Calculus

Problem 3101

A 13-ft ladder leans against a house. When the base is 12 ft away and moving at 5 ft/sec, find:
(a) the speed of the top sliding down, (b) the rate of area change of the triangle formed, (c) the rate of angle θ\theta change with the ground.

See Solution

Problem 3102

Find fxf_{x} and fyf_{y} for f(x,y)=yxln(y+x)f(x, y)=\sqrt{y-x} \ln (y+x).

See Solution

Problem 3103

Eine Kugel wird nach oben geschossen. Finde die Anfangsgeschwindigkeit und die Zeit bis zum Aufprall für die Höhenfunktionen:
(a) h(t)=105+20t5t2h(t)=105+20 t-5 t^{2}, (b) h(t)=40+35t5t2h(t)=40+35 t-5 t^{2}, (c) h(t)=180+45t5t2h(t)=180+45 t-5 t^{2}, (d) h(t)=70+25t5t2h(t)=70+25 t-5 t^{2}.

See Solution

Problem 3104

Berechne das Integral 25(x2)dx\int_{2}^{5}\left(x^{2}\right) d x und finde F(5)F(5) und F(2)F(2).

See Solution

Problem 3105

1) Wann ist das Gefäß leer? 2) Finde die Änderungsrate von VV bei t=3t=3 s für a) V(t)=(50t)2V(t)=(50-t)^{2}, b) V(t)=t2+900V(t)=-t^{2}+900, c) V(t)=2t2+98V(t)=-2 t^{2}+98.

See Solution

Problem 3106

Find the roots of f(x)=0.25x31.5x2xf(x)=0.25x^{3}-1.5x^{2}-x, its max/min points, inflection point, and compute f(x)f(x) for a given xx.

See Solution

Problem 3107

Eine Kugel wird von einem Gebäude geschossen. Gegeben ist h(t)=105+20t5t2h(t)=105+20t-5t^{2}.
1) Berechne die Anfangsgeschwindigkeit. 2) Bestimme die Zeit bis zum Aufprall und die Aufprallgeschwindigkeit.

See Solution

Problem 3108

Given the function
f(x)={0.5x2x12x21<x<12x=12x21<x20.1(x2)32x2,f(x)=\begin{cases} -0.5 x-2 & x \leq-1 \\ 2-x^{2} & -1<x<1 \\ 2 & x=1 \\ 2-x^{2} & 1<x \leq 2 \\ 0.1(x-2)^{3}-2 & x \geq 2, \end{cases}
(a) Find limx1f(x)\lim _{x \rightarrow-1^{-}} f(x) and round to four decimal places or write DNE.
(b) Find limx1+f(x)\lim _{x \rightarrow-1^{+}} f(x) and round to four decimal places or write DNE.
(c) Find limx1f(x)\lim _{x \rightarrow-1} f(x) and round to four decimal places or write DNE.

See Solution

Problem 3109

Eine Kugel wird von einem Gebäude geschossen. Gegeben ist die Höhe h(t)=40+35t5t2h(t)=40+35t-5t^{2}.
1) Bestimme die Anfangsgeschwindigkeit. 2) Nach wie vielen Sekunden trifft die Kugel den Boden? Berechne die Aufprallgeschwindigkeit.

See Solution

Problem 3110

Berechnen Sie die Steigungen von f(x)=2x25xf(x)=2x^{2}-5x bei (5f(5))(5 \mid f(5)) und f(x)=x+4,3xf(x)=\sqrt{x}+4,3x bei (16f(16))(16 \mid f(16)). Was sind Grenzgerade und Tangente? Füllen Sie die Tabelle für f(x)=2x+1f(x)=\sqrt{2x}+1 aus.

See Solution

Problem 3111

Grenzwerte und Ableitungen berechnen: 1. f(x)=xf(x)=12xf(x)=\sqrt{x} \Rightarrow f^{\prime}(x)=\frac{1}{2\sqrt{x}} 2. limx4x53x72x8+2x7\lim_{x \to \infty} \frac{4x^5 - 3x^7}{2x^8 + 2x^7}, limx10x2100x10\lim_{x \to 10} \frac{x^2 - 100}{x - 10} 3. Polstellen von f(x)=73x29x210f(x)=\frac{7}{3x^2 - 9x - 210} und Ableitungen angeben.

See Solution

Problem 3112

Outline the solid and calculate the volume using the slicing method. Base is under y=1x2y=1-x^{2} in the first quadrant; slices are squares. units3\operatorname{units}^{3}

See Solution

Problem 3113

1. Bestimmen Sie die Grenzwerte: a. limx4x53x72x8+2x7\lim _{x \rightarrow \infty} \frac{4 x^{5}-3 x^{7}}{2 x^{8}+2 x^{7}} b. limx10x2100x10\lim _{x \rightarrow 10} \frac{x^{2}-100}{x-10}
2. Finde die Polstellen von f(x)=73x29x210f(x)=\frac{7}{3 x^{2}-9 x-210}.
3. Berechnen Sie die Ableitungen: a. f(x)=38x74x6+2x35f(x)=38 x^{7}-4 x^{6}+2 x-35 b. f(x)=x3f(x)=\sqrt[3]{x} c. f(x)=1x5f(x)=\frac{1}{x^{5}} d. f(x)=2π+2537f(x)=2 \pi+\frac{2}{5} \sqrt{37} e. f(x)=0,2x37x3+ef(x)=0,2 x^{3}-7 x^{-3}+e
4. Berechnen Sie die Steigung: a. bei f(x)=2x25xf(x)=2 x^{2}-5 x im Punkt (5f(5))(5 \mid f(5)) b. bei f(x)=x+4,3xf(x)=\sqrt{x}+4,3 x im Punkt (16f(16))(16 \mid f(16))
5. Was ist eine Gerade, die sich einer Kurve annähert, ohne sie zu berühren?

See Solution

Problem 3114

Skizziere einen Graphen der Funktion v: [0;8]R[0 ; 8] \rightarrow \mathbb{R} mit den Bedingungen a) und b).

See Solution

Problem 3115

Sketch the area between y=1xy=\frac{1}{x}, x=2x=2, and y=4y=4. Calculate the volume when rotated around the xx-axis.

See Solution

Problem 3116

Sketch the area between y=1xy=\frac{1}{x}, x=2x=2, and y=4y=4. Find volume when rotated around the xx-axis: 25π2\frac{25 \pi}{2} x units 3x \text{ units }^{3}.

See Solution

Problem 3117

Formen Sie die Funktion so um, dass x\mathrm{x} im Zähler ist, und bestimmen Sie die Ableitung für die Funktionen a) bis e).

See Solution

Problem 3118

Schreibe die Funktion als Potenz mit Basis x und bestimme die Ableitung für: a) f(x)=xf(x)=\sqrt{x}, b) f(x)=x3f(x)=\sqrt[3]{x}, c) f(x)=x4f(x)=\sqrt[4]{x}, d) f(x)=x25f(x)=\sqrt[5]{x^{2}}.

See Solution

Problem 3119

Bestimmen Sie die Ableitung der Funktionen an den angegebenen Stellen: a) f(x)=1x3f(x)=\frac{1}{x^{3}} bei x0=2x_{0}=-2, b) f(x)=xf(x)=\sqrt{x} bei x0=2x_{0}=2, c) h(x)=1xh(x)=\frac{1}{x} bei x0=12x_{0}=\frac{1}{2}, d) g(x)=1x30g(x)=\frac{1}{x^{30}} bei x0=1x_{0}=-1, e) f(x)=x34f(x)=\sqrt[4]{x^{3}} bei x0=16x_{0}=16, f) f(x)=x14f(x)=x^{-\frac{1}{4}} bei x0=1x_{0}=1.

See Solution

Problem 3120

Find the dimensions of a rectangular field with a 400 m400 \mathrm{~m} fence that maximize the area. What is the max area?

See Solution

Problem 3121

Leiten Sie die Funktionen mit der Potenzregel: a) f(x)=x4f(x)=x^{-4}, b) f(x)=x1f(x)=x^{-1}.

See Solution

Problem 3122

Find the rate of change of each side of an isosceles triangle with sides a=4a=4 cm, b=4b=4 cm, c=6c=6 cm, given altitude decreases at 33 cm/min and perimeter increases at 22 cm/min.

See Solution

Problem 3123

Rewrite f(x)=1x5f(x)=\frac{1}{x^{5}} with xx in the numerator and find its derivative.

See Solution

Problem 3124

Find the rate at which the ice thickness decreases when it is 4 cm4 \mathrm{~cm} thick, given a 6 cm6 \mathrm{~cm} diameter ball and melting rate of 25 cm3/min25 \mathrm{~cm}^3/\mathrm{min}.

See Solution

Problem 3125

Rewrite h(x)=1xh(x)=\frac{1}{x} to have xx in the numerator, then find its derivative.

See Solution

Problem 3126

Rewrite f(x)=x3f(x)=\sqrt[3]{x} with xx in the numerator, then find the derivative of the new function.

See Solution

Problem 3127

Rewrite f(x)=1x3f(x)=\frac{1}{\sqrt{x^{3}}} with xx in the numerator and find its derivative.

See Solution

Problem 3128

Find the tangent line equation to y=f(x)=exxy=f(x)=\frac{e^{x}}{x} at x=1x=1. Choose from options A-E.

See Solution

Problem 3129

Zeichne Tangenten an f(x)=exf(x)=e^{x} bei x1=1,x2=0,x3=1,x4=2x_{1}=-1, x_{2}=0, x_{3}=1, x_{4}=2 und bestimme die Steigungen. Bestimme die Tangentengleichung bei P(a,ea)P(a, e^{a}).

See Solution

Problem 3130

Determine the concavity of the function y(x)y(x) defined as: y(x)=100xy(x)=\frac{100}{x} for 0<x<100<x<10, y(x)=1512xy(x)=15-\frac{1}{2}x for 10x2010\leq x\leq 20, y(x)=100xy(x)=\frac{100}{x} for 20<x<3020<x<30. Options: A, B, C, D, E.

See Solution

Problem 3131

Berechne den Grenzwert: limx33x227x+3 \lim _{x \rightarrow 3} \frac{3 x^{2}-27}{x+3}

See Solution

Problem 3132

Find a degree-three polynomial to approximate the function f(x)=(1+2sinh(x))32f(x)=(1+2 \sinh (x))^{\frac{3}{2}} near x=0x=0.

See Solution

Problem 3133

Evaluate the limit: limx0ln(1+5sinh3(x))3sin2(x)\lim _{x \rightarrow 0} \frac{\ln \left(1+5 \sinh ^{3}(x)\right)}{3 \sin ^{2}(x)}.

See Solution

Problem 3134

Find the value of ddx(9x3+1x)\frac{d}{d x}\left(\frac{9}{x^{3}}+\frac{1}{x}\right) when x=3x=-3.

See Solution

Problem 3135

Find the value of the derivative ddxcot(x)\frac{d}{d x} \cot (x) when x=3π2x=\frac{3 \pi}{2}.

See Solution

Problem 3136

Prove that: I=0eaxtanh(x2)xcosh(x)dx=2logΓ2(a4)Γ(a)2a+12Γ3(a2)I=\int_{0}^{\infty} \frac{e^{-a x} \tanh \left(\frac{x}{2}\right)}{x \cosh (x)} d x=2 \log \left|\frac{\Gamma^{2}\left(\frac{a}{4}\right) \Gamma(a)}{2^{\frac{a+1}{2}} \Gamma^{3}\left(\frac{a}{2}\right)}\right|

See Solution

Problem 3137

Berechnen Sie die Ableitungen f\mathrm{f}^{\prime} für die Funktionen: a) f(x)=14x42x2f(x)=\frac{1}{4} x^{4}-2 x^{2}, b) f(x)=3x2+4f(x)=-3 x^{2}+4, c) f(x)=3(x2)2+xf(x)=3(x-2)^{2}+x, d) f(x)=ax3+bx2+cx+df(x)=a x^{3}+b x^{2}+c x+d, e) f(x)=2xf(x)=2 \sqrt{x}, f) f(x)=4x+1f(x)=\frac{4}{x}+1.

See Solution

Problem 3138

Find the limit as xx approaches -\infty for x+x2+2xx + \sqrt{x^2 + 2x}.

See Solution

Problem 3139

Find the average rate of change of g(x)=3xx3g(x)=3x-x^{3} from x=1x=-1 to x=2x=2.

See Solution

Problem 3140

Welche Steigung hat der Graph von ff an x0x_0? a) f(x)=12x22f(x)=\frac{1}{2} x^{2}-2, x0=2x_0=2 b) f(x)=42xf(x)=4-2x, x0=3x_0=3 d) f(x)=x+1f(x)=\sqrt{x}+1, x0=4x_0=4 e) f(x)=2(x+1)2f(x)=2(\sqrt{x}+1)^{2}, x0=1x_0=1

See Solution

Problem 3141

Welche Steigung hat der Graph von ff an der Stelle x0x_{0} für die Funktionen a) bis f)?

See Solution

Problem 3142

Optimiere den Gewinn eines Unternehmens. Finde die Menge xx, bei der der Gewinn g(x)=e(x)k(x)g(x)=e(x)-k(x) maximal ist.

See Solution

Problem 3143

Calculate the integral of the function: exex+2dx\int e^{x} \cdot e^{x+2} \, dx

See Solution

Problem 3144

Evaluate the limit: limx0e2x+x5ex1\lim _{x \rightarrow 0} \frac{e^{2 x}+x-5}{e^{x}-1}

See Solution

Problem 3145

Find where df(x)dx=x+3x23x+4\frac{d f(x)}{d x}=\frac{x+3}{x^{2}-3 x+4} is undefined and where f(x)f(x) has a horizontal tangent line.

See Solution

Problem 3146

Differentiate the function f(x)=x4+2x23x2f(x)=-x^{4}+2 x^{2}-3 x^{-2}.

See Solution

Problem 3147

Beweisen Sie, dass Carina recht hat: Eine vertikale Asymptote wird nicht geschnitten, aber eine horizontale kann. Betrachten Sie f(x)=x2(x2)2f(x) = \frac{x^{2}}{(x-2)^{2}}.

See Solution

Problem 3148

Given the profit function P(t)P(t) values for tt in months, determine the correct statement about P(0.8)P^{\prime}(0.8) and P(0.6)P^{\prime}(0.6).

See Solution

Problem 3149

Find the limit: limx2(x2x)5\lim _{x \rightarrow 2}\left(x^{2}-x\right)^{5}.

See Solution

Problem 3150

Find the elasticity of demand η\eta for the function p=14000eq/1200p=14000 e^{-q / 1200} at q=480q=480 and classify it.

See Solution

Problem 3151

Find the limit: limx3x22x3x3\lim _{x \rightarrow 3} \frac{x^{2}-2 x-3}{x-3}.

See Solution

Problem 3152

Find the limit: limx024x2x\lim _{x \rightarrow 0} \frac{2-\sqrt{4-x^{2}}}{x}.

See Solution

Problem 3153

Find the limit: limx(2x8+4x3)\lim _{x \rightarrow-\infty}\left(2 x^{-8}+4 x^{3}\right).

See Solution

Problem 3154

Find the limit as xx approaches infinity for the expression 4x278x2+5x+2\frac{4 x^{2}-7}{8 x^{2}+5 x+2}.

See Solution

Problem 3155

Bestimme die Tangentengleichung vom Ursprung an die Funktion f(x)=x36x2+8xf(x)= x^3-6x^2+8x im 4. Quadranten und den Berührungspunkt B.

See Solution

Problem 3156

Find the slope of the secant line between points (2.4,f(2.4))(2.4, f(2.4)) and (4.4,f(4.4))(4.4, f(4.4)) for f(x)=3x+42x+12f(x)=-3\sqrt{x}+\frac{42}{\sqrt{x}}+12.

See Solution

Problem 3157

What does f(23)=7,846f^{\prime}(23)=7,846 mean regarding the reservoir's volume change? Options: a) 2034 rate, b) 2023 rate, c) 2034 volume, d) 2018 rate.

See Solution

Problem 3158

Evaluate the integral: dx(x21)3/2\int \frac{d x}{\left(x^{2}-1\right)^{3 / 2}}

See Solution

Problem 3159

Bestimme die Grenzwerte: a) limx5x225x5\lim _{x \rightarrow 5} \frac{x^{2}-25}{x-5}, b) limx33x227x3\lim _{x \rightarrow 3} \frac{3 x^{2}-27}{x-3}, c) limx1x3xx1\lim _{x \rightarrow 1} \frac{x^{3}-x}{x-1}, d) limx2x416x+2\lim _{x \rightarrow-2} \frac{x^{4}-16}{x+2}.

See Solution

Problem 3160

Bestimmen Sie die Grenzwerte und das Verhalten der Funktionen an den Lücken:
a) limx5x225x5\lim _{x \rightarrow 5} \frac{x^{2}-25}{x-5} b) limx33x227x3\lim _{x \rightarrow 3} \frac{3 x^{2}-27}{x-3} c) limx1x3xx1\lim _{x \rightarrow 1} \frac{x^{3}-x}{x-1} d) limx2x416x+2\lim _{x \rightarrow -2} \frac{x^{4}-16}{x+2}
a) f(x)=x292x6,x0=3f(x)=\frac{x^{2}-9}{2 x-6}, x_{0}=3 b) f(x)=x+1x,x0=0f(x)=\frac{x+1}{x}, x_{0}=0 c) f(x)=x+1x2,x0=0f(x)=\frac{x+1}{x^{2}}, x_{0}=0
a) limx4x216x4\lim _{x \rightarrow 4} \frac{x^{2}-16}{x-4} b) limx1x3xx+1\lim _{x \rightarrow -1} \frac{x^{3}-x}{x+1} c) limx33x2x26x\lim _{x \rightarrow 3} \frac{3-x}{2 x^{2}-6 x} d) limx2x416x2\lim _{x \rightarrow 2} \frac{x^{4}-16}{x-2}
a) limx32x218x+3\lim _{x \rightarrow -3} \frac{2 x^{2}-18}{x+3} b) limx5x27x+10x5\lim _{x \rightarrow 5} \frac{x^{2}-7 x+10}{x-5} c) limx1x2xx1\lim _{x \rightarrow 1} \frac{x^{2}-x}{x-1} d) limxx0x2x02xx0\lim _{x \rightarrow x_{0}} \frac{x^{2}-x_{0}^{2}}{x-x_{0}}

See Solution

Problem 3161

Find the marginal cost from the function C(x)=3000+4x0.0003x2C(x)=3000+4x-0.0003x^2 at 1,200 bottles. Round to 2 decimal places.

See Solution

Problem 3162

Bestimme die Grenzwerte: a) limx5x225x5\lim _{x \rightarrow 5} \frac{x^{2}-25}{x-5}, b) limx33x22xx3\lim _{x \rightarrow 3} \frac{3 x^{2}-2 x}{x-3}, c) limx1x3xx1\lim _{x \rightarrow 1} \frac{x^{3}-x}{x-1}, d) limx2x216x+2\lim _{x \rightarrow -2} \frac{x^{2}-16}{x+2}.

See Solution

Problem 3163

If ff and gg are on (1,1)(-1,1) and limx0g(x)=0\lim_{x \rightarrow 0} g(x)=0, show that limx0[f(x)g(x)]=0\lim_{x \rightarrow 0}[f(x) \cdot g(x)]=0.

See Solution

Problem 3164

Analyze the limits of f(t)=2t9+4t5+5t41f(t)=-2 t^{9}+4 t^{5}+5 t^{4}-1 as tt \rightarrow -\infty and tt \rightarrow \infty. What are the results?

See Solution

Problem 3165

Find the derivative g(1)g^{\prime}(1) for the function g(x)=x34g(x)=\sqrt[4]{x^{3}}.

See Solution

Problem 3166

Find the derivative of the function 5x15x - 1 with respect to xx.

See Solution

Problem 3167

Find the derivative of the function 5sin(x)+x25 \sin (x) + x^{2}.

See Solution

Problem 3168

Identify the derivative represented by: limx0cos(x)1x0\lim _{x \rightarrow 0} \frac{\cos (x)-1}{x-0}. Options: A) g(0)g^{\prime}(0), g(x)=cos(x)g(x)=\cos (x) B) g(0)g^{\prime}(0), g(x)=cos(x)1xg(x)=\frac{\cos (x)-1}{x} C) g(1)g^{\prime}(1), g(x)=cos(x)g(x)=\cos (x) D) g(1)g^{\prime}(1), g(x)=cos(x)1xg(x)=\frac{\cos (x)-1}{x}.

See Solution

Problem 3169

Berechne 3 Stammfunktionen für f(x)=x4+x3+4f(x)=x^{4}+x^{3}+4 und überprüfe durch Differenzieren.

See Solution

Problem 3170

Calculate the average velocity from t=1t=1 to t=2t=2 for the position function s=3sin(πt)+4cos(πt)s = 3\sin(\pi t) + 4\cos(\pi t).

See Solution

Problem 3171

Find the limit: I=limx0(elovexeyouxx)I=\lim _{x \rightarrow 0}\left(\frac{e^{\text{lovex}}-e^{\text{youx}}}{x}\right), where "lovex" and "youx" are constants.

See Solution

Problem 3172

Find the limit: I=limx0(elovexeyouxx)I=\lim _{x \rightarrow 0}\left(\frac{e^{\text {love}x }-e^{\text {you}x }}{x}\right).

See Solution

Problem 3173

A particle moves from point A to B. It accelerates to 50 ms50 \mathrm{~ms}, then decelerates to 10 ms10 \mathrm{~ms}. It takes 7s. Find xx, yy, and graph the motion.

See Solution

Problem 3174

Evaluate the limit: limx0+x\lim _{x \rightarrow-0^{+}} \llbracket x \rrbracket. If none, enter DNE.

See Solution

Problem 3175

A ball is thrown up at 25.4 m/s25.4 \mathrm{~m/s}. How long (in seconds) until it returns to its starting height?

See Solution

Problem 3176

Skizzieren Sie den Funktionsgraphen für folgende Fälle um aa: a) f(a)>0f'(a)>0, f(a)>0f''(a)>0; b) f(a)>0f'(a)>0, f(a)=0f''(a)=0; c) f(a)<0f'(a)<0, f(a)>0f''(a)>0; d) f(a)<0f'(a)<0, f(a)<0f''(a)<0; e) f(a)=0f'(a)=0, f(a)>0f''(a)>0; f) f(a)=0f'(a)=0, f(a)=0f''(a)=0.

See Solution

Problem 3177

Sketch the area between y=213xy=2-\frac{1}{3} x, x=0x=0, and y=0y=0. Find the volume when this area rotates around the yy axis.

See Solution

Problem 3178

Find the average velocity of f(t)=2t2+2t+1f(t)=2 t^{2}+2 t+1 on 5t95 \leq t \leq 9 and the velocity at t=5t=5 seconds.

See Solution

Problem 3179

Find the instantaneous velocity of a train at t=3t=3 given s(t)=60t,2t5s(t)=\frac{60}{t}, 2 \leq t \leq 5.

See Solution

Problem 3180

Sketch the area between y=sin(x)y=\sin(x), y=6sin(x)y=6\sin(x), x=0x=0, and x=πx=\pi. Find the volume when rotated around the xx-axis.

See Solution

Problem 3181

A train's position is s(t)=60ts(t)=\frac{60}{t} for 2t52 \leq t \leq 5. Where is the instantaneous velocity found?

See Solution

Problem 3182

A train's position is given by s(t)=60ts(t)=\frac{60}{t} for 2t52 \leq t \leq 5.
(a) Graph s(t)s(t). (b) Find the average velocity from t=2t=2 to t=5t=5. Average velocity is 18 km/hr18 \mathrm{~km/hr}.

See Solution

Problem 3183

Find the limit: limx93x9\lim _{x \rightarrow 9^{-}} \frac{3}{x-9}.

See Solution

Problem 3184

Find the limit of the floor function as xx approaches an integer nn from the right: limxn+x\lim _{x \rightarrow n^{+}} \llbracket x \rrbracket.

See Solution

Problem 3185

For which values of aa does limxax\lim _{x \rightarrow a} \llbracket x \rrbracket exist?

See Solution

Problem 3186

Find the limit as xx approaches -6 for the floor function x\llbracket x \rrbracket.

See Solution

Problem 3187

Calculate the integral: x3x26xx1dx\int \frac{x^{3}-x^{2}-6 x}{x-1} dx

See Solution

Problem 3188

Berechne die Integrale: a) (3e6x)dx\int\left(-3 \cdot e^{6 x}\right) d x, b) (2e8x)dx\int\left(2 \cdot e^{-8 x}\right) d x, c) (5e12x)dx\int\left(5 \cdot e^{-12 x}\right) d x, d) (23ex)dx\int\left(\frac{2}{3} \cdot e^{-x}\right) d x und nenne die verwendeten Regeln.

See Solution

Problem 3189

Find the derivative of the function g(x)=5x6xu21u2+1dug(x)=\int_{5x}^{6x} \frac{u^{2}-1}{u^{2}+1} du. What is g(x)g'(x)?

See Solution

Problem 3190

Find the limit as xx approaches 0 for 3(x0+Δx)+1(3x0+1)Δx\frac{3 \cdot (x_{0}+\Delta x)+1 - (3 \cdot x_{0}+1)}{\Delta x}.

See Solution

Problem 3191

Berechne die Ableitung von f(x)=3x+1f(x)=3x+1 mit der Grenzwertdefinition: limΔx0f(x0+Δx)f(x0)Δx\lim_{\Delta x \to 0} \frac{f(x_0+\Delta x)-f(x_0)}{\Delta x}.

See Solution

Problem 3192

Determine the slope of the tangent line for f(x)=3x+1f(x) = 3x + 1 as Δx\Delta x approaches 0.

See Solution

Problem 3193

Calculate the indefinite integral and include the constant CC: (u62u5u3+27)du\int\left(u^{6}-2 u^{5}-u^{3}+\frac{2}{7}\right) du

See Solution

Problem 3194

Find the slope of the tangent line for f(x)=x21f(x)=x^{2}-1 as Δx\Delta x approaches 0.

See Solution

Problem 3195

Evaluate the integral from 0 to 3π2\frac{3\pi}{2} of 7sin(x)7|\sin(x)| dx.

See Solution

Problem 3196

Evaluate the integral from π6\frac{\pi}{6} to π3\frac{\pi}{3} of 7sec2(y)dy7 \sec^2(y) \, dy.

See Solution

Problem 3197

Angela deposits \$5000 at 3.1% APR for 7 years. What is the future value with continuous compounding? Round to the nearest hundredth.

See Solution

Problem 3198

Find the production level xx that minimizes the marginal cost C(x)=x2100x+8500C(x) = x^2 - 100x + 8500 and its minimum value.

See Solution

Problem 3199

A train's position is s(t)=60ts(t)=\frac{60}{t} for 2t52 \leq t \leq 5. Find average velocity from t=2t=2 to t=5t=5.

See Solution

Problem 3200

Given the differential equation dNdt=rN\frac{d N}{d t}=r N, find the per capita growth rate and analyze population size at t=1t=1 if r<0r<0 and N(0)=20N(0)=20.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord