Calculus

Problem 8901

Find the derivative of f(x)=30x12f(x) = 30x^{\frac{1}{2}}.

See Solution

Problem 8902

Find the derivative of f(x)=30xx2f(x) = \frac{30}{\sqrt{x}} - x^{2}.

See Solution

Problem 8903

Find the derivative of the piecewise function f(x)={30xx2x25x107f(x) = \begin{cases} \frac{30}{\sqrt{x}} - x^2 \\ x^2 - 5x - 107 \end{cases} and evaluate it at x=9x=9.

See Solution

Problem 8904

The tangent line to ff at (2,3)(-2,3) is y=5x1y=-5x-1. Is f(2)=3f^{\prime}(-2)=3 true or false?

See Solution

Problem 8905

Find the rocket's climbing speed at t=6t = 6 sec, given height h=4t2h = 4t^{2} ft. Answer in ft/sec\mathrm{ft} / \mathrm{sec}.

See Solution

Problem 8906

A boat is 2mi2 \mathrm{mi} from shore, 11mi11 \mathrm{mi} from a restaurant. Find landing point to minimize travel time and row speed.
a. Objective function for time TT is: T=22+x22+11x3 T=\frac{\sqrt{2^{2}+x^{2}}}{2}+\frac{11-x}{3} Interval: [0,11][0,11]. Landing point: 114511-\frac{4}{\sqrt{5}} miles.
b. Minimum rowing speed for direct route: mi/hr\square \mathrm{mi} / \mathrm{hr}.

See Solution

Problem 8907

Find the derivative f(1)f'(1) for the piecewise function:
f(x)=3x+2f(x) = 3x + 2 if x<1x < 1, f(x)=5f(x) = 5 if x=1x = 1, f(x)=8x+x24f(x) = 8x + x^2 - 4 if x>1x > 1.

See Solution

Problem 8908

Find the derivative f(1)f'(1) for the piecewise function defined as:
f(x)=6x5f(x) = 6x - 5 if x<1x < 1, f(x)=1f(x) = 1 if x=1x = 1, f(x)=6x+x26f(x) = 6x + x^2 - 6 if x>1x > 1.

See Solution

Problem 8909

Find the derivative of 1x2\frac{1}{x^{2}} with respect to xx.

See Solution

Problem 8910

Find the rocket's speed at t=4\mathrm{t} = 4 sec if height is 5t2ft5 \mathrm{t}^{2} \mathrm{ft}. Answer: 100ft/sec100 \mathrm{ft} / \mathrm{sec}.

See Solution

Problem 8911

Find the tangent line equation at point (1,-3) for the curve y=2x3+3x8y=2 x^{3}+3 x-8. Choose from options a), b), c).

See Solution

Problem 8912

If cos(x)+cos(y)=y\cos(x) + \cos(y) = y, is it true that dydx=sin(x)1+sin(y)\frac{dy}{dx} = -\frac{\sin(x)}{1+\sin(y)}? True or False?

See Solution

Problem 8913

If cos(x)cos(y)=3x\cos (x)-\cos (y)=3 x, then dy dx=sin(x)+3sin(y)\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\sin (x)+3}{\sin (y)}. True or False?

See Solution

Problem 8914

Find the tangent line equation at point (2,1)(-2,1) for the curve y=x3+2x2+1y=x^{3}+2 x^{2}+1. Choose the correct option.

See Solution

Problem 8915

Find dydx\frac{dy}{dx} for x3y2=5x^{3} y^{2}=5. Is dydx=3y2x\frac{dy}{dx}=-\frac{3 y}{2 x} true or false?

See Solution

Problem 8916

Check if the derivative of cos(x)+cos(y)=y\cos (x) + \cos (y) = y is dydx=sin(x)1+sin(y)\frac{d y}{d x} = -\frac{\sin (x)}{1 + \sin (y)}.

See Solution

Problem 8917

Find the tangent line equation for y=x32y=\frac{x^{3}}{2} at point (8,256) using the limit definition of slope. Show work.

See Solution

Problem 8918

If x2y4=10x^{2} y^{4}=10, is it true that dy dy=2xy\frac{\mathrm{d} y}{\mathrm{~d} y}=-\frac{2 x}{y}? True or False?

See Solution

Problem 8919

Find dy dx\frac{\mathrm{d} y}{\mathrm{~d} x} for sin(x+y)=sin(x)+cos(y)\sin(x+y) = \sin(x) + \cos(y) using implicit differentiation.

See Solution

Problem 8920

Find the tangent line equation for the curve y=x2+1y=x^{2}+1 at the point (3,10)(3,10) using the limit definition of slope.

See Solution

Problem 8921

Find the derivative of x4ln(x)x^{4} \ln (x). Choose from: a) 4x24 x^{2}, b) x3(4ln(x)+1)x^{3}(4 \ln (x)+1), c) x3x^{3}, d) x4exx^{4} e^{x}.

See Solution

Problem 8922

If sin(x)+cos(y)=y\sin (x)+\cos (y)=y, is it true that dy dx=cos(x)1+sin(y)\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\cos (x)}{1+\sin (y)}? True or False?

See Solution

Problem 8923

Differentiate x7ln(x) x^{7} \ln (x) and choose the correct answer: a) x6(6ln(x)+1) x^{6}(6 \ln (x)+1) b) x7(7ln(x)+1) x^{7}(7 \ln (x)+1) c) x6(5ln(x)+1) x^{6}(5 \ln (x)+1) d) x6(7ln(x)+1) x^{6}(7 \ln (x)+1)

See Solution

Problem 8924

Find the derivative of 2x+33x5\frac{2 x+3}{3 x-5}. What is the result? a) 2/32 / 3 b) 12x1(3x5)2\frac{12 x-1}{(3 x-5)^{2}} c) 19(3x5)2-\frac{19}{(3 x-5)^{2}} d) 19(3x5)2\frac{19}{(3 x-5)^{2}}

See Solution

Problem 8925

Find the tangent line equation for f(x)=x2+2xf(x)=x^{2}+2x at x=5x=5. Enter as y=type your answerx+type your answery=\text{type your answer} \quad x+\text{type your answer}.

See Solution

Problem 8926

Find dydx\frac{d y}{d x} for the equation x2+6xy+y2=4x^{2}+6 x y+y^{2}=-4.

See Solution

Problem 8927

Find the dimensions of a cylindrical can with volume 1024πcm31024 \pi \mathrm{cm}^{3} that minimize the surface area.

See Solution

Problem 8928

If cos(xy)=cos(x)cos(y)\cos (x-y)=\cos (x)-\cos (y), find dydx\frac{d y}{d x}: a) sin(xy)+sin(x)sin(xy)+sin(y)\frac{\sin (x-y)+\sin (x)}{\sin (x-y)+\sin (y)} b) sin(xy)+sin(x)sin(xy)+sin(y)-\frac{\sin (x-y)+\sin (x)}{\sin (x-y)+\sin (y)}.

See Solution

Problem 8929

Find the max and min values of g(x,y)=3x2+8y2g(x, y)=3 x^{2}+8 y^{2} for 5x5-5 \leq x \leq 5 and 5y7-5 \leq y \leq 7.

See Solution

Problem 8930

Determine the absolute max and min of k(x,y)=x2y2+22x+22yk(x, y)=-x^{2}-y^{2}+22x+22y with 0x120 \leq x \leq 12, y0y \geq 0, and x+y24x+y \leq 24.

See Solution

Problem 8931

Find λ\lambda using Lagrange multipliers for the budget constraint B=c1x+c2yB=c_{1} x+c_{2} y in terms of px,py,c1,c2p_{x}, p_{y}, c_{1}, c_{2}.

See Solution

Problem 8932

Determine the max and min values of k(x,y)=x2y2+22x+22yk(x, y)=-x^{2}-y^{2}+22x+22y under 0x120 \leq x \leq 12, y0y \geq 0, x+y24x+y \leq 24.

See Solution

Problem 8933

Check if the derivative of 5x2+y2=1005x^2 + y^2 = 100 with respect to xx is 5xy-\frac{5x}{y}.

See Solution

Problem 8934

Find the slope of the tangent line to the curve y=x2+6xy=x^{2}+6x at the point where x=3x=-3 using the limit definition.

See Solution

Problem 8935

If sin(y)sin(x)=10x\sin(y) - \sin(x) = 10x, is dydx=cos(x)10cos(y)\frac{dy}{dx} = \frac{\cos(x) - 10}{\cos(y)} true or false?

See Solution

Problem 8936

Dadas las funciones f(u)=uf(u)=\sqrt{u} y u(x)=x2+2xu(x)=x^{2}+2x, ¿cuál es la derivada dfdx\frac{d f}{d x} correcta?

See Solution

Problem 8937

Verify if the derivative of cos(x)cos(y)=3x\cos (x) - \cos (y) = 3x is dydx=sin(x)+3sin(y)\frac{d y}{d x} = \frac{\sin (x) + 3}{\sin (y)}. True or false?

See Solution

Problem 8938

Find dy dx\frac{\mathrm{d} y}{\mathrm{~d} x} for x43x2y+3y2=7x^{4}-3 x^{2} y+3 y^{2}=7. Choose from options a) to d).

See Solution

Problem 8939

Find dydx\frac{d y}{d x} for the equation x4+6x2y+4y=11x^{4}+6 x^{2} y+4 y=11. Choose from options a) to d).

See Solution

Problem 8940

Find the limit: limx4ex+2exex+3ex\lim _{x \rightarrow-\infty} \frac{-4 e^{-x}+2 e^{x}}{e^{-x}+3 e^{x}}.

See Solution

Problem 8941

Find the instantaneous velocity of a rock dropped from a 600 m cliff at t=3t=3 s using the limit definition: vinst=limxx0f(x)f(x0)xx0v_{\text{inst}}=\lim_{x \rightarrow x_0} \frac{f(x)-f(x_0)}{x-x_0}.

See Solution

Problem 8942

Find dy dx\frac{\mathrm{d} y}{\mathrm{~d} x} if sin(x+y)=cos(x)sin(y)\sin (x+y)=\cos (x)-\sin (y). Choose a) b) c) or d).

See Solution

Problem 8943

Find the limits for the piecewise function f(x)={3x+6,x<6;3x+22,x>6}f(x)=\left\{-\frac{3}{x+6}, x<-6; 3x+22, x>-6\right\}. Calculate: limx6f(x),limx6+f(x),limx6f(x).\lim _{x \rightarrow-6^{-}} f(x), \lim _{x \rightarrow-6^{+}} f(x), \lim _{x \rightarrow-6} f(x).

See Solution

Problem 8944

Find the graph of f(x)f(x) with these limits: limx2f(x)=1\lim _{x \rightarrow-2} f(x)=1, limx0f(x)=1\lim _{x \rightarrow 0^{-}} f(x)=-1, limx2+f(x)=\lim _{x \rightarrow 2^{+}} f(x)=\infty.

See Solution

Problem 8945

Find the second derivative of the function y=4x2+10x+2x3y=4 x^{2}+10 x+2 x^{-3}. Show your work.

See Solution

Problem 8946

Given f(5)=2f(5)=2 and limx5[f(x)+8g(x)]=11\lim _{x \rightarrow 5}[f(x)+8 g(x)]=11, find: (a) g(5)g(5); (b) limx5g(x)\lim _{x \rightarrow 5} g(x).

See Solution

Problem 8947

Find the derivative of y=8x2+12x32xy=8 x^{-2}+12 x^{3}-2 x and show your work.

See Solution

Problem 8948

Find the rock's falling speed at t=3t=3 seconds using the limit definition of instantaneous velocity from s=6006.22t2s=600-6.22 t^{2}.

See Solution

Problem 8949

Find the derivative of the function w=z61zw=z^{-6}-\frac{1}{z}. Show your work.

See Solution

Problem 8950

Evaluate the limits and value of the function g(x)=5x+9x3x8xg(x)=\frac{5 x+9|x|}{3 x-8|x|} at x=0x=0. Write DNE if undefined.

See Solution

Problem 8951

Dibuja la gráfica de f(x)f(x) con límites: limx2f(x)=1\lim _{x \rightarrow-2} f(x)=1, limx0+f(x)=2\lim _{x \rightarrow 0^{+}} f(x)=-2, limx2f(x)=2\lim _{x \rightarrow 2} f(x)=2.

See Solution

Problem 8952

Dada la función f(x)f(x), analiza cómo serían las gráficas con los siguientes límites: limx2f(x)=2\lim _{x \rightarrow-2} f(x)=2, limx0f(x)=0\lim _{x \rightarrow 0^{-}} f(x)=0, limx2f(x)=3\lim _{x \rightarrow 2} f(x)=3, limx2f(x)=1\lim _{x \rightarrow-2} f(x)=1, limx0f(x)=1\lim _{x \rightarrow 0} f(x)=-1, limx2+f(x)=\lim _{x \rightarrow 2^{+}} f(x)=\infty, limx0+f(x)=2\lim _{x \rightarrow 0^{+}} f(x)=-2.

See Solution

Problem 8953

Differentiate the function f(x)=7x8ln(x8+1)f(x)=7 x^{8} \ln (x^{8}+1) with respect to xx.

See Solution

Problem 8954

Differentiate the function h(t)=lnt8+5t3h(t)=\frac{\ln t}{8+5 t^{3}} with respect to tt.

See Solution

Problem 8955

Find the derivative y' of the function y=(3x4)(4x3x2+1)y=(3 x-4)(4 x^{3}-x^{2}+1). Show your work.

See Solution

Problem 8956

Find the derivative of y=t(ln(4t))2y = t(\ln(4t))^{2} with respect to tt.

See Solution

Problem 8957

A sphere's radius rr increases at 5 in/min. Find volume change rates at r=10r=10 in and r=38r=38 in.

See Solution

Problem 8958

Find the derivative of y=x2+8x+3xy=\frac{x^{2}+8 x+3}{\sqrt{x}}. Show your work.

See Solution

Problem 8959

A 25 ft ladder leans against a wall. The base moves away at 2 ft/sec. Find the top's velocity and area change rate at given distances.

See Solution

Problem 8960

Can the Mean Value Theorem apply to f(x)=x2f(x)=x^{2} on [3,5][3,5]? (Select all that apply.)

See Solution

Problem 8961

Find the derivative of f(x)=7x2exf(x)=7 x^{2} e^{x}. Show your work.

See Solution

Problem 8962

Find the limit as hh approaches 00: limh0g(x+1)f(x+h)g(x)f(x)h\lim _{h \rightarrow 0} \frac{g(x+1) f(x+h)-g(x) f(x)}{h}.

See Solution

Problem 8963

Check if Rolle's Theorem applies to f(x)=x215x+14f(x)=x^{2}-15x+14 on the interval [1,14][1,14]. Select all that apply.

See Solution

Problem 8964

Check if Rolle's Theorem applies to f(x)=x2+4xf(x)=-x^{2}+4x on the interval [0,4][0, 4].

See Solution

Problem 8965

Differentiate the function f(t)=t51t5f(t)=\sqrt[5]{t}-\frac{1}{\sqrt[5]{t}}. Find f(t)f^{\prime}(t).

See Solution

Problem 8966

Find a,b,c,a, b, c, and dd so that ff meets the Mean Value Theorem on [-1, 2] with f(x)f(x) as defined.

See Solution

Problem 8967

Find the derivative of y=8et2et+1y=\frac{8 e^{t}}{2 e^{t}+1}. Show your work.

See Solution

Problem 8968

Find all cc such that Rolle's theorem holds for f(x)=432x+4x2f(x) = 4 - 32x + 4x^{2} on [3,5][3,5].

See Solution

Problem 8969

A ball's height after tt seconds is given by f(t)=16t2+80t+7f(t)=-16 t^{2}+80 t+7.
(a) Show that f(2)=f(3)f(2)=f(3). (b) Use Rolle's Theorem to find the velocity in (2,3)(2,3) and the time tt.

See Solution

Problem 8970

Find all cc in [0,25] that satisfy Rolle's Theorem for f(x)=x15xf(x) = \sqrt{x} - \frac{1}{5}x.

See Solution

Problem 8971

Can the Mean Value Theorem be applied to f(x)=5x+5f(x)=|5x+5| on [3,3][-3,3]? Select all that apply.

See Solution

Problem 8972

Find the derivative of f(x)=x2x+2f(x)=\frac{\sqrt{x}-2}{\sqrt{x}+2} and calculate f(3)f^{\prime}(3).

See Solution

Problem 8973

Find the derivative of f(x)=2+2xf(x)=\sqrt{2+2x} at x=4x=4 using f(a)=limxaf(x)f(a)xaf'(a)=\lim_{x \to a} \frac{f(x)-f(a)}{x-a}.

See Solution

Problem 8974

Find the minimum and maximum values of f(8)f(3)f(8) - f(3) given 4f(x)54 \leq f^{\prime}(x) \leq 5.

See Solution

Problem 8975

Find f(0)f'(0) and f(2)f'(2) for the function f(x)=cos(πx2)f(x)=\cos\left(\frac{\pi x}{2}\right).

See Solution

Problem 8976

For the function y=2x2y=2 x^{2}, find: (a) the average rate of change over [3,6][3,6] and (b) the instantaneous rate at x=3x=3.

See Solution

Problem 8977

Find the tangent line equation for y=8xx2+1y=\frac{8 x}{x^{2}+1} at point (1,4)(1,4). Show your work.

See Solution

Problem 8978

Find the critical numbers of the function f(x)=x66x5f(x)=x^{6}-6 x^{5}. Enter answers as a comma-separated list.

See Solution

Problem 8979

Find the critical numbers of the function g(t)=t6tg(t)=t \sqrt{6-t} for t<133t<\frac{13}{3}. Enter answers as a list.

See Solution

Problem 8980

Find the derivative value at the extremum: f(x)=4xf(x)=4-|x|, calculate f(0)f^{\prime}(0).

See Solution

Problem 8981

Define sequences: list, explicit, or recursive forms. Find limits or state "D" for divergence for given sequences.

See Solution

Problem 8982

Find the derivative of y=g(x)=x2+9x+9y=g(x)=-x^{2}+9x+9, the slope at x=2x=2, g(2)g(2), and the tangent line equation.

See Solution

Problem 8983

Find the absolute extrema of y=3x2/32xy=3 x^{2/3}-2 x on the interval [1,1][-1,1]. Minimum (x,y)=((x, y)=() Maximum (x,y)=((x, y)=()

See Solution

Problem 8984

Find the critical numbers of the function (sin(x))2+cos(x)(\sin (x))^{2}+\cos (x) for 0<x<2π0<x<2\pi. Enter answers as a list.

See Solution

Problem 8985

Find the absolute extrema of f(x)=x332x2f(x)=x^{3}-\frac{3}{2} x^{2} on the interval [2,4][-2,4]. Minimum (x,y)=( )(x, y)=(\ ) Maximum (x,y)=( )(x, y)=(\ )

See Solution

Problem 8986

A ball dropped from a building has height s(t)=25616t2s(t)=256-16 t^{2}. Find the time to hit the ground and its impact velocity.

See Solution

Problem 8987

What is the minimum value of f(6)f(6) given f(4)=7f(4)=7 and f(x)2f^{\prime}(x) \geq 2 for 4x64 \leq x \leq 6?

See Solution

Problem 8988

Find the limit: limx4cosx\lim _{x \rightarrow \infty} 4 \cos x. If it doesn't exist, write DNE.

See Solution

Problem 8989

Find the speed and acceleration of the body at t=2t=2 for the function s=f(t)=7t2+2t+8s=f(t)=7 t^{2}+2 t+8 (0 ≤ tt ≤ 2).

See Solution

Problem 8990

Given the function f(x)={25x2,x05x,x>0f(x)=\left\{\begin{aligned} 25-x^{2}, & x \leq 0 \\ -5 x, & x>0 \end{aligned}\right., find critical numbers, intervals of increase/decrease, and relative extrema.

See Solution

Problem 8991

Find the limit: limx3x84x+5\lim _{x \rightarrow \infty} \frac{3 x-8}{4 x+5}.

See Solution

Problem 8992

Find the limit as xx approaches infinity: limx(81x2+x9x)\lim _{x \rightarrow \infty}\left(\sqrt{81 x^{2}+x}-9 x\right).

See Solution

Problem 8993

Find the limit: limx7cos23x\lim _{x \rightarrow \infty} 7 \cos \frac{2}{3 x}.

See Solution

Problem 8994

Find the limit as xx approaches -\infty for the expression 5x+25x2x5x + \sqrt{25x^2 - x}.

See Solution

Problem 8995

Given the function f(x)=9x+7xf(x)=9x+\frac{7}{x}, find:
(a) Critical numbers: x=x=
(b) Intervals where ff is increasing and decreasing.
Increasing: (,137),(137,0),(0,137),(137,) (-\infty,-\frac{1}{3} \sqrt{7}), (-\frac{1}{3} \sqrt{7}, 0), (0, \frac{1}{3} \sqrt{7}), (\frac{1}{3} \sqrt{7}, \infty)
Decreasing: (,137),(137,0),(0,137),(137,) (-\infty,-\frac{1}{3} \sqrt{7}), (-\frac{1}{3} \sqrt{7}, 0), (0, \frac{1}{3} \sqrt{7}), (\frac{1}{3} \sqrt{7}, \infty)
(c) Use the First Derivative Test for relative extremum: max (x,y)=((x, y)=(, min (x,y)=1(x, y)=1

See Solution

Problem 8996

Find the limit: limx9x3+127x35x2+1\lim _{x \rightarrow \infty} \frac{9 x^{3}+1}{27 x^{3}-5 x^{2}+1}.

See Solution

Problem 8997

Find the limit: limxxx2x\lim _{x \rightarrow-\infty} \frac{x}{\sqrt{x^{2}-x}}.

See Solution

Problem 8998

Find the limits: (a) limxx9+2x98\lim _{x \rightarrow \infty} \frac{x^{9}+2}{x^{9}-8}, (b) limxx9+2x108\lim _{x \rightarrow \infty} \frac{x^{9}+2}{x^{10}-8}, (c) limxx9+2x88\lim _{x \rightarrow \infty} \frac{x^{9}+2}{x^{8}-8}.

See Solution

Problem 8999

Find the next approximation x1x_{1} using Newton's method for the root of f(x)=0f(x)=0, starting with x0=2x_{0}=2.

See Solution

Problem 9000

Find the limits: (a) limx2x3/25x2+8=\lim _{x \rightarrow \infty} \frac{2 x^{3 / 2}}{5 x^{2}+8}= (b) limx2x3/25x3/2+8=\lim _{x \rightarrow \infty} \frac{2 x^{3 / 2}}{5 x^{3 / 2}+8}= (c) limx2x3/25x+8=\lim _{x \rightarrow \infty} \frac{2 x^{3 / 2}}{5 \sqrt{x}+8}=

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord