)a\cos(a x) \cdot a in der Ableitung der Funktion fa(x)=(sin(ax))2f a(x)=(\sin (a x))^{2}?

See Solution

Problem 7559

Gegeben sind die Funktionen f(x)=x3+3x23x+4f(x)=-x^{3}+3 x^{2}-3 x+4 und g(x)=1x2+2xg(x)=\frac{1}{x^{2}}+2 x. Bestimme den Winkel des Graphen von ff bei P(1f(1))P(1 \mid f(1)) und prüfe, ob ff und gg sich dort berühren.

See Solution

Problem 7560

Find the leading term of the Taylor series for f(x)=0xln(cosh(t))dtf(x)=\int_{0}^{x} \ln (\cosh (t)) dt about zero. Options: x36\frac{x^{3}}{6}, x32\frac{x^{3}}{2}, x22\frac{x^{2}}{2}, x560-\frac{x^{5}}{60}, x318-\frac{x^{3}}{18}.

See Solution

Problem 7561

Evaluate the Riemann sum for I=02xdxI=\int_{0}^{2} x \, dx and determine the optimal error E(n)E(n) as nn \to \infty.

See Solution

Problem 7562

Determine where the function f(t)=t15(t299)f(t)=t^{\frac{1}{5}}(t^{2}-99) is increasing or decreasing. Provide intervals in notation.

See Solution

Problem 7563

Find the average value of f(x)=2bax2a2f(x)=2 \frac{b}{a}-\sqrt{x^{2}-a^{2}} over the interval [a,2a][a, 2a].

See Solution

Problem 7564

Calculate the difference quotient f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} for f(x)=3x27f(x)=3 x^{2}-7, with h0h \neq 0.

See Solution

Problem 7565

Calculate the difference quotient f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} for f(x)=4x21f(x)=4 x^{2}-1, where h0h \neq 0.

See Solution

Problem 7566

Calculate the difference quotient f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} for f(x)=5x23x+8f(x)=5 x^{2}-3 x+8, where h0h \neq 0.

See Solution

Problem 7567

Evaluate the integral 17w2dw\int \sqrt{1-7 w^{2}} d w using the substitution w=17sin(θ)w=\frac{1}{\sqrt{7}} \sin (\theta).

See Solution

Problem 7568

Find the relative extrema of the function f(x)=5xln(x2)f(x)=5x \ln\left(\frac{x}{2}\right).

See Solution

Problem 7569

Calculate the difference quotient f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} for the function f(x)=9x2f(x)=9x-2, where h0h \neq 0.

See Solution

Problem 7570

Calculate the integral 36(2x2343x)dx\int_{3}^{6}\left(2 x^{\frac{2}{3}}-\frac{4}{3} x\right) dx.

See Solution

Problem 7571

Evaluate the integral from 3 to 6 of the function 2x2343x2 x^{\frac{2}{3}} - \frac{4}{3 x}.

See Solution

Problem 7572

Find the horizontal asymptote of the drug concentration C(t)=t6t2+6C(t)=\frac{t}{6 t^{2}+6}. C=C=\square (Simplify your answer.)

See Solution

Problem 7573

Find the horizontal asymptote of C(t)=t6t2+6C(t)=\frac{t}{6t^{2}+6} and what value C(t)C(t) approaches as tt increases.

See Solution

Problem 7574

Find the volume of revolution when the area under the curve y=f(x)y=f(x) from x=0x=0 to x=kx=k is rotated around the xx-axis, given dydx=y1y2\frac{d y}{d x}=\frac{-y}{\sqrt{1-y^{2}}}, f(0)=1f(0)=1, and f(k)=af(k)=a.

See Solution

Problem 7575

Evaluate the expression: (ddx(ex2))dxddx(ex2dx)\int\left(\frac{d}{d x}\left(e^{-x^{2}}\right)\right) d x-\frac{d}{d x}\left(\int e^{-x^{2}} d x\right).

See Solution

Problem 7576

Bestimme das Integral der Funktion f(x)=2x2343x.f(x) = 2x^{\frac{2}{3}} - \frac{4}{3x}.

See Solution

Problem 7577

Use implicit differentiation to find d2ydx2\frac{d^{2} y}{d x^{2}} for: 13) 4y2+2=3x24 y^{2}+2=3 x^{2}, 14) 5=4x2+5y25=4 x^{2}+5 y^{2}.

See Solution

Problem 7578

Find dydx\frac{d y}{d x} for 3x24y=x\frac{3 x^{2}}{4 y}=x using three methods. Do results match? Explain differences.

See Solution

Problem 7579

Zeichnen Sie den Graphen von f(x)=14x3xf(x)=\frac{1}{4} x^{3}-x und schätzen Sie die Steigungen. Berechnen Sie f(0)f^{\prime}(0).

See Solution

Problem 7580

Find the relative extrema of g(x)=12+8x+x2g(x) = 12 + 8x + x^2 and determine where it is increasing and decreasing.

See Solution

Problem 7581

Gegeben sind die Funktionen fa(x)=1ax3+3x2+5x+2af_{a}(x)=\frac{1}{a} x^{3}+3 x^{2}+5 x+2 a und h(x)=12x3h(x)=-\frac{1}{2} x^{-3}.
a) Bestimmen Sie die Symmetrie von KK und das Verhalten von hh für x+x \rightarrow+\infty. Warum gilt limx+h(x)limx+fa(x)\lim _{x \rightarrow+\infty} h(x) \neq \lim _{-x \rightarrow+\infty} f_{a}(x)?
b) Berechnen Sie den Flächeninhalt des Dreiecks, das von der Tangente an KK bei P(1,h(1))P(-1, h(-1)) und den Koordinatenachsen begrenzt wird.
c) Zeigen Sie, dass KK keine lokalen Extrempunkte hat.
d) Finden Sie die zwei Punkte auf G2G_{2} mit Tangentensteigung m=1,5m=1,5.
e) Bestimmen Sie den Parameterwert aa, für den GaG_{a} eine waagerechte Tangente hat, und erläutern Sie den Sattelpunkt.
f) Zeigen Sie, dass P1(4,0)P_{1}(-4, 0) und P2(0,64,1,9)P_{2}(-0,64, 1,9) auf den Graphen liegen. Berechnen Sie die minimalen Seitenlängen einer rechteckigen Plane, die den Teich abdeckt.

See Solution

Problem 7582

Find the limit: limx5+8x\lim _{x \rightarrow-\infty} 5+\frac{8}{x}.

See Solution

Problem 7583

Find cc for the function f(x)=cx22x2f(x)=c x^{2}-2 x^{-2} to have an inflection point at (1,f(1))(1, f(1)). Choices: c=6c=6, c=12c=12, c=6c=-6, c=0c=0, c=12c=-12.

See Solution

Problem 7584

Find the one-sided limits of f(x)f(x) at x=5x=-5 and check if ff is continuous at -5 (YES/NO).

See Solution

Problem 7585

Check if the Mean Value Theorem applies to f(x)=x33x+9f(x)=x^{3}-3x+9 on [2,2][-2,2] and find values of cc. If not, write DNE.

See Solution

Problem 7586

Given the function f(x)=x33x+9f(x)=x^{3}-3x+9 on [2,2][-2,2], is ff continuous there? Find f(2)f'(-2), f(2)f'(-2), and f(2)f(2)4\frac{f(2)-f(-2)}{4}.

See Solution

Problem 7587

Find f(1)f(1) for the polynomial f(x)=x3+Ax2+Bxf(x)=x^{3}+A x^{2}+B x given critical point x=3x=3 and inflection point x=2x=-2.

See Solution

Problem 7588

Determine the concavity and points of inflection for f(x)=112x42x2f(x)=\frac{1}{12} x^{4}-2 x^{2}.

See Solution

Problem 7589

Solve the differential equation: dydx=y1y2\frac{d y}{d x}=\frac{-y}{\sqrt{1-y^{2}}}.

See Solution

Problem 7590

Determine the concavity and inflection points of f(x)=3(x2)5/3f(x)=3(x-2)^{5/3}.

See Solution

Problem 7591

Find the minimum value of f(7)f(7) given f(3)=9f(3)=9 and f(x)2f^{\prime}(x) \geq 2 for 3x73 \leq x \leq 7.

See Solution

Problem 7592

Find the derivative of y=ln((7x)3)y=\ln \left((7 x)^{3}\right). What is dydx\frac{d y}{d x}?

See Solution

Problem 7593

Berechnen Sie die Ableitungen von ff für: a) f(x)=2x21f(x)=2 x^{2}-1, b) f(x)=32x+2f(x)=-\frac{3}{2} x+2, c) f(x)=x3+xf(x)=x^{3}+x, d) f(x)=1+x+x24f(x)=-1+x+\frac{x^{2}}{4}.

See Solution

Problem 7594

Find the xx-coordinates of points of inflection for f(x)f(x) given f(x)=x33x2(x2)3(x4)3f^{\prime \prime}(x)=\frac{x^{3}-3 x^{2}}{(x-2)^{3}(x-4)^{3}}.

See Solution

Problem 7595

Find the limits for the piecewise function f(x)f(x) defined as:
f(x)={4x+4,x<54,x=52x+15,x>5f(x)=\begin{cases} \sqrt{-4-x}+4, & x<-5 \\ 4, & x=-5 \\ 2x+15, & x>-5 \end{cases}
Calculate: limx5f(x)\lim_{x \to -5^-} f(x), limx5+f(x)\lim_{x \to -5^+} f(x), limx5f(x)\lim_{x \to -5} f(x).

See Solution

Problem 7596

Analyze the concavity of f(x)=xx6f(x)=\frac{x}{x-6} and identify any points of inflection.

See Solution

Problem 7597

Analyze the concavity of f(x)=x3x2f(x)=x^{3}-x-2 and locate any points of inflection.

See Solution

Problem 7598

Given the function f(x)=x34x216x+2f(x)=x^{3}-4 x^{2}-16 x+2 on [4,4][-4,4], is ff continuous there? If differentiable on (4,4)(-4,4), find f(x)f^{\prime}(x). Also, find f(4)f(-4) and f(4)f(4).

See Solution

Problem 7599

Find the first and second derivatives of k(x)=blogb(x)k(x)=b^{\log_b(x)}, where b>1b > 1.

See Solution

Problem 7600

Find cc for which the graph of f(x)=cx2x2f(x)=c x^{2}-x^{-2} has an inflection point at (2,f(2))(2, f(2)). Options: c=38c=\frac{3}{8}, c=0c=0, c=38c=-\frac{3}{8}, c=316c=\frac{3}{16}, c=316c=-\frac{3}{16}.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord