Calculus

Problem 21601

Find the integral of the function: 8e4xdx\int 8 e^{4 x} d x

See Solution

Problem 21602

Find f(x)f(x) given f(x)=3x5f^{\prime}(x)=\frac{3}{x^{5}} and f(12)=1f\left(\frac{1}{2}\right)=1.

See Solution

Problem 21603

Calculate the difference quotient f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} for f(x)=2x+2f(x)=-2x+2, where h0h \neq 0.

See Solution

Problem 21604

Function f(x)=9x2f(x)=9-x^{2} is positive/negative on [0,4][0,4]. Sketch it, then find net area using Riemann sums with n=4n=4.

See Solution

Problem 21605

Evaluate the integral 1.321.321957ex4dx\int_{-1.32}^{-1.32} 1957 e^{x^{4}} \, dx.

See Solution

Problem 21606

Find a suitable substitution uu for the integral x2ex3dx\int x^{2} e^{x^{3}} d x. Is u=x2u=x^{2} a good choice?

See Solution

Problem 21607

Find the values of xx for which the series n=1(1)n3nn(x1)n\sum_{n=1}^{\infty} \frac{(-1)^{n}}{3^{n} \cdot n}(x-1)^{n} converges.

See Solution

Problem 21608

Find the values of xx for which the series n=1(1)n3ax(x1)n\sum_{n=1}^{\infty} \frac{(-1)^{n}}{3^{a} \cdot x}(x-1)^{n} converges.

See Solution

Problem 21609

Find 14f(x)dx\int_{1}^{4} f(x) \, dx given that F(1)=19F(1) = 19 and F(4)=13F(4) = 13.

See Solution

Problem 21610

Evaluate acf(x)dx\int_{a}^{c} f(x) d x given abf(x)dx=7\int_{a}^{b} f(x) d x=7 and bcf(x)dx=9\int_{b}^{c} f(x) d x=9.

See Solution

Problem 21611

Find the values of xx for which the series n=1n2xn\sum_{n=1}^{\infty} n^{2} x^{n} converges.

See Solution

Problem 21612

Which option correctly states the Fundamental Theorem of Calculus for a continuous function f(x)f(x)?

See Solution

Problem 21613

Given that ff is an even function and 33f(x)dx=14\int_{-3}^{3} f(x) d x=14, find: a. 03f(x)dx\int_{0}^{3} f(x) d x b. 33xf(x)dx\int_{-3}^{3} x f(x) d x.

See Solution

Problem 21614

Find the function ff from the limit of Riemann sums: limΔ0k=1n(xk)7Δxk\lim _{\Delta \rightarrow 0} \sum_{k=1}^{n}\left(x_{k}^{*}\right)^{7} \Delta x_{k} on [8,16][8,16].

See Solution

Problem 21615

Evaluate acf(x)dx\int_{a}^{c} f(x) d x given abf(x)dx=7\int_{a}^{b} f(x) d x=7 and bcf(x)dx=9\int_{b}^{c} f(x) d x=9.

See Solution

Problem 21616

Find the radius of convergence for the series n=1n!(x+2)nnn\sum_{n=1}^{\infty} \frac{n !(x+2)^{n}}{n^{n}}.

See Solution

Problem 21617

Graph the integrand, calculate Δx\Delta x, grid points, left and right Riemann sums for 9(1x+2)dx;n=4\int^{9}\left(\frac{1}{x}+2\right) d x ; n=4.

See Solution

Problem 21618

Set up R4R_{4} for f(x)=x23f(x)=x^{2}-3 over the interval [6,14][6,14].

See Solution

Problem 21619

Find the average value of f(x)=5xf(x)=\frac{5}{x} on [3,3e][3, 3e] and graph the function with the average value indicated.

See Solution

Problem 21620

Calculate the average value of the function f(x)=2x2f(x)=2 x^{2} over the interval [3,5][3,5].

See Solution

Problem 21621

Find Δx\Delta x for the Riemann sum L4L_{4} of f(x)=e(3x2)+ln(x)f(x)=e^{(3 x^{2})}+\ln (x) over [3,11][3,11].

See Solution

Problem 21622

Find the average height of the arch modeled by y=615[1(x290)2]y=615\left[1-\left(\frac{x}{290}\right)^{2}\right] over its base.

See Solution

Problem 21623

Evaluate the integral: 3x+2x2+1dx=+C\int \frac{3 x+2}{x^{2}+1} dx = \square + C

See Solution

Problem 21624

Invest \$18,864 at 5.7% interest, compounded continuously. Find the function, balances for 1, 2, 5, 10 years, and doubling time.

See Solution

Problem 21625

Find the tangent line's parametric equations at t=1t=1 for the particle with x(t)=4t2x(t)=4 t^{2} and y(t)=4t3y(t)=4 t^{3}.

See Solution

Problem 21626

Evaluate the integral: 3sin3(x)cos(x)dx=+C\int 3 \sin^{3}(x) \cos(x) \, dx = \square + C

See Solution

Problem 21627

A particle's position is x=cos(t)x=\cos(t) and y=sin(t2)y=\sin\left(\frac{t}{2}\right). Find when it first stops moving.

See Solution

Problem 21628

Find the weight of a person who is 5 feet, 4 inches tall using the formula dWdh=0.0012 h2+0.01 h\frac{\mathrm{dW}}{\mathrm{dh}}=0.0012 \mathrm{~h}^{2}+0.01 \mathrm{~h} and W(80)=216.8W(80)=216.8 pounds.

See Solution

Problem 21629

Evaluate the integral x2(x39)40dx\int x^{2}(x^{3}-9)^{40} dx using the substitution u=x39u=x^{3}-9. Find the result in terms of xx.

See Solution

Problem 21630

Find the weight of a person who is 5 feet 4 inches tall using the formula dWdh=0.0012h2+0.01h\frac{d W}{d h}=0.0012 h^{2}+0.01 h and W(80)=216.8W(80)=216.8.

See Solution

Problem 21631

Find the velocity and position functions for a particle with acceleration aundefined(t)=sinti^+2costj^+6tk^\overrightarrow{\mathbf{a}}(t)=\sin t \hat{\mathbf{i}}+2 \cos t \hat{\mathbf{j}}+6 t \hat{\mathbf{k}}, initial velocity vundefined(0)=k^\overrightarrow{\mathbf{v}}(0)=-\hat{\mathbf{k}}, and initial position rundefined(0)=j^4k^\overrightarrow{\mathbf{r}}(0)=\hat{\mathbf{j}}-4 \hat{\mathbf{k}}.

See Solution

Problem 21632

Find the radius and interval of convergence for the series k=0(2x3)kk4+7\sum_{k=0}^{\infty} \frac{(2 x-3)^{k}}{k^{4}+7}. Radius: R=R=\square

See Solution

Problem 21633

Find where the function f(x)=x450x2+625f(x)=x^{4}-50 x^{2}+625 is increasing and decreasing, and identify local extreme values.

See Solution

Problem 21634

Transform the integral cos(y)sin(y)+1dy\int \frac{\cos (y)}{\sin (y)+1} d y using u=u=\square and du=dyd u=\square d y to get du\int d u.

See Solution

Problem 21635

Find the indefinite integral (ln(z))71zdz\int(\ln (z))^{7} \frac{1}{z} d z using the substitution u=u=\square and du=dzd u=\square d z.

See Solution

Problem 21636

Find the radius and interval of convergence for the series k=1x2k+115k1\sum_{k=1}^{\infty} \frac{x^{2 k+1}}{15^{k-1}}. What is R=R=?

See Solution

Problem 21637

Find the indefinite integral x2x344dx\int x^{2} \sqrt[4]{x^{3}-4} d x using the substitution u=u=\square and du=dxd u=\square d x.

See Solution

Problem 21638

Find intervals where the function g(x)=x50x2g(x)=x \sqrt{50-x^{2}} is increasing or decreasing, and identify local extremes.

See Solution

Problem 21639

Find local max and min of ff using First and Second Derivative Tests for f(x)=x+1xf(x)=x+\sqrt{1-x} and f(x)=xx2+4f(x)=\frac{x}{x^{2}+4}. Which method do you prefer?

See Solution

Problem 21640

Find the radius of convergence for the series k=1(3k)!xk(k!)3\sum_{k=1}^{\infty} \frac{(3 k) ! x^{k}}{(k !)^{3}}. What is RR?

See Solution

Problem 21641

Find the inflection points, local maxima/minima, and intervals of differentiability for y=x+sin2xy=-x+\sin 2x on [5π6,5π6][-\frac{5\pi}{6}, \frac{5\pi}{6}].

See Solution

Problem 21642

Determine the radius of convergence for k=1k!x5k(6k)k\sum_{k=1}^{\infty} \frac{k ! x^{5 k}}{(6 k)^{k}} in terms of ee.

See Solution

Problem 21643

Find the indefinite integral (ln(z))61zdz\int(\ln (z))^{6} \frac{1}{z} d z using the substitution u=ln(z)u=\ln(z).

See Solution

Problem 21644

Invest \17,180at6.117,180 at 6.1% interest, compounded continuously. Find the function P(t)$ and balances for 1, 2, 5, 10 years, plus doubling time.

See Solution

Problem 21645

Graph the function y=x22x3y=x^{2}-2x-3: find domain, symmetries, derivatives, critical points, inflection points, and extremes. Domain: \square.

See Solution

Problem 21646

Gegeben sind die Funktionen f(x)=12x2+4x6f(x)=-\frac{1}{2} x^{2}+4 x-6 und g(x)=2x+7,5g(x)=-2 x+7,5. Beantworte folgende Fragen: a) Fußpunkte des Hügels? b) Länge der Untergehung? c) Steilheit am westlichen Fußpunkt? d) Steigungswinkel dort? e) Höhe des Hügels und Hochpunkt? f) Westlicher Schnittpunkt von f(x)f(x) und g(x)g(x)? g) Tangente in diesem Schnittpunkt? h) Schnittwinkel zwischen ff und gg?

See Solution

Problem 21647

Find the first four nonzero terms of the Taylor series for f(x)=5x4f(x)=\frac{5}{x^{4}} at a=1a=1, and the interval of convergence.

See Solution

Problem 21648

Find the interval where the function f(x)=3x21x2+3f(x)=\frac{3 x^{2}-1}{x^{2}+3} is concave downward. A. (,1)(-\infty,-1) and (1,)(1, \infty) B. (1,1)(-1,1) C. (0,)(0, \infty) D. (,1)(-\infty,-1) E. (1,)(1, \infty)

See Solution

Problem 21649

Find the second derivative of y=f(x)y=f(x) given y=4sinxy^{\prime}=4 \sin x for π2x3π2-\frac{\pi}{2} \leq x \leq \frac{3 \pi}{2}.

See Solution

Problem 21650

Find the derivative of yy with respect to xx using logarithmic differentiation for y=(x+1)8(3x5)9y=\sqrt{\frac{(x+1)^{8}}{(3 x-5)^{9}}}. dydx=\frac{d y}{d x}=\square

See Solution

Problem 21651

Calculate the slope of the function f(x)=x2+2f(x)=x^{2}+2 at the point (1,3)(-1,3).

See Solution

Problem 21652

Bestimmen Sie die positive Zahl zz aus den Integralen: a) 02xdx=18\int_{0}^{2} x \, dx = 18 und b) 124xdx=30\int_{1}^{2} 4x \, dx = 30.

See Solution

Problem 21653

Find the second derivative yy^{\prime \prime} of y=f(x)y=f(x) where y=(10x220x)(x5)2y^{\prime}=(10 x^{2}-20 x)(x-5)^{2} and sketch the graph of ff. y=y^{\prime \prime}=\square

See Solution

Problem 21654

Find the second derivative yy^{\prime \prime} if y=πsec2xy^{\prime}=-\pi \sec ^{2} x, then sketch ff using critical points.

See Solution

Problem 21655

Finde a für die Stammfunktionen: a) f(x)=3x2;F(x)=xaf(x)=3 x^{2}; F(x)=x^{a} b) f(x)=2x;F(x)=x2af(x)=2 x; F(x)=x^{2}-a c) f(x)=2x;F(x)=x2+1+af(x)=2 x; F(x)=x^{2}+1+a d) f(x)=(a+1)x;F(x)=xa+1f(x)=(a+1) \cdot x; F(x)=x^{a+1}.

See Solution

Problem 21656

Find the limit: limx1x31x1\lim _{x \rightarrow 1} \frac{x^{3}-1}{x-1} using algebra.

See Solution

Problem 21657

What is the present value needed to reach \$1800 in 60 years at a continuous compounding rate of 5.5%?

See Solution

Problem 21658

Find the second derivative yy^{\prime \prime} of y=f(x)y=f(x) given y=x(x9)2y^{\prime}=x(x-9)^{2} and sketch the graph of f\mathrm{f}. y= y^{\prime \prime}=\square

See Solution

Problem 21659

Finde die Extrem- und Wendepunkte der Funktionen und bestimme die Art der Extrema. a) f(x)=x54x2f(x)=x^{5}-4 x^{2} b) f(x)=13x3+x2+4xf(x)=\frac{1}{3} x^{3}+x^{2}+4 x c) f(x)=x3x1f(x)=x^{3}-x-1

See Solution

Problem 21660

Find limx4f(x)\lim _{x \rightarrow 4} f(x) if limx4g(x)=2\lim _{x \rightarrow 4} g(x)=2 and limx4f(x)g(x)=π\lim _{x \rightarrow 4} \frac{f(x)}{g(x)}=\pi.

See Solution

Problem 21661

Find limx1f(x)\lim_{x \rightarrow 1} f(x) for f(x)=1x1x1f(x)=\frac{\frac{1}{x}-1}{x-1} and compare with options (4), (i1), (C), (D).

See Solution

Problem 21662

Bestimme die Stammfunktion für folgende Funktionen: a) f(x)=0,5x3f(x)=0,5 x^{3}, b) f(x)=14x2f(x)=\frac{1}{4} x^{-2}, c) f(x)=25x2f(x)=\frac{2}{5 x^{2}}, d) f(x)=(2x+2)3f(x)=(2 x+2)^{3}, e) f(x)=13x3f(x)=\frac{1}{3} x^{3}, f) f(x)=x2x3f(x)=x^{2} \cdot x^{3}, g) f(x)=1x2+xf(x)=\frac{1}{x^{2}}+x, h) f(x)=(2x+1)2f(x)=(2 x+1)^{-2}.

See Solution

Problem 21663

Calculate the following integrals: a) 02(2+x)3dx\int_{0}^{2}(2+x)^{3} dx, b) 23(1+1x2)dx\int_{2}^{3}\left(1+\frac{1}{x^{2}}\right) dx, c) 02(7(1\int_{0}^{2} \frac{(7}{(1}.

See Solution

Problem 21664

Given the function f(x)=2xx249f(x)=\frac{2 x}{x^{2}-49}, find critical numbers, intervals of decrease, local max/min, inflection points, concavity, and asymptotes.

See Solution

Problem 21665

Berechnen Sie die Integrale: a) 02(2+x)3dx\int_{0}^{2}(2+x)^{3} d x, b) 23(1+1x2)dx\int_{2}^{3}\left(1+\frac{1}{x^{2}}\right) d x, e) 0,50e2x+1dx\int_{-0,5}^{0} e^{2 x+1} d x, f) 10exdx\int_{-1}^{0} e^{-x} d x.

See Solution

Problem 21666

A substance grows at 12%12\% daily. If it starts at 614 grams, find its mass after 4 days. Round to the nearest tenth.

See Solution

Problem 21667

Find the sum of the series: n=11n3n\sum_{n=1}^{\infty} \frac{1}{n 3^{n}}.

See Solution

Problem 21668

Finde die xx-Werte der Funktion f(x)=x4+3x3f(x)=-x^{4}+3 x^{3} mit waagerechter Tangente unter Verwendung des Vorzeichenwechselkriteriums.

See Solution

Problem 21669

Berechne die Stammfunktion von f(x)=0,1(x21)(x3)(x+4)f(x)=0,1\left(x^{2}-1\right)(x-3)(x+4).

See Solution

Problem 21670

Bestimme die Extrempunkte und den Wendepunkt der Funktion f(x)=14x3+32x2f(x)=-\frac{1}{4} x^{3}+\frac{3}{2} x^{2} und zeige, dass die Gerade durch die Extrempunkte den Wendepunkt schneidet.

See Solution

Problem 21671

Find the limit: limx0+xx\lim _{x \rightarrow 0+} x^{x}.

See Solution

Problem 21672

Bestimmen Sie die Intervalle für strenges Wachstum/Fall von f(x)=x394x23xf(x)=x^{3}-\frac{9}{4} x^{2}-3 x, die Extrempunkte und deren Art. Berechnen Sie Wendepunkte und Nullstellen.

See Solution

Problem 21673

Gegeben die Funktion f(x)=14x32xf(x)=\frac{1}{4} x^{3}-2 x (a) Finde die Nullstellen von ff. (b) Zeige f(2)=1f^{\prime}(-2)=1 und berechne die Tangente an x=2x=-2.

See Solution

Problem 21674

Find the limit as xx approaches 1 for the expression x2xx1\frac{x^{2}-\sqrt{x}}{\sqrt{x}-1}.

See Solution

Problem 21675

Gegeben ist der Graph der Funktion ff. Bestimmen Sie die Steigung an einigen Punkten und skizzieren Sie ff' im Koordinatensystem.

See Solution

Problem 21676

Find the limit: limx1xn1xm1\lim _{x \rightarrow 1} \frac{\sqrt[n]{x}-1}{\sqrt[m]{x}-1} as xx approaches 1.

See Solution

Problem 21677

Erdbeerertrag f(x)=18x3+34x2+8f(x)=-\frac{1}{8} x^{3}+\frac{3}{4} x^{2}+8 für 0x70 \leq x \leq 7. (a) Graph skizzieren. (b) Ertrag ohne Dünger? Maximaler Ertrag und größter Ertragszuwachs?

See Solution

Problem 21678

Berechne die mittlere Änderungsrate für die Funktionen in den angegebenen Intervallen. a) f(x)=x3+1;I=[0;2]f(x)=x^{3}+1 ; \quad I=[0 ; 2] b) f(x)=x2+1;I=[1;3]f(x)=-x^{2}+1 ; \quad I=[1 ; 3] c) f(x)=x2+x+2;I=[1;2]f(x)=x^{2}+x+2 ; \quad I=[-1 ; 2]

See Solution

Problem 21679

Bestimme die Werte von xx und yy, sodass die Fläche A=x(40012x)A = x(400 - \frac{1}{2} x) maximal wird. Maximalwert ist Amax=80000m2A_{max} = 80000 \, m^2.

See Solution

Problem 21680

Erdbeerertrag f(x)=18x3+34x2+8f(x)=-\frac{1}{8} x^{3}+\frac{3}{4} x^{2}+8 für Düngemenge xx in 100 kg.
(a) Skizziere ff für 0x70 \leq x \leq 7. (b) Ertrag ohne Düngung. (c) Düngemenge für maximalen Ertrag. (d) Düngemenge für größten Ertragszuwachs.

See Solution

Problem 21681

Gegeben ist die Funktion f(x)=x2+4f(x)=-x^{2}+4. Finde eine Stammfunktion FF und berechne die Fläche zwischen ff und der X-Achse.

See Solution

Problem 21682

Find the derivative of f(x)=2x+1(2x+1)2f(x) = \sqrt{2x + 1} \cdot (2x + 1)^2.

See Solution

Problem 21683

Berechne die Stammfunktion von f(x)=(x2)2+1f(x)=-(x-2)^{2}+1.

See Solution

Problem 21684

Indiana Jones fährt mit einer Lore. An Höhe A (40 m) hat sie v0=162 km/hv_{0}=162 \text{ km/h}. Bestimme vBv_{B} (0 m) und vCv_{C} (20 m).

See Solution

Problem 21685

Berechne die Fläche A zwischen den Funktionen f(x)=63πxf(x)=6-\frac{3}{\pi} x und g(x)=3sin(x2)g(x)=3 \cdot \sin \left(\frac{x}{2}\right) an der y-Achse.

See Solution

Problem 21686

Find the difference quotient for f(x)=x2+9f(x) = \sqrt{x^{2}+9}, which is f(x+h)f(x)h\frac{f(x+h) - f(x)}{h}.

See Solution

Problem 21687

Bestimme die Fläche unter f(x)=x32x2+xf(x) = x^3 - 2x^2 + x im Intervall [1;2][-1; 2] zwischen den Nullstellen x=0x = 0 und x=1x = 1.

See Solution

Problem 21688

Find the biomass at t=9t=9 hours if it starts at 13 mg and changes at 17mg/\frac{1}{7} \mathrm{mg}/hour from t=2t=2 to t=9t=9. a) 12 b) 13 c) 14 d) 15 e) None

See Solution

Problem 21689

Find the difference quotient of the function f(x)=2x+2f(x)=\sqrt{2 x+2}. Which option is correct? a) b) c) d) e) None.

See Solution

Problem 21690

Find the difference quotient for f(x)=3x+2f(x)=\sqrt{3x+2}. Which option is correct? a) b) c) d) e) None.

See Solution

Problem 21691

Is the function f(x)f(x) continuous at x=0x=0 where f(x)=x+5f(x)=\lfloor x+5\rfloor for x<0x<0, 2e2x2 e^{-2 x} for 0x<70 \leq x<7, and 3ln(x2)3 \ln (x-2) for x7x \geq 7?

See Solution

Problem 21692

Find the integral of the function: (7e3t+5t+2)dt\int\left(7 e^{3 t}+5 t+2\right) d t

See Solution

Problem 21693

Find the critical points of the function y=f(x)=4x3+18x248x+6y=f(x)=4x^{3}+18x^{2}-48x+6.

See Solution

Problem 21694

Find limx0f(x)\lim _{x \rightarrow 0} f(x) for the piecewise function: f(x)={x+5x<02e2x0x<73ln(x2)x7f(x)=\left\{\begin{array}{cc}\lfloor x+5\rfloor & x<0 \\ 2 e^{-2 x} & 0 \leq x<7 \\ 3 \ln (x-2) & x \geq 7\end{array}\right.. Choices: a) 3 b) 2 c) 4 d) 6 e) D.N.E.

See Solution

Problem 21695

Find the time when the drug concentration K(x)=6xx2+25K(x)=\frac{6x}{x^{2}+25} is maximum. Choose from: a) 25, b) 5, c) 5 and -5, d) 30, e) None.

See Solution

Problem 21696

Approximate the change in drug concentration C(x)=10x(9+x3)C(x)=\frac{10 x}{(9+x^{3})} for xx from 0.5 to 1.5. Choices: a) 0.4 b) 1.02 c) 0.35 d) 1.05 e) 1.88

See Solution

Problem 21697

Approximate the change in drug concentration C(x)=10x9+x2C(x)=\frac{10 x}{9+x^{2}} for xx changing from 1.5 to 3.

See Solution

Problem 21698

Find the critical numbers of f(x)=13483x2f(x)=\frac{1}{3} \sqrt{48-3 x^{2}}. Options: a) 0 b) 4,0,4-4,0,4 c) 3,0,3-3,0,3 d) 2,0,2-2,0,2 e) None.

See Solution

Problem 21699

Find the monkey's acceleration at time t=5t=5 from the distance S(t)=tsin(2t)+t2S(t)=t \sin (2 t)+t^{2}. Round up your answer. Options: a) 27 b) 10 c) 3 d) 15

See Solution

Problem 21700

Find the monkey's acceleration at time t=2t=2 for the distance function S(t)=tsin(3t)+t2S(t)=t \sin (3 t)+t^{2}. Round up the result.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord