Calculus
Problem 27301
Population de 33000 habitants, taux de naissance , mortalité , 220 départs/an. Trouvez et , puis le temps pour doubler.
See SolutionProblem 27302
Berechnen Sie die Fläche zwischen dem Graphen von und der -Achse im Intervall .
See SolutionProblem 27303
A parallel-plate capacitor with 20 cm sides has an electric field increasing at . Find the instantaneous current .
See SolutionProblem 27310
What is the correct notation for the indefinite integral of with respect to ? Options: , , , .
See SolutionProblem 27314
A savings account has at continuous interest. How much can be spent on a bike after 3 years?
See SolutionProblem 27316
Betty deposited \$1,000 in a savings account with 13% continuous interest. How much can she spend on a bike in 1 year?
See SolutionProblem 27317
Find when the velocity of the particle at is increasing. Choices: (A) (B) (C) (D) or
See SolutionProblem 27319
Estimate the instantaneous rate of change of height at s with . Round to one decimal.
See SolutionProblem 27320
Estimate the instantaneous rate of change of at with . Which statement is FALSE about average rate of change?
See SolutionProblem 27323
Which statement about average rate of change is FALSE? a) slope of secant line b) compares changes c) uses d) exact value impossible.
See SolutionProblem 27324
Find the rate of change of blood pressure on . Choices: a) 85.6 b) 140 c) 78.3 d) 128.
See SolutionProblem 27325
Find the average rate of change for on . Which statement about it is FALSE?
See SolutionProblem 27328
Finde den Differentialquotienten für und den letzten Schritt der Berechnung: .
See SolutionProblem 27329
Thermopack: Erklären Sie und in einem Satz. Geben Sie für an. Letzten Schritt von nennen.
See SolutionProblem 27335
Find the max and min of on . Graph the function and determine values at critical points.
See SolutionProblem 27337
At midnight, your house is at and drops to in 2 hours. How long to reach ? Use .
See SolutionProblem 27338
1. Evaluate .
2. Find such that .
3. State the range in interval notation.
4. Find AROC on and .
5. Write the piecewise function for the described graph.
See SolutionProblem 27340
Ein Fußball wird mit senkrecht geschossen. Berechne Zeit bis zum höchsten Punkt, maximale Höhe und Fallzeit. Zeichne die Diagramme.
See SolutionProblem 27343
Analyze pressure variation in a static fluid around a sphere of radius . Integrate to find pressure force and compare with buoyancy.
See SolutionProblem 27350
Find the maximum value of the function . Options: a) 2, b) no max, c) 1, d) 0.
See SolutionProblem 27351
Find the slope of the tangent to at . Choices: a) 0 b) -1.19 c) - d) -15.96
See SolutionProblem 27352
Find the derivative for . Choose the correct option from: a) , b) , c) , d) .
See SolutionProblem 27363
Find that maximizes effectiveness on a scale of 0 to 6, where is study hours.
See SolutionProblem 27365
Find the -coordinate that could be an extreme value for . Options: a) 1 b) -1 c) 2 d) 0
See SolutionProblem 27366
Find the point where the tangent to is horizontal. Options: a) , b) none, c) , d) .
See SolutionProblem 27367
Find the tangent line to the curve at the point using implicit differentiation.
See SolutionProblem 27373
Evaluate the limits and value of the piecewise function at specific points: 1 and 2.
See SolutionProblem 27374
Given the function , find where is increasing, decreasing, concave up, and concave down. Also, find local min/max values and inflection point coordinates.
See SolutionProblem 27376
Given the function on , is continuous there? Find , , , and if Rolle's theorem applies. If so, find where .
See SolutionProblem 27378
Find the value of from the mean value theorem for on . Choose from: 3, 9, , , None.
See SolutionProblem 27381
The graph of has which type of asymptote: (a) vertical , (b) oblique , (c) horizontal , or (d) none?
See SolutionProblem 27386
Find the first four nonzero terms of the Maclaurin series for and its interval of convergence.
See SolutionProblem 27387
Find the first three nonzero terms of the Maclaurin series for and its interval of convergence. Choose the correct power series form.
See SolutionProblem 27388
Find the first four nonzero terms of the Maclaurin series for and its interval of convergence.
See SolutionProblem 27389
Find the first four nonzero terms of the Maclaurin series for . The first nonzero term is .
See SolutionProblem 27390
Write the power series for in summation form and find its interval of convergence.
See SolutionProblem 27391
Find the Taylor series coefficients for at and use the first four terms to approximate .
See SolutionProblem 27392
Find the Taylor series coefficients for at and use the first four terms to approximate .
See SolutionProblem 27393
A 75 kg skier is on a 25 m hill. What is his speed at the bottom? [Answer: 22.1 m/s]
See SolutionProblem 27395
A spring with a constant of is compressed . How high does a 2 kg ball launched go? [Answer: ]
See SolutionProblem 27398
A 120-pound skier is going 50 m/s at the bottom of the hill. What is the hill's height? Answer:
See SolutionProblem 27399
A sandbag is dropped from a balloon at 300 m, rising at 13 m/s. How fast is it going when it hits the ground? Answer: .
See Solution123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337