Calculus

Problem 15901

Evaluate the limit using l'Hôpital's Rule:
limx18x4+4x3+6x+2x+1 \lim _{x \rightarrow-1} \frac{8 x^{4}+4 x^{3}+6 x+2}{x+1}
Find the limit and provide the exact answer.

See Solution

Problem 15902

Find when the instantaneous velocity p(t)p'(t) equals the average velocity over [1,16][1, 16] for p(t)=t2p(t)=\sqrt{t}-2.

See Solution

Problem 15903

Is the claim true or false? Prove your answer: If limh0f(a+h)2f(a)+f(ah)h2\lim _{h \rightarrow 0} \frac{f(a+h)-2 f(a)+f(a-h)}{h^{2}} exists, then ff is twice differentiable at x=ax=a.

See Solution

Problem 15904

Find the limit as Δx\Delta x approaches 0 for f(2+Δx)f(2)Δx\frac{f'(-2+\Delta x)-f'(-2)}{\Delta x} where f(x)=x22+x2f(x) = \frac{x^2}{2} + x^2.

See Solution

Problem 15905

A ball rolls off a 3.2 m3.2 \mathrm{~m} high halfpipe. What is its speed halfway up the other side? Neglect friction.

See Solution

Problem 15906

Find the absolute extreme values of f(x)=x2+12f(x)=-x^{2}+12 on the interval [2,4][-2,4]. What are the max and min values?

See Solution

Problem 15907

Find the limit as Δx\Delta x approaches 0 for f(2+Δx)f(2)Δx\frac{f'(-2+\Delta x)-f'(-2)}{\Delta x}, where f(x)=x22+x2f(x) = \frac{x^2}{2} + x^2.

See Solution

Problem 15908

Find the limit of f(2+Δx)f(2)Δx\frac{f^{\prime}(-2+\Delta x)-f^{\prime}(-2)}{\Delta x} as Δx\Delta x approaches 0 for f(x)=x22+x2f(x) = \frac{x^2}{2} + x^2.

See Solution

Problem 15909

Find the power series for f(x)=x9+x2f(x)=\frac{x}{9+x^{2}} and its interval of convergence.

See Solution

Problem 15910

Find the absolute max/min of f(x)=x27f(x) = x^{2} - 7 on the interval [3,4][-3, 4].

See Solution

Problem 15911

Evaluate the limit using l'Hôpital's Rule:
limx7x2+8x+7632x+x2 \lim _{x \rightarrow -7} \frac{x^{2}+8x+7}{-63-2x+x^{2}}

See Solution

Problem 15912

Find the limit as xx approaches -7 for the expression x2+8x+7632x+x2\frac{x^{2}+8x+7}{-63-2x+x^{2}} using IHôpital's Rule.

See Solution

Problem 15913

Calculate limΔx0f(2+Δx)f(2)Δx\lim _{\Delta x \rightarrow 0} \frac{f^{\prime}(-2+\Delta x)-f^{\prime}(-2)}{\Delta x} for f(x)=x22+x2f(x) = \frac{x^2}{2} + x^2.

See Solution

Problem 15914

Find the limit of f(2+Δx)f(2)Δx\frac{f'(-2+\Delta x)-f'(-2)}{\Delta x} as Δx0\Delta x \to 0 to determine f(2)f''(-2).

See Solution

Problem 15915

Evaluate the integral: 6(t+11)5dt\int \frac{6}{(t+11)^{5}} d t

See Solution

Problem 15916

Evaluate the integral x2(x311)28dx\int x^{2}(x^{3}-11)^{28} dx using the substitution u=x311u=x^{3}-11.

See Solution

Problem 15917

Integrate the function from -1 to 1: 1110(2x5)4dx\int_{-1}^{1} 10(2 x-5)^{4} d x. What is the result?

See Solution

Problem 15918

Evaluate the integral from 0 to 1 of 4x+6dx\sqrt{4x + 6} \, dx.

See Solution

Problem 15919

Find h(1)h^{\prime}(1) for h(x)=f(x)g(x)h(x)=f(x) \cdot g(x) using values from the chart.

See Solution

Problem 15920

Find the Taylor polynomials of degree nn for 344x\frac{3}{4-4x} near x=0x=0: P3(x)P_{3}(x), P5(x)P_{5}(x), P7(x)P_{7}(x).

See Solution

Problem 15921

Calculate the integral: π2π2sin2xcosxdx\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin ^{2} x \cos x \, dx

See Solution

Problem 15922

Evaluate the integral 0π2cos2xsinxdx\int_{0}^{\pi}-2 \cos ^{2} x \sin x \, dx. What is the result?

See Solution

Problem 15923

Find the value of h(3)h^{\prime}(3) for h(x)=f(x)g(x)h(x)=f(x)g(x) given f(3)=4f(3)=4, f(3)=1/3f'(3)=-1/3, g(3)=3g(3)=3, g(3)=2g'(3)=-2.

See Solution

Problem 15924

A 140 kg asteroid falls towards Earth. What speed will it impact with, given Earth's mass is 5.97×1024 kg5.97 \times 10^{24} \mathrm{~kg} and radius 6400 km6400 \mathrm{~km}?

See Solution

Problem 15925

Find the optimal landing point xx (in km from point PP) for shortest travel time to town, given a=3a=3 km, b=12b=12 km, boat speed 2.82.8 km/h, and walk speed 55 km/h.

See Solution

Problem 15926

Find the relationship between dVdt\frac{d V}{d t}, drdt\frac{d r}{d t}, and dhdt\frac{d h}{d t} for a cylinder with volume V=πr2hV = \pi r^2 h.

See Solution

Problem 15927

A balloon inflates at 100πft3/min100 \pi \mathrm{ft}^{3}/\mathrm{min}. Find the radius increase rate at r=5r=5 ft.

See Solution

Problem 15928

Find the inflection points of the function f(x)=xe6xf(x)=\frac{x}{e^{6 x}}. List values or write DNE if none exist.

See Solution

Problem 15929

Find the critical numbers of f(x)=3x+sin(2x)f(x)=-\sqrt{3} x+\sin(2x) for 0xπ0 \leq x \leq \pi. List them or enter DNE if none exist.

See Solution

Problem 15930

Find the number of infected people after t=ln(10)1.5t=\sqrt{\ln(10)} \approx 1.5 weeks, given N(t)=100tet2N^{\prime}(t)=100 t e^{-t^{2}} and N(0)=125N(0)=125.

See Solution

Problem 15931

Find the rate of change of water depth in a conical tank (10 ft wide, 12 ft deep) when water is 8 ft deep, filling at 10 ft³/min.

See Solution

Problem 15932

Find the number of infected people after t=ln(10)t=\sqrt{\ln (10)} weeks, given N(t)=100tet2N^{\prime}(t)=100 t e^{-t^{2}} and initial N(0)=125N(0)=125.

See Solution

Problem 15933

Find the diagonal change rate of a rectangle with l=12cml=12 \, \text{cm}, w=5cmw=5 \, \text{cm}, dl/dt=2dl/dt=-2, dw/dt=2dw/dt=2. Use d=l2+w2d = \sqrt{l^2 + w^2}.

See Solution

Problem 15934

Find where to land a boat (xx km from point PP) to reach a town in the shortest time, given speeds of 2.8 km/h (rowing) and 5 km/h (walking). Use d=rtd=r \cdot t and t=drt=\frac{d}{r}. Answer to three decimal places. x= x = km

See Solution

Problem 15935

A 25-ft ladder leans against a wall. The base moves away at 2 ft/sec. Find the speed of the top when the base is 15 ft from the wall.

See Solution

Problem 15936

Find the velocity v(t)v(t) and acceleration a(t)a(t) of a pendulum modeled by s(t)=0.08sin(2t)+3ts(t)=0.08 \sin(2t)+3t for 0tπ0 \leq t \leq \pi.

See Solution

Problem 15937

Find local extrema of f(x)=4(x3)6+2(x3)4f(x)=4(x-3)^{6}+2(x-3)^{4}. List points as (x,y)(x, y) or enter DNE if none exist.

See Solution

Problem 15938

A 25 ft ladder leans against a wall. Base moves away at 2 ft/s. Find how fast top moves down when base is 15 ft from wall.

See Solution

Problem 15939

A ladder leans against a wall, height 25 ft. Find the area change rate when the ladder is 9 ft from the wall. Use A=12xyA=\frac{1}{2} x y and dAdt=12(xdxdt+ydydt)\frac{d A}{d t}=\frac{1}{2}\left(x \frac{d x}{d t}+y \frac{d y}{d t}\right). Height y=25292y=\sqrt{25^{2}-9^{2}}.

See Solution

Problem 15940

A 25 ft ladder leans against a wall. If the base moves away at 2 ft/s, find the rate of change of angle θ when the base is 7 ft out. Use tan(θ)=yx\tan (\theta) = \frac{y}{x} and ddt(tan(θ))=xdydtydxdtx2\frac{d}{d t}(\tan (\theta))=\frac{x \frac{d y}{d t}-y \frac{d x}{d t}}{x^{2}}.

See Solution

Problem 15941

Find the derivative of the product of functions f(x)=2xf(x)=-2x and g(x)=8x25x+7g(x)=8x^2-5x+7.

See Solution

Problem 15942

Find the value of CC that makes the 1-form α\alpha a gradient 1-form field.

See Solution

Problem 15943

Find the rate of change dAdt\frac{d A}{d t} when A=2A=2, dB/dt=3d B/d t=3, and A3+B3=9A^3 + B^3 = 9.

See Solution

Problem 15944

Calculate the work done by the force field F=(3x2+2y)i^+(4y+2x)j^\vec{F}=(3 x^{2}+2 y) \hat{i}+(4 y+2 x) \hat{j} along the path y=x2y=x^{2} from x=1x=-1 to x=1x=1.

See Solution

Problem 15945

What is the length of each edge of a cube if its volume increases at 24in3/min24 \mathrm{in}^{3}/\mathrm{min} and edges at 2in/min2 \mathrm{in}/\mathrm{min}?

See Solution

Problem 15946

An 80-foot building casts a 60-foot shadow. If θ\theta increases at 0.27 rad/min, find the shadow's decreasing rate.

See Solution

Problem 15947

Bestimme die Art der Punkte bei x=2x=2 und x=2x=-2, wenn f(2)=4>0f''(2) = 4 > 0 und f(2)=4<0f''(-2) = -4 < 0.

See Solution

Problem 15948

Find how fast Tom's surface area SS is decreasing when he weighs 70 kg70 \mathrm{~kg}, given h=165 cmh=165 \mathrm{~cm} and ww is decreasing.

See Solution

Problem 15949

Find the rate of change dA/dtdA/dt when A=2A=2 and dB/dt=3dB/dt=3 for the equation A3+B3=9A^{3}+B^{3}=9.

See Solution

Problem 15950

Find the derivatives: a. f(x)=π5x+e14+log4(14)f(x)=\pi \cdot 5^{x}+e^{14}+\log _{4}\left(\frac{1}{4}\right); b. y=13x14xey=\frac{13^{x}}{14}-x^{e}.

See Solution

Problem 15951

Find dydx\frac{d y}{d x} using the chain rule for: a) y=u2+3uy=u^{2}+3u, u=xu=\sqrt{x}, x=4x=4; b) y=uy=\sqrt{u}, u=2x2+3x+4u=2x^{2}+3x+4, x=3x=-3; c) y=1u2y=\frac{1}{u^{2}}, u=x35xu=x^{3}-5x, x=2x=-2; d) y=u(2u2)y=u(2-u^{2}), u=1xu=\frac{1}{x}, x=2x=2.

See Solution

Problem 15952

Ship A moves west at 15 km/hr, Ship B moves north at 10 km/hr. Find:
(a) Distance between ships when x=4x=4 km, y=3y=3 km. (b) Rate of change of distance at x=4x=4 km, y=3y=3 km. (c) Rate of change of angle θ\theta at x=4x=4 km, y=3y=3 km.

See Solution

Problem 15953

Find the tangent line equation for the curve y=(x34x2)3y=(x^{3}-4x^{2})^{3} at the point where x=3x=3.

See Solution

Problem 15954

A cone with height 10 cm10 \mathrm{~cm} and diameter 10 cm10 \mathrm{~cm} has water evaporating at 310-\frac{3}{10} cm/hr.
(a) Why can't we use V=13πr2hV=\frac{1}{3} \pi r^{2} h to find the volume rate change when h=5 cmh=5 \mathrm{~cm}? What’s needed?
(b) Calculate the volume change rate when h=5 cmh=5 \mathrm{~cm}. Provide units.
(c) When h=4 cmh=4 \mathrm{~cm}, the surface area changes at 9πcm29 \pi \mathrm{cm}^{2}/hr. Find the radius change rate. Provide units.

See Solution

Problem 15955

Finde die Wendepunkte der Funktionen f(x)=x4+2x32f(x)=x^{4}+2 \cdot x^{3}-2 und g(x)=x(x31)g(x)=x \cdot (x^{3}-1) durch Ableiten.

See Solution

Problem 15956

Bestimmen Sie die Tangentengleichung der Funktion f(x)=12x23x+1f(x)=\frac{1}{2} x^{2}-3 x+1 an den Punkten: a) P(43)P(4|-3), b) P(11.5)P(1|-1.5), c) P(421)P(-4|21), d) P(01)P(0|1).

See Solution

Problem 15957

Find the area between f(x)=x28x+14f(x)=x^{2}-8x+14 and g(x)=x2+6x6g(x)=-x^{2}+6x-6 from x=2x=2 to x=5x=5.

See Solution

Problem 15958

Ein Skifahrer fährt die Strecke s(t)=1,5t2s(t)=1,5 t^{2} m. a) Berechne die Geschwindigkeit nach 5 s und die Strecke nach 6 s. b) Wann hat er 36ms36 \frac{\mathrm{m}}{\mathrm{s}}? c) Wann ist er 96 m96 \mathrm{~m} gefahren?

See Solution

Problem 15959

Gegeben ist die Funktion fa(x)=ax3+4axf_{a}(x)=-a x^{3}+4 a x mit a0a \neq 0. Zeigen Sie, dass die Graphen punktsymmetrisch sind und durch P(2,0)P(-2,0) und Q(2,0)Q(2,0) verlaufen. Bestimmen Sie Hoch- und Tiefpunkte sowie die Wendetangente und den Wert von aa für m=8m=8.

See Solution

Problem 15960

Find the area between the curves x=2+cosθx=2+\cos \theta and r=5cosθr=5 \cos \theta.

See Solution

Problem 15961

Finde den Punkt, an dem die Tangente an f(x)=(x+3)(x3)2f(x)=(x+3)(x-3)^{2} die Steigung 6 hat und wo sie die xx-Achse schneidet.

See Solution

Problem 15962

Find the limit: limx+(e2n2+2)2n2+1n21\lim _{x \rightarrow+\infty}\left(e^{-2 n^{2}+2}\right)^{\frac{2 n^{2}+1}{n^{2}-1}}.

See Solution

Problem 15963

Gegeben ist die Funktion ra(x)=12ax4a2x2+3r_{a}(x)=\frac{1}{2 a} x^{4}-\frac{a}{2} x^{2}+3.
a) Verhalten von f0f_{0} für x+x \rightarrow+\infty und xx \rightarrow-\infty?
b) Nachweis der Achsensymmetrie von GaG_{a} zur yy-Achse?
d) Nachweis, dass GaG_{a} drei Extrema hat und deren Arten in Abhängigkeit von aa?
e) Existiert ein positives aa, sodass y=4x+5y=4x+5 Tangente an GaG_{a} bei P(2f(2))P(2 \mid f(2)) ist?
f) Ist f(x)=16x432x2+3f(x)=\frac{1}{6} x^{4}-\frac{3}{2} x^{2}+3 ein Graph von GaG_{a}?
g) Ist T(322,138)T\left(\frac{3}{2} \sqrt{2}, 1-\frac{3}{8}\right) ein lokaler Tiefpunkt von G3G_{3}?
h) Berechne den Abstand zwischen den Nullstellen von G3G_{3}.
i) Länge des roten Teilstücks bei y=5y=5?
j) Bestimme die Wendetangente mit negativer Steigung und zeige, dass das Dreieck gleichschenklig ist.
k) Warum ist g(x)g(x) die Ableitungsfunktion ff^{\prime} von f3f_{3}?
l) Bedeutung von f(1)f(0)10\frac{f(1)-f(0)}{1-0} im Kontext und berechne seinen Wert.
m) Bestimme die quadratische Funktion für den Lärmschutzwall zwischen den Nullstellen und erkläre die Bedeutung von aa.

See Solution

Problem 15964

As xx approaches infinity, what does the rate of change of f(x)=2x3x21f(x)=\frac{-2 x^{3}}{x^{2}-1} approach? A. 0 B. \infty C. -\infty D. 2 E. -2

See Solution

Problem 15965

Leiten Sie die Funktion ab: f(x)=sin(x)cos(x1)f(x)=\sin (x) \cdot \cos (x-1)

See Solution

Problem 15966

Determine if these series converge or diverge:
1. n=1n2n2+1\sum_{n=1}^{\infty} \frac{n^{2}}{n^{2}+1}
2. n=1n1n3+1\sum_{n=1}^{\infty} \frac{n-1}{n^{3}+1}
3. n=1ann!,a>0\sum_{n=1}^{\infty} \frac{a^{n}}{n !}, a>0
4. n=14n+172n+3\sum_{n=1}^{\infty} \frac{4^{n+1}}{7^{2 n+3}}
5. n=1(1)nnn\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n \sqrt{n}}

See Solution

Problem 15967

A rover's path is defined by x(t)=12sin(2t2)x'(t)=-12 \sin(2t^2) and y(t)=10cos(1+t)y'(t)=10 \cos(1+\sqrt{t}). Solve for acceleration, speed, distance, yy-coordinate, and signal times.

See Solution

Problem 15968

Find the limit of the fish population rate f(t)=10(2+3t)1+0.03tf(t)=\frac{10(2+3 t)}{1+0.03 t} as tt approaches infinity. Options: A. 0 B. undefined C. 10 D. 100 E. 1000

See Solution

Problem 15969

Determine if the series n=1n2n2+1\sum_{n=1}^{\infty} \frac{n^{2}}{n^{2}+1} converges or diverges.

See Solution

Problem 15970

Determine if these series converge or diverge:
1. n=1n2n2+1\sum_{n=1}^{\infty} \frac{n^{2}}{n^{2}+1}
2. n=1n1n3+1\sum_{n=1}^{\infty} \frac{n-1}{n^{3}+1}
3. n=1ann!,a>0\sum_{n=1}^{\infty} \frac{a^{n}}{n !}, a>0
4. n=14n+172n+3\sum_{n=1}^{\infty} \frac{4^{n+1}}{7^{2 n+3}}
5. n=1(1)nnn\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n \sqrt{n}}

See Solution

Problem 15971

Evaluate the integral 01(12sin(2t2))2+(10cos(1+t))2dt\int_{0}^{1} \sqrt{\left(-12 \sin \left(2t^{2}\right)\right)^{2}+(10 \cos (1+\sqrt{t}))^{2}} dt using numerical methods.

See Solution

Problem 15972

Find the antiderivative of f(x)=1x5f(x)=\frac{1}{x^{5}}.

See Solution

Problem 15973

Evaluate the integral π/4π/3(2sec2(x)5cos(x))dx\int_{\pi / 4}^{\pi / 3}\left(-2 \sec ^{2}(x)-5 \cos (x)\right) d x.

See Solution

Problem 15974

Given an increasing function gg on [0,4][0,4], which could be the value of 04g(x)dx\int_{0}^{4} g(x) d x: A. 70, B. 80, C. 96?

See Solution

Problem 15975

Find the tangent line equation for f(x)=10x210x+12f(x)=10 x^{2}-10 x+12 at the point where x=10x=10.

See Solution

Problem 15976

Find the max and min values of ff on the interval [0,4] where f(x)=7+81x3x3f(x)=7+81x-3x^{3}.

See Solution

Problem 15977

Find the formula for the population change rate, given P(t)=206t+1P(t)=20-\frac{6}{t+1} (in thousands).

See Solution

Problem 15978

Find the average value of the function y=x+sinxy=x+\sin x on the interval [0,3π2][0, \frac{3 \pi}{2}].

See Solution

Problem 15979

Find the profit rate change Π(p)\Pi^{\prime}(p) for Π(p)=2p4\Pi(p) = 2p - 4 at p=5p=5€. Should the price exceed 55€ to maximize profit?

See Solution

Problem 15980

Messung des Wasserstands: f(t)=1,5sin(π5(t5))+1,5f(t)=1,5 \sin \left(\frac{\pi}{5}(t-5)\right)+1,5.
a) Wasserstand bei t=0t=0. b) Graph skizzieren. c) Steigt oder fällt der Wasserstand bei t=0t=0? d) Graph der Ableitung identifizieren. e) Maximum, Minimum und Tidenhub berechnen.

See Solution

Problem 15981

Approximate the displacement of an object with v=14t+1v=\frac{1}{4t+1} m/s from t=0t=0 to t=8t=8 using 4 subintervals.

See Solution

Problem 15982

Approximate the displacement of an object with v=23t2+6(ft/s)v=\frac{2}{3} t^{2}+6(f t / s) on 0t180 \leq t \leq 18 using n=6n=6 subintervals.

See Solution

Problem 15983

Une fenêtre a un rectangle et un demi-cercle. Périmètre total = 10 m. Trouvez les dimensions pour maximiser A = xy + \frac{1}{2} \cdot \pi x^2.

See Solution

Problem 15984

L'azote et l'hydrogène forment l'ammoniac avec Q(t)=100100010+tQ(t)=100-\frac{1000}{10+t}.
a) Trouvez Q(0)Q(0) et Q(20)Q(20). b) Calculez la variation de QQ sur [10 s, 20 s]. c) Trouvez le taux de variation moyen sur [10 s, 20 s] et [20 s, 30 s]. d) Évaluez limh0+Q(h+0)Q(0)h\lim_{h \to 0^{+}} \frac{Q(h+0)-Q(0)}{h}. e) Déterminez la fonction de variation de QQ. f) Évaluez dQdtt=10s\left.\frac{dQ}{dt}\right|_{t=10 s} et dQdtt=1 min\left.\frac{dQ}{dt}\right|_{t=1 \text{ min}}. g) Analysez la tendance de QQ et son taux de variation. h) Trouvez dQdt\frac{dQ}{dt} pour Q=70 gQ=70 \mathrm{~g}. i) Trouvez QQ quand dQdt=1,6 g/s\frac{dQ}{dt}=1,6 \mathrm{~g/s}. j) Évaluez limt+Q(t)\lim_{t \to +\infty} Q(t). k) Représentez graphiquement QQ et dQdt\frac{dQ}{dt}.

See Solution

Problem 15985

Quelle est la dérivée de f(x)=log3(5x2)f(x)=\log ^{3}(5 x^{2}) ? A. 3log2(5x2)5x2ln10\frac{3 \log ^{2}(5 x^{2})}{5 x^{2} \ln 10} B. 2xln10\frac{2}{x \ln 10} C. Aucune de ces réponses D. 3log2(5x2)3 \log ^{2}(5 x^{2}) E. 6log2(5x2)x\frac{6 \log ^{2}(5 x^{2})}{x} F. 6log2(5x2)xln10\frac{6 \log ^{2}(5 x^{2})}{x \ln 10}

See Solution

Problem 15986

A baseball player throws a ball at 22 m/s22 \mathrm{~m/s}. Find the maximum height and total time in the air.

See Solution

Problem 15987

Approximate the displacement of an object with velocity v=23t2+6v=\frac{2}{3} t^{2}+6 over 0t180 \leq t \leq 18, using n=6n=6.

See Solution

Problem 15988

Find the fish population after one and two breeding seasons using a logistic model with a carrying capacity of 2000 and initial population p0=200p_{0}=200. The growth rate is 170%170\% per year. Calculate p1=p_{1}= and p2=p_{2}=.

See Solution

Problem 15989

Approximate the displacement of an object with v=23t2+6v=\frac{2}{3} t^{2}+6 on 0t180 \leq t \leq 18 using n=6n=6 subintervals.

See Solution

Problem 15990

A substance grows at 9%9\% per day. What is its mass after 5 days if it starts at 15 grams? Round to the nearest tenth. \square grams

See Solution

Problem 15991

Particle moves in the xyxy-plane with v(t)=(cos(t2),e0.5t)v(t)=\left(\cos(t^{2}), e^{0.5 t}\right), starting at (3,5)(3,5) at t=1t=1.
(a) Find x(2)x(2). (b) When is the slope of the tangent 2 for 0<t<10<t<1? (c) When is speed 3? (d) Total distance from t=0t=0 to t=1t=1?

See Solution

Problem 15992

Find the rate of change of f(t)=94t99t94f(t)=\frac{94 t}{99 t-94} after 1 hour and 10 hours.

See Solution

Problem 15993

Show that the function ff on [0,3][0,3] is Darboux integrable using the partition Pε\mathrm{P}_{\varepsilon} with 0<ε<120<\varepsilon<\frac{1}{2}.

See Solution

Problem 15994

Differentiate the function y=x4lnx13x3y=x^{4} \ln x-\frac{1}{3} x^{3}. Show your work.

See Solution

Problem 15995

Differentiate y=xx5+9(x5)2/3y = \frac{x \sqrt{x^{5}+9}}{(x-5)^{2/3}} using logarithmic differentiation. Show your work.

See Solution

Problem 15996

Find the max and min of f(t)=1000e3costf(t)=1000 e^{3 \cos t} and the corresponding tt values.

See Solution

Problem 15997

Estimate the population in 2010 using p(t)=38.59(1.014)tp(t)=38.59(1.014)^{t} and find the rate of change at t=10t=10.

See Solution

Problem 15998

Find the limit of f(a+h)f(a)h\frac{f(a+h)-f(a)}{h} for f(x)=3x2+8x2f(x)=3x^{2}+8x-2.

See Solution

Problem 15999

Given f(t)=1000e3costf(t)=1000 e^{3 \cos t}, find the max/min of f(t)f(t) and the corresponding tt values.

See Solution

Problem 16000

Find the limit of f(a+h)f(a)h\frac{f(a+h)-f(a)}{h} for f(x)=4x1f(x)=\frac{4}{x-1}.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord