Calculus

Problem 1201

Identify the interval where the graph of ff is concave down based on its rate of change:
(A) 0<x<10<x<1 (B) 1<x<21<x<2 (C) 2<x<32<x<3 (D) 3<x<43<x<4

See Solution

Problem 1202

Find the vertical asymptotes of the function y=x2+2x+1x+x2y=\frac{x^{2}+2 x+1}{x+x^{2}}.

See Solution

Problem 1203

Evaluate the limit: limx1+41x\lim _{x \rightarrow 1^{+}} \frac{-4}{1-x}

See Solution

Problem 1204

Find limx2g(x)\lim _{x \rightarrow 2} g(x) given 2x+1g(x)x22x+52x + 1 \leq g(x) \leq x^2 - 2x + 5.

See Solution

Problem 1205

Find the limit: limx1x2+2x3x21\lim _{x \rightarrow 1} \frac{x^{2}+2x-3}{x^{2}-1}.

See Solution

Problem 1206

Zairia freefalls for 3.2 s3.2 \mathrm{~s}. How far does she fall in that time? Round to the nearest tenth.

See Solution

Problem 1207

Calculate John's velocity just before hitting the water after falling for 7.5 seconds. Round to the nearest tenth.

See Solution

Problem 1208

A tennis ball drops from 5.1 m5.1 \mathrm{~m}. Find the time to hit the ground, rounded to the nearest hundredth.

See Solution

Problem 1209

Find the number of thousand mp3 players to produce for minimum marginal cost given C(x)=x2100x+8200C(x)=x^{2}-100x+8200. What is the minimum cost?

See Solution

Problem 1210

An object moves as per the table. What's true about the rate of change of distance over time? A, B, C, or D?

See Solution

Problem 1211

Evaluate the expression [811x11/8]01\left[\frac{8}{11} x^{11 / 8}\right]_{0}^{1}.

See Solution

Problem 1212

Find f(1+h)f(1+h) for f(x)=x28f(x)=\frac{x^{2}}{8} and h=1,0.1,0.01,0.001,0.0001h=1, 0.1, 0.01, 0.001, 0.0001, rounding to seven decimal places.

See Solution

Problem 1213

Find the instantaneous rate of change of R(t)=240+30t3R(t)=240+30 t^{3} at t=1t=1. Round to one decimal place.

See Solution

Problem 1214

Find the limit as hh approaches 0 for 53+h+53h\frac{\frac{5}{-3+h}+\frac{5}{3}}{h}.

See Solution

Problem 1215

Find the limit: limh054+h+54h\lim _{h \rightarrow 0} \frac{\frac{5}{-4+h}+\frac{5}{4}}{h}.

See Solution

Problem 1216

Find aa such that limx32x2+ax+a2x2+x12\lim _{x \rightarrow 3} \frac{2 x^{2}+a x+a-2}{x^{2}+x-12} exists.

See Solution

Problem 1217

Find the non-negative value of bb such that the limit limx0{8x+b4x}\lim _{x \rightarrow 0}\left\{\frac{\sqrt{8 x+b}-4}{x}\right\} exists.

See Solution

Problem 1218

Find if the limit limh0f(1+h)f(1)h\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h} exists for f(x)=x2+4xf(x)=x^{2}+4x and calculate its value.

See Solution

Problem 1219

Which statements must be true by the Intermediate Value Theorem? Check if roots exist in [2,4][2,4] for the given functions.

See Solution

Problem 1220

Which statements are true due to the Intermediate Value Theorem (IVT) regarding the functions and intervals given?

See Solution

Problem 1221

Find the volume of a solid with a circular base radius 4 and square cross-sections perpendicular to the xx-axis.

See Solution

Problem 1222

Evaluate the integral using substitution and partial fractions: 1xx+1dx\int \frac{1}{x \sqrt{x+1}} d x.

See Solution

Problem 1223

Find the 2 positive terms in the integral of cos4xsin2xdx\cos ^{4} x \sin ^{2} x \, dx.

See Solution

Problem 1224

Find the limit: limx+sin1(x12x)\lim _{x \rightarrow+\infty} \sin ^{-1}\left(\frac{x}{1-2 x}\right).

See Solution

Problem 1225

Find the derivative f(x)f^{\prime}(x) for f(x)=3x2f(x)=3x-2 using the limit definition: limh0f(x+h)f(x)h\lim_{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}.

See Solution

Problem 1226

Find the derivative f(x)f^{\prime}(x) for f(x)=2x2+x19f(x)=-2 x^{2}+x-19 using the limit definition: limh0f(x+h)f(x)h\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}.

See Solution

Problem 1227

Determine if breakfast cereal consumption was changing faster in 2001 or 2011 using the model c(t)=0.0032t3+0.097t20.358t+12.4c(t)=-0.0032 t^{3}+0.097 t^{2}-0.358 t+12.4.

See Solution

Problem 1228

Determine if cereal consumption was changing faster in 2005 or 2012 using C(t)=0.0035t3+0.09t20.347t+12.25C(t)=-0.0035 t^{3}+0.09 t^{2}-0.347 t+12.25. Calculate C(15)C'(15) and C(22)C'(22).

See Solution

Problem 1229

Complete the tables for the behavior of f(x)=1x2f(x)=\frac{1}{x-2}, f(x)=1x+5f(x)=\frac{1}{x+5}, and f(x)=1x+8f(x)=\frac{1}{x+8}.

See Solution

Problem 1230

Given position s=f(t)=4t3+2t+9s=f(t)=4 t^{3}+2 t+9, find velocity v(t)v(t), v(3)v(3), acceleration a(t)a(t), and a(3)a(3).

See Solution

Problem 1231

Find the derivatives of these functions using formulas 3,3,13,3.63, 3, 1-3, 3.6:
1. f(x)=2x2+3x7f(x)=2 x^{2}+3 x-7
2. f(x)=x5+2x4+5x3+4x2+x+1f(x)=x^{5}+2 x^{4}+5 x^{3}+4 x^{2}+x+1
3. y=5x24x+923x3+4x5y=5 x^{2}-4 x+9-\frac{2}{3 x^{3}}+\frac{4}{x^{5}}
4. y=(x+7)(5x2)y=(x+7)(5 x-2)
5. g(x)=5x+37x+2g(x)=\frac{5 x+3}{7 x+2}
6. y=32x4x3y=\frac{3-2 x}{4 x-3}

See Solution

Problem 1232

Find the rate of change of cost in the function y+2.75=1.5(x1)y+2.75=1.5(x-1) for a taxi ride per mile. Choices: a) \$1.50 b) \$3.25 c) \$2.75 d) \$4.25.

See Solution

Problem 1233

Find the derivatives of these functions:
1. h(x)=(x23x+2)(x2+5x+1)h(x)=(x^{2}-3x+2)(x^{2}+5x+1)
2. h(x)=(5x2+4x+8)(9x3x2)h(x)=(5x^{2}+4x+8)(9-x-3x^{2})
3. y=3x2+5x+42x2+6x+3y=\frac{3x^{2}+5x+4}{2x^{2}+6x+3}
4. y=x2+2x+3x24x+6y=\frac{x^{2}+2x+3}{x^{2}-4x+6}

See Solution

Problem 1234

Find the derivatives of these functions using formulas 3.3.1-3.3.6:
1. h(x)=(x23x+2)(x2+5x+1)h(x)=(x^{2}-3 x+2)(x^{2}+5 x+1)
2. h(x)=(5x2+4x+8)(9x3x2)h(x)=(5 x^{2}+4 x+8)(9-x-3 x^{2})
3. y=3x2+5x+42x2+6x+3y=\frac{3 x^{2}+5 x+4}{2 x^{2}+6 x+3}
4. y=x2+2x+3x24x+6y=\frac{x^{2}+2 x+3}{x^{2}-4 x+6}

See Solution

Problem 1235

Find the derivatives of these functions:
1. h(x)=(x23x+2)(x2+5x+1)h(x)=(x^{2}-3x+2)(x^{2}+5x+1)
2. h(x)=(5x2+4x+8)(9x3x2)h(x)=(5x^{2}+4x+8)(9-x-3x^{2})
3. y=3x2+5x+42x2+6x+3y=\frac{3x^{2}+5x+4}{2x^{2}+6x+3}
4. y=x2+2x+3x24x+6y=\frac{x^{2}+2x+3}{x^{2}-4x+6}

Show final answers.

See Solution

Problem 1236

Find the limit as hh approaches 0 for f(6+h)f(6)h\frac{f(-6+h)-f(-6)}{h} where f(x)=6x27x1f(x)=-6x^2-7x-1.

See Solution

Problem 1237

If limxtf(x)=y\lim _{x \rightarrow t} f(x)=y, does ff need to be defined at x=tx=t?

See Solution

Problem 1238

Find the limit: limx5(x225x28x+15)\lim _{x \rightarrow 5}\left(\frac{x^{2}-25}{x^{2}-8 x+15}\right).

See Solution

Problem 1239

Find the limit as xx approaches -17 from the left for the piecewise function f(x)f(x).

See Solution

Problem 1240

Find the limit as xx approaches 0 from the right: limx0+(x3x411x)\lim _{x \rightarrow 0^{+}}\left(\frac{x}{-3 x^{4}-11 x}\right).

See Solution

Problem 1241

Find the limit: limx49(x7x49)\lim _{x \rightarrow 49}\left(\frac{\sqrt{x}-7}{x-49}\right).

See Solution

Problem 1242

Find the limit: limx144(x144x12)\lim _{x \rightarrow 144}\left(\frac{x-144}{\sqrt{x}-12}\right).

See Solution

Problem 1243

Calculate the limit as xx approaches 4 of the expression 4x2+9x+86x23x+7\frac{4 x^{2}+9 x+8}{6 x^{2}-3 x+7}.

See Solution

Problem 1244

Identify the discontinuity points for the function f(x)=xx21f(x)=\frac{x}{x^{2}-1}.

See Solution

Problem 1245

Considérez la fonction f(x)=7212(ex+ex)f(x)=\frac{7}{2}-\frac{1}{2}(e^{x}+e^{-x}). Trouvez la limite de ff à ++\infty, montrez qu'elle est décroissante sur [0;+[[0;+\infty[ et que f(x)=0f(x)=0 a une unique solution α\alpha sur cet intervalle. Justifiez que f(x)=0f(x)=0 a deux solutions opposées dans R\mathbb{R}.

See Solution

Problem 1246

Find the marginal revenue when 3 units are sold, given the demand function p=727.5qp=72-7.5q.

See Solution

Problem 1247

Find the instantaneous rate of change of R(t)=240+30t3R(t)=240+30 t^{3} at t=1t=1. Answer: R(1)=90R^{\prime}(1)=90 dollars/day.

See Solution

Problem 1248

Evaluate the integral: 016ln(x)x3dx\int_{0}^{1} 6 \frac{\ln (x)}{\sqrt[3]{x}} d x

See Solution

Problem 1249

Find the derivative of (x+1)sinx(x+1) \sin x.

See Solution

Problem 1250

Estimate the soccer ball's instantaneous velocity at t=2t=2 s using the average velocities given. Round to two decimal places.

See Solution

Problem 1251

Find the distance the ball travels from t=4t=4 to t=4.5t=4.5 using s(t)=4.9t2s(t)=4.9 t^{2}.

See Solution

Problem 1252

Find the average velocity from t=4t=4 to t=4.5t=4.5 for s(t)=4.9t2s(t) = 4.9t^2. Use decimal notation.

See Solution

Problem 1253

Estimate the ball's instantaneous velocity at t=4t=4 using average velocities over [4,4.1][4,4.1], [4,4.01][4,4.01], and [4,4.001][4,4.001]. Round to one decimal place.

See Solution

Problem 1254

Find the instantaneous velocity of a wrench at t=6t=6 seconds, given s(t)=4.9t2 ms(t)=4.9 t^{2} \mathrm{~m}.

See Solution

Problem 1255

Prove that limx64x=24\lim _{x \rightarrow 6} 4 x=24 using the precise definition of a limit.

See Solution

Problem 1256

Find the stone's average velocity over the interval [0.5,3][0.5,3] given its height function h=30t4.9t2h=30t-4.9t^2.

See Solution

Problem 1257

Find the average velocity of a rock thrown upward on Mars, described by y=10t1.9t2y=10t-1.9t^2, over the interval [2,3][2,3].

See Solution

Problem 1258

Find the average velocity vˉ\bar{v} of a stone with height h(t)=30t4.9t2h(t)=30t-4.9t^2 over intervals around t=3t=3.

See Solution

Problem 1259

Find the slope of the tangent line at x=7x=7 for f(x)=ln(x)f(x)=\ln(x). Round your answer to three decimal places.

See Solution

Problem 1260

Estimate the slope of the tangent line for y(t)=2t+1y(t)=\sqrt{2 t+1} at t=3t=3. Round your answer to three decimal places.

See Solution

Problem 1261

Find the slope of the tangent line at t=7t=-7 for the function f(t)=2t3f(t)=2t-3. Provide your answer as a whole number.

See Solution

Problem 1262

Find the slope of the tangent line for f(x)=3exf(x)=3 e^{x} at x=ex=e. Round your answer to two decimal places.

See Solution

Problem 1263

Estimate the slope of the tangent line for P(x)=5x2+7P(x)=5 x^{2}+7 at x=4x=4. Provide a whole number answer.

See Solution

Problem 1264

Find the slope of the tangent line for f(x)=3exf(x)=3 e^{x} at x=ex=e. Round your answer to two decimal places.

See Solution

Problem 1265

Find the average velocity of s(t)=t3+2ts(t)=t^{3}+2t over [2,8][2,8] and estimate the instantaneous velocity at t=2t=2.

See Solution

Problem 1266

Find the average rate of change of y=f(x)y=f(x) from x=4x=4 to x=7x=7 using the given values. Round to two decimal places.

See Solution

Problem 1267

Evaluate the function f(x)f(x) and determine which statements about its limit and continuity at x=1x=1 are true. Options: A. Only I, B. Only II, C. I and II, D. None, E. All.

See Solution

Problem 1268

Find the stone's average velocity over the interval [0.5,3][0.5,3] using the height function h=35t4.9t2h=35 t-4.9 t^{2}.

See Solution

Problem 1269

Estimate the instantaneous velocity of a wrench at t=5t=5 seconds, given s(t)=4.9t2 ms(t)=4.9 t^{2} \mathrm{~m}.

See Solution

Problem 1270

Find the average velocity of s(t)=t3+2ts(t)=t^{3}+2t over [2,8][2,8] and estimate the instantaneous velocity at t=2t=2.

See Solution

Problem 1271

Estimate the slope of the tangent line for y(t)=4t+1y(t)=\sqrt{4t+1} at t=1t=1. Round your answer to three decimal places.

See Solution

Problem 1272

Find the slope of the tangent line at t=7t=-7 for the function f(t)=2t3f(t)=2t-3. Provide your answer as a whole number.

See Solution

Problem 1273

Estimate the slope of the tangent line for P(x)=6x2+8P(x)=6 x^{2}+8 at x=6x=6. Provide your answer as a whole number.

See Solution

Problem 1274

Estimate the slope of the tangent line at x=11x=11 for f(x)=ln(x)f(x)=\ln (x). Round your answer to three decimal places.

See Solution

Problem 1275

Find the slope of the tangent line for f(x)=2exf(x)=2 e^{x} at x=ex=e. Round your answer to two decimal places.

See Solution

Problem 1276

Evaluate the integral from 0 to 1: 01x2+1dx\int_{0}^{1} \sqrt{x^{2}+1} \, dx.

See Solution

Problem 1277

Find the average velocity vˉ\bar{v} of a stone tossed with h(t)=35t4.9t2h(t)=35t-4.9t^2 over intervals [1,1.01],[1,1.001],[1,1.0001],[0.9999,1],[0.999,1],[0.99,1][1,1.01], [1,1.001], [1,1.0001], [0.9999,1], [0.999,1], [0.99,1]. Round to three decimal places.

See Solution

Problem 1278

Find f(x)f^{\prime}(x) using the Fundamental Theorem of Calculus for f(x)=4x3t2+9dtf(x)=\int_{-4}^{x^{3}} \sqrt{t^{2}+9} dt.

See Solution

Problem 1279

Determine the interval(s) where the curve y=0xt2t23t+5dty=\int_{0}^{x} \frac{t^{2}}{t^{2}-3 t+5} d t is concave upward.

See Solution

Problem 1280

Find a function ff and a number aa such that 2+axf(t)t5dt=6x12+\int_{a}^{x} \frac{f(t)}{t^{5}} dt=6 x^{-1}. What is f(x)f(x)?

See Solution

Problem 1281

Evaluate the integral from 9 to 15 of (4x+5)-(4x + 5) using area formulas. What is 915((4x+5))dx\int_{9}^{15}(-(4x+5)) dx?

See Solution

Problem 1282

Estimate the integrals using Riemann sums: (a) left-endpoint 010f(x)dx\int_{0}^{10} f(x) dx \approx and (b) right-endpoint 010f(x)dx\int_{0}^{10} f(x) dx \approx.

See Solution

Problem 1283

Find a function ff and a number aa such that 2+axf(t)t5dt=6x12 + \int_{a}^{x} \frac{f(t)}{t^{5}} dt = 6 x^{-1}.

See Solution

Problem 1284

Use the table of the increasing function ff to find lower and upper estimates for 025f(x)dx\int_{0}^{25} f(x) dx. Lower estimate = , Upper estimate = .

See Solution

Problem 1285

Compute the following integrals using given values:
(a) 044f(x)dx=\int_{0}^{4} 4 f(x) d x= (b) 04(1f(x)3g(x))dx=\int_{0}^{4}(-1 f(x)-3 g(x)) d x= (c) 04(35h(x))dx=\int_{0}^{4}(3-5 h(x)) d x=

See Solution

Problem 1286

Compute the integrals given:
(a) 044f(x)dx=62\int_{0}^{4} 4 f(x) d x = 62
(b) 04(1f(x)3g(x))dx=\int_{0}^{4}(-1 f(x)-3 g(x)) d x= ?

See Solution

Problem 1287

Given the integrals:
1. 26f(x)dx=10\int_{2}^{6} f(x) dx = -10, 68f(x)dx=10\int_{6}^{8} f(x) dx = -10
2. 26g(x)dx=4\int_{2}^{6} g(x) dx = -4, 68g(x)dx=4\int_{6}^{8} g(x) dx = 4

Find:
(a) 28(f(x)+g(x))dx=\int_{2}^{8}(f(x)+g(x)) dx= (number)
(b) 28(f(x)g(x))dx=\int_{2}^{8}(f(x)-g(x)) dx= (number)
(c) 28(7f(x)3g(x))dx=\int_{2}^{8}(7 f(x)-3 g(x)) dx= (number)

See Solution

Problem 1288

Find the average value favef_{\text{ave}} of f(x)=324xf(x)=32-|4x| from x=8x=-8 to x=8x=8 and points cc where f(c)=favef(c)=f_{\text{ave}}.

See Solution

Problem 1289

Find the average value fave f_{\text {ave }} of f(x)=324xf(x)=32-|4 x| for xx in the range [8,8][-8, 8]. What is fave f_{\text {ave }}?

See Solution

Problem 1290

Evaluate the integral from 3 to 19 of 7x117 - |x - 11| using area formulas. What is 319(7x11)dx\int_{3}^{19}(7 - |x - 11|) d x?

See Solution

Problem 1291

Find the right endpoint Riemann sum for f(x)=15xf(x)=\frac{15}{x} on [2,6][2,6] using 8 rectangles of width 0.5. What is the sum?

See Solution

Problem 1292

Calculate the left endpoint Riemann sum for f(x)=15xf(x)=\frac{15}{x} over [2,6][2,6] using 8 rectangles of width 0.5.

See Solution

Problem 1293

Calculate the left endpoint Riemann sum for f(x)=x212f(x)=\frac{x^{2}}{12} on [2,6][2,6] and explain why it's an underestimate.

See Solution

Problem 1294

Find the indefinite integral: 1(x1)(x+3)dx=2+C\int \frac{1}{(x-1)(x+3)} dx = \sqrt{2} + C.

See Solution

Problem 1295

Evaluate the integral using partial fractions: 2(x6)2(x+6)dx=C\int -\frac{2}{(x-6)^{2}(x+6)} \, dx = C

See Solution

Problem 1296

Evaluate the expression: 1181x6dx+11081(x6)2dx12161x+6dx-\frac{1}{18} \int \frac{1}{x-6} dx + \frac{1}{108} \int \frac{1}{(x-6)^{2}} dx - \frac{1}{216} \int \frac{1}{x+6} dx.

See Solution

Problem 1297

Evaluate the integral: 7x+25(7x)(x2+25)dx=\int \frac{7 x+25}{(7-x)\left(x^{2}+25\right)} d x=

See Solution

Problem 1298

Find the distance dd traveled by a particle with velocity v(t)=7t2t2+1v(t)=\frac{7 t^{2}}{t^{2}+1} after t=3t=3 sec.

See Solution

Problem 1299

A rumor spreads in a school. Given y(t)=ky(1y)y^{\prime}(t)=k y(1-y), find when 90%90\% of 1000 students hear it.

See Solution

Problem 1300

Solve the logistic equation dydx=5y(1y10)\frac{d y}{d x}=5 y\left(1-\frac{y}{10}\right) for yy and find y(0)=6y(0)=6.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord