Calculus

Problem 27301

Population de 33000 habitants, taux de naissance 3%3\%, mortalité 1%1\%, 220 départs/an. Trouvez P(t)P(t) et P(10)P(10), puis le temps pour doubler.

See Solution

Problem 27302

Berechnen Sie die Fläche zwischen dem Graphen von f(x)=x25x4f(x)=-x^{2}-5x-4 und der xx-Achse im Intervall [5,0][-5, 0].

See Solution

Problem 27303

A parallel-plate capacitor with 20 cm sides has an electric field increasing at dEdt=5.7×1011 V/ms\frac{d E}{d t}=5.7 \times 10^{11} \mathrm{~V/m \cdot s}. Find the instantaneous current (i)(i).

See Solution

Problem 27304

Calculate the integral 11(x21)dx\int_{-1}^{1} (x^{2}-1) \, dx.

See Solution

Problem 27305

Berechne die Gesamtfläche zwischen dem Graphen von f(x)=0,5x23xf(x) = 0,5x^2 - 3x und der x-Achse.

See Solution

Problem 27306

Calculate the integral from -1 to 2 of the function x21x^{2} - 1.

See Solution

Problem 27307

Find the integral of the constant function f(x)=5f(x)=5. What is the result?

See Solution

Problem 27308

Find the integral (3x2+4x+2)dx\int(3 x^{2}+4 x+2) \, dx. What is the result?

See Solution

Problem 27309

Evaluate the integral (excos(x))dx\int\left(e^{x} \cos (x)\right) d x.

See Solution

Problem 27310

What is the correct notation for the indefinite integral of f(x)f(x) with respect to xx? Options: f(x)dx\partial \partial f(x) d x, f(x)dx\iint f(x) d x, f(x)dx\partial f(x) d x, f(x)dx\int f(x) d x.

See Solution

Problem 27311

Identify the definite integral from these options: f(x)dx\int f(x) d x, f(x)dx\iint f(x) d x, f(x)dx\partial f(x) d x, abf(x)dx\int_{a}^{b} f(x) d x.

See Solution

Problem 27312

Find the integral of xsin(x)x \sin (x). Choose from: cos(x)+xsin(x)+c\cos (x)+x \sin (x)+c, cos(x)xsin(x)+c\cos (x)-x \sin (x)+c, sin(x)xcos(x)+c\sin (x)-x \cos (x)+c, sin(x)+xcos(x)+c\sin (x)+x \cos (x)+c.

See Solution

Problem 27313

Find the total distance traveled by a car with velocity v(t)=3t26t+4v(t)=3 t^{2}-6 t+4 m/s from t=1t=1 to t=5t=5: 15v(t)dt\int_{1}^{5} v(t) dt.

See Solution

Problem 27314

A savings account has $500.00\$ 500.00 at 14%14\% continuous interest. How much can be spent on a bike after 3 years?

See Solution

Problem 27315

Find the rate of change of the curve f(x)=x3f(x)=-x^{3} from x=0x=0 to x=2x=2. Options: -4, -2, 0, 2, 5.

See Solution

Problem 27316

Betty deposited \$1,000 in a savings account with 13% continuous interest. How much can she spend on a bike in 1 year?

See Solution

Problem 27317

Find when the velocity of the particle at x(t)=(t+1)(t3)3x(t)=(t+1)(t-3)^{3} is increasing. Choices: (A) t>3t>3 (B) t<1t<1 (C) 1<t<31<t<3 (D) t<1t<1 or t>3t>3

See Solution

Problem 27318

Find the integral of sin2x\sin^{2} x with respect to xx: sin2xdx\int \sin^{2} x \, dx.

See Solution

Problem 27319

Estimate the instantaneous rate of change of height h(t)=16cos(2πt32)+18h(t)=-16 \cos \left(\frac{2 \pi t}{32}\right)+18 at t=19t=19 s with Δt=0.001\Delta t=0.001. Round to one decimal.

See Solution

Problem 27320

Estimate the instantaneous rate of change of h(t)=16cos(2πt32)+18h(t)=-16 \cos \left(\frac{2 \pi t}{32}\right)+18 at t=19t=19 with Δt=0.001\Delta t=0.001. Which statement is FALSE about average rate of change?

See Solution

Problem 27321

Find the slope of the tangent to the function f(x)=3x2+11x6f(x)=-3 x^{2}+11 x-6 at the point P(4,98)P(-4,98).

See Solution

Problem 27322

Find the instantaneous rate of change of height, h(t)=16cos(2πt32)+18h(t)=-16 \cos \left(\frac{2 \pi t}{32}\right)+18, at t=19t=19 s using Δt=0.001\Delta t=0.001 s.

See Solution

Problem 27323

Which statement about average rate of change is FALSE? a) slope of secant line b) compares changes c) uses ΔfΔx=f(x2)f(x1)x2x1\frac{\Delta f}{\Delta x}=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}} d) exact value impossible.

See Solution

Problem 27324

Find the rate of change of blood pressure P(t)=10020cos(8π3t)P(t)=100-20 \cos \left(\frac{8 \pi}{3} t\right) on [0.2,0.3][0.2,0.3]. Choices: a) 85.6 b) 140 c) 78.3 d) 128.

See Solution

Problem 27325

Find the average rate of change for f(x)=3(2)2xf(x)=3(2)^{2 x} on 0x20 \leq x \leq 2. Which statement about it is FALSE?

See Solution

Problem 27326

Calculate the average rate of change of f(x)=xf(x)=\sqrt{x} from x=4x=4 to x=9x=9. The answer is \square.

See Solution

Problem 27327

Geben Sie den letzten Schritt der Ableitung f(x)f^{\prime}(x) an, wenn f(x)=x2f(x) = x^2.

See Solution

Problem 27328

Finde den Differentialquotienten f(x)f^{\prime}(x) für f(x)=x2f(x)=x^{2} und den letzten Schritt der Berechnung: 2x+h2x+h.

See Solution

Problem 27329

Thermopack: Erklären Sie T(0)=20T(0)=20 und limt+T(t)=40\lim _{t \rightarrow+\infty} T(t)=40 in einem Satz. Geben Sie f(x)f'(x) für f(x)=x2f(x)=x^{2} an. Letzten Schritt von limh0(2x+h)\lim_{h \rightarrow 0}(2x+h) nennen.

See Solution

Problem 27330

Gegeben ist die Funktion f(x)=x28f(x)=x^{2}-8. Erklären Sie die Schritte zur Berechnung von f(4)f^{\prime}(4).

See Solution

Problem 27331

Finde die Funktion F(x)F(x), deren Ableitung f(x)=4x4+4f(x)=4 x^{4}+4 ist.

See Solution

Problem 27332

Find the limit as xx approaches infinity of 1x1xdtt\frac{1}{\sqrt{x}} \int_{1}^{x} \frac{dt}{\sqrt{t}}.

See Solution

Problem 27333

Find the absolute max and min of f(x)=1x+lnxf(x)=\frac{1}{x}+\ln x on [0.5,6][0.5, 6]. Then graph the function.

See Solution

Problem 27334

Find the absolute max and min of f(x)=1x+lnxf(x)=\frac{1}{x}+\ln x on [0.5,6][0.5, 6]. Graph the function.

See Solution

Problem 27335

Find the max and min of f(x)=1x+lnxf(x)=\frac{1}{x}+\ln x on [0.5,6][0.5, 6]. Graph the function and determine values at critical points.

See Solution

Problem 27336

Berechne die Ableitung von f(x)=sin(x)x2f(x) = \sin(x) \cdot x^{2} mit Produkt- oder Kettenregel.

See Solution

Problem 27337

At midnight, your house is at 70F70^{\circ} \mathrm{F} and drops to 50F50^{\circ} \mathrm{F} in 2 hours. How long to reach 40F40^{\circ} \mathrm{F}? Use T(t)=Ts+(T0Ts)ektT(t)=T_{s}+(T_{0}-T_{s}) e^{-k t}.

See Solution

Problem 27338

1. Evaluate f(3)f(3).
2. Find xx such that f(x)=1f(x)=-1.
3. State the range in interval notation.
4. Find AROC on (2,4)(2,4) and (4,8)(4,8).
5. Write the piecewise function for the described graph.

See Solution

Problem 27339

Find the average rate of change (AROC) of the function f(x)=2x3x+1f(x)=2 x^{3}-x+1 on the interval [2,1][-2,1].

See Solution

Problem 27340

Ein Fußball wird mit 80kmh80 \frac{\mathrm{km}}{\mathrm{h}} senkrecht geschossen. Berechne Zeit bis zum höchsten Punkt, maximale Höhe und Fallzeit. Zeichne die Diagramme.

See Solution

Problem 27341

Given f(x)=3x25x+7f(x)=3 x^{2}-5 x+7, find DQD Q, explain finding the derivative, and compute f(x)f^{\prime}(x).

See Solution

Problem 27342

Find f(x)f^{\prime}(x) for f(x)=5e4x9xf(x)=5 e^{4x-9x}.

See Solution

Problem 27343

Analyze pressure variation in a static fluid around a sphere of radius RR. Integrate to find pressure force and compare with buoyancy.

See Solution

Problem 27344

Find dydx\frac{d y}{d x} for the equation 5y4+x2=15 y^{4}+x^{2 \prime}=1.

See Solution

Problem 27345

Find the derivative dydx\frac{d y}{d x} for y=3tan(x4)y=-3 \tan (-x-4). Choose the correct option from the list.

See Solution

Problem 27346

Find the derivative dydx\frac{d y}{d x} for y=52x+7y=5^{-2 x+7}. Choose the correct option from: a) b) c) d).

See Solution

Problem 27347

Find dydx\frac{d y}{d x} for the relation 2x3=2y2+52 x^{3}=2 y^{2}+5.

See Solution

Problem 27348

Find dydx\frac{d y}{d x} for the equation exsin(y)=xe^{x}-\sin (y)=x.

See Solution

Problem 27349

Find the derivative dydx\frac{d y}{d x} for the function y=tanxcosxy=\tan x \cos x.

See Solution

Problem 27350

Find the maximum value of the function f(x)2sinxcosxf(x) - 2 \sin x \cos x. Options: a) 2, b) no max, c) 1, d) 0.

See Solution

Problem 27351

Find the slope of the tangent to f(x)=5ex2e2xf(x)=5 e^{x}-2 e^{2 x} at x=1x=1. Choices: a) 0 b) -1.19 c) -e2e^{2} d) -15.96

See Solution

Problem 27352

Find the derivative dydx\frac{d y}{d x} for y=e4x4y=-\frac{e^{-4 x}}{4}. Choose the correct option from: a) e4x4\frac{e^{-4 x}}{4}, b) exe^{x}, c) e4x16\frac{e^{-4 x}}{16}, d) e4xe^{-4 x}.

See Solution

Problem 27353

Find the initial velocity of v(t)=60[1(0.7)t]v(t)=60\left[1-(0.7)^{t}\right] and when acceleration is 3 m/s23 \mathrm{~m/s}^2.

See Solution

Problem 27354

Find the derivative dydx\frac{d y}{d x} for y=tanxcosxy=\tan x \cos x. Options: a) b) c) d)

See Solution

Problem 27355

Find the slope of the tangent to f(x)=5xexf(x)=5 x e^{x} at x=2x=2.

See Solution

Problem 27356

Find f(x)f^{\prime}(x) for f(x)=5e4x9xf(x)=5 e^{4 x-9 x}. Options: a) 45e4x-45 e^{4 x}, b) 20e4x9x20 e^{4 x-9 x}, c) 25e4x9x-25 e^{4 x-9 x}, d) 5e4x9x5 e^{4 x-9 x}.

See Solution

Problem 27357

Find the derivative dydx\frac{d y}{d x} for y=52x+7y=5^{-2 x+7}. Options: a) b) c) d)

See Solution

Problem 27358

Find the derivative dydx\frac{d y}{d x} for the equation 3x2+3y2=23 x^{2}+3 y^{2}=2.

See Solution

Problem 27359

How many hours should a student study to maximize effectiveness E(t)=t(2t10)E(t) = t\left(2^{-\frac{t}{10}}\right)?

See Solution

Problem 27360

How many hours should a student study to maximize effectiveness E(t)=t(2t10)E(t)=t\left(2-\frac{t}{10}\right)?

See Solution

Problem 27361

Calculez la durée de vie moyenne d'un tube au néon avec f(t)=0,0002e0,0002tf(t)=0,0002 e^{-0,0002 t} pour t0t \geq 0. Utilisez μ=0tf(t)dt\mu=\int_{0}^{\infty} t f(t) d t.

See Solution

Problem 27362

Find the second derivative of the function E(t)=t(2t/10)E(t) = t \left(2^{-t / 10}\right).

See Solution

Problem 27363

Find t t that maximizes effectiveness E(t)=t2t10 E(t) = t \cdot 2^{-\frac{t}{10}} on a scale of 0 to 6, where t t is study hours.

See Solution

Problem 27364

Calculez la durée de vie moyenne μ\mu d'un tube au néon avec f(t)=0,0005e0,0005tf(t)=0,0005 e^{-0,0005 t} pour t0t \geq 0.

See Solution

Problem 27365

Find the xx-coordinate that could be an extreme value for f(x)=x22xf(x)=x^{2} 2^{x}. Options: a) 1 b) -1 c) 2 d) 0

See Solution

Problem 27366

Find the point where the tangent to y=xe2xy=-x e^{2 x} is horizontal. Options: a) (0,0)(0,0), b) none, c) (0.5,0.18)(-0.5,0.18), d) (1.5,0.07)(-1.5,0.07).

See Solution

Problem 27367

Find the tangent line to the curve x2+2xyy2+x=5x^{2}+2xy-y^{2}+x=5 at the point P(3,7)P(3,7) using implicit differentiation.

See Solution

Problem 27368

Find the function ff given f(x)=8x3+5f^{\prime \prime}(x)=8 x^{3}+5, f(1)=1f(1)=1, and f(1)=4f^{\prime}(1)=4.

See Solution

Problem 27369

Find the first and second derivatives of the curve 2y3+xy6x+3=02 y^{3}+x y-6 x+3=0 at the point (1,1)(1,1).

See Solution

Problem 27370

Find yy^{\prime \prime} when x=0x=0 for the equation xy+5ey=5ex y + 5 e^{y} = 5 e.

See Solution

Problem 27371

Find the max and min values of f(x)=xx2x+4f(x)=\frac{x}{x^{2}-x+4} on the interval [0,6][0,6].

See Solution

Problem 27372

Which xx-coordinate could be an extreme value for the function f(x)=x22xf(x)=x^{2} 2^{x}?

See Solution

Problem 27373

Evaluate the limits and value of the piecewise function g(x)g(x) at specific points: 1 and 2.

See Solution

Problem 27374

Given the function h(x)=4x3+6x224x+5h(x)=4 x^{3}+6 x^{2}-24 x+5, find where hh is increasing, decreasing, concave up, and concave down. Also, find local min/max values and inflection point coordinates.

See Solution

Problem 27375

Find the tangent line equation for y=sin2xy=\sin ^{2} x at the point π2\frac{\pi}{2}.

See Solution

Problem 27376

Given the function f(x)=x34x216x+9f(x)=x^{3}-4 x^{2}-16 x+9 on [4,4][-4,4], is ff continuous there? Find f(x)f^{\prime}(x), f(4)f(-4), f(4)f(4), and if Rolle's theorem applies. If so, find cc where f(c)=0f^{\prime}(c)=0.

See Solution

Problem 27377

Find the limit: limx2x2+1x\lim _{x \rightarrow 2} \frac{x^{2}+1}{x}

See Solution

Problem 27378

Find the value of cc from the mean value theorem for f(x)=1+52xf(x)=1+\frac{5}{2} \sqrt{x} on [1,25][1,25]. Choose from: 3, 9, 92\frac{9}{2}, 32\frac{3}{2}, None.

See Solution

Problem 27379

Find the critical point of the function f(x)=4x53f(x)=\sqrt[3]{4x-5}. Choices: x=54x=\frac{5}{4}, x=52x=\frac{5}{2}, x=0x=0, None, x=54x=-\frac{5}{4}.

See Solution

Problem 27380

Check the continuity of the function defined as:
f(x)={x211x<02x0x<11x=12x+41<x202<x3f(x)=\begin{cases} x^{2}-1 & -1 \leq x<0 \\ 2x & 0 \leq x<1 \\ 1 & x=1 \\ -2x+4 & 1<x \leq 2 \\ 0 & 2<x \leq 3 \end{cases}

See Solution

Problem 27381

The graph of sinxx\frac{\sin x}{x} has which type of asymptote: (a) vertical x=0x=0, (b) oblique y=xy=x, (c) horizontal y=0y=0, or (d) none?

See Solution

Problem 27382

Find F(x)F'(x) if F(x)=cosx2011x2dtF(x)=\int_{\cos x^{2}}^{0} \frac{-1}{1-x^{2}} dt. Choose from options (a) to (d).

See Solution

Problem 27383

Find the value of cc in [0,π3][0, \frac{\pi}{3}] where f(c)=f(π3)f(0)π30f'(c) = \frac{f(\frac{\pi}{3}) - f(0)}{\frac{\pi}{3} - 0} for f(x)=cosxf(x) = \cos x.

See Solution

Problem 27384

Determine when the particle with position s(t)=t35t28ts(t)=t^{3}-5 t^{2}-8 t is speeding up for t0t \geq 0.

See Solution

Problem 27385

Find the first nonzero term of the Maclaurin series for f(x)=tan1(4x)f(x) = \tan^{-1}(4x).

See Solution

Problem 27386

Find the first four nonzero terms of the Maclaurin series for f(x)=8e3xf(x)=8 e^{-3 x} and its interval of convergence.

See Solution

Problem 27387

Find the first three nonzero terms of the Maclaurin series for f(x)=tan1(4x)f(x)=\tan^{-1}(4x) and its interval of convergence. Choose the correct power series form.

See Solution

Problem 27388

Find the first four nonzero terms of the Maclaurin series for f(x)=ln(1+8x)f(x)=\ln(1+8x) and its interval of convergence.

See Solution

Problem 27389

Find the first four nonzero terms of the Maclaurin series for f(x)=6cosh(3x)f(x)=6 \cosh(3x). The first nonzero term is \square.

See Solution

Problem 27390

Write the power series for 6cosh3x6 \cosh 3x in summation form and find its interval of convergence.

See Solution

Problem 27391

Find the Taylor series coefficients for f(x)=xf(x)=\sqrt{x} at a=36a=36 and use the first four terms to approximate 40\sqrt{40}.

See Solution

Problem 27392

Find the Taylor series coefficients for f(x)=x3f(x)=\sqrt[3]{x} at a=64a=64 and use the first four terms to approximate 593\sqrt[3]{59}.

See Solution

Problem 27393

A 75 kg skier is on a 25 m hill. What is his speed at the bottom? [Answer: 22.1 m/s]

See Solution

Problem 27394

Approximate 11.192\frac{1}{1.19^{2}} using the first four nonzero terms of the Taylor series for f(x)=(1+x)2f(x)=(1+x)^{-2}.

See Solution

Problem 27395

A spring with a constant of 900 N/m900 \mathrm{~N/m} is compressed 0.8 m0.8 \mathrm{~m}. How high does a 2 kg ball launched go? [Answer: 14.7 m14.7 \mathrm{~m}]

See Solution

Problem 27396

Find the first three nonzero terms of the Taylor series for f(x)=sinxf(x)=\sin x centered at a=5π3a=\frac{5 \pi}{3}.

See Solution

Problem 27397

Express 6cosh3x6 \cosh 3x as a power series using summation notation.

See Solution

Problem 27398

A 120-pound skier is going 50 m/s at the bottom of the hill. What is the hill's height? Answer: 127.55 m127.55 \mathrm{~m}

See Solution

Problem 27399

A sandbag is dropped from a balloon at 300 m, rising at 13 m/s. How fast is it going when it hits the ground? Answer: 77.8 m/s-77.8 \mathrm{~m/s}.

See Solution

Problem 27400

Approximate 1.174/51.17^{-4/5} using the first four nonzero terms of the Taylor series for f(x)=(1+x)4/5f(x)=(1+x)^{-4/5}.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord