Calculus

Problem 12901

Find the derivative of f(x)=lnxx2f(x) = \frac{\ln x}{x^{2}}.

See Solution

Problem 12902

Logistic growth function f(t)=116,0001+5900etf(t)=\frac{116,000}{1+5900 e^{-t}} describes flu cases over time.
a. Initial cases when t=0t=0? b. Cases at t=4t=4 weeks? c. Maximum cases possible?

See Solution

Problem 12903

Invest \14,000at14,000 at 7\%compoundedquarterlyor compounded quarterly or 6.93\%$ compounded continuously. Which yields more in 3 years?

See Solution

Problem 12904

How long for 43%43\% of a material to remain if it decays at 0.084%0.084\% per year?

See Solution

Problem 12905

Find the average rate of change of f(x)=x2f(x)=x^{2} from x=1x=1 to x=3x=3.

See Solution

Problem 12906

Calculate the average rate of change of g(x)=8x2g(x)=-8x^{2} from x=2x=-2 to x=1x=-1.

See Solution

Problem 12907

Find the critical numbers of f(x)=4x5+15x4+20x33f(x)=-4 x^{5}+15 x^{4}+20 x^{3}-3 and classify them with a graph.

See Solution

Problem 12908

Find the local max and min of the function f(x)=4+9x+225x1f(x)=4+9x+225x^{-1}, given max at x=5x=-5 and min at x=5x=5.

See Solution

Problem 12909

Find the surface area of z=e(x2+y2)z=e^{-(x^{2}+y^{2})} over the unit disc using cylindrical coordinates.

See Solution

Problem 12910

Berechnen Sie die Ableitungen von: f(x)=(x25)2f(x)=(x^{2}-5)^{2}, g(x)=(x2+5x+1)2g(x)=(x^{2}+5x+1)^{2}, h(x)=x(x23x)h(x)=\sqrt{x}(x^{2}-3x), k(x)=(x25)(x2+5)k(x)=(x^{2}-5)(x^{2}+5).

See Solution

Problem 12911

Find the correct integral to compute the surface area of z=e(x2+y2)z=e^{-(x^{2}+y^{2})} over the unit disc x2+y21x^{2}+y^{2} \leq 1.

See Solution

Problem 12912

Does f(x)=3x24x+2f(x)=3x^2-4x+2 satisfy the Mean Value Theorem on [0,2][0,2]? Choose: Yes, No, or Not enough info.

See Solution

Problem 12913

Find the local maximum of the function f(x)=2x+4x1f(x)=2 x+4 x^{-1} and its value; local minimum occurs at x=2x=\sqrt{2}.

See Solution

Problem 12914

Find the local minimum and maximum of f(x)=2x345x2+300x+7f(x)=2 x^{3}-45 x^{2}+300 x+7 and their values.

See Solution

Problem 12915

Find the local min and max of f(x)=2x345x2+300x+5f(x)=2x^3-45x^2+300x+5. Determine the xx values and function values using derivatives.

See Solution

Problem 12916

Find the integral for the surface area of z=e(x2+y2)z=e^{-(x^{2}+y^{2})} over the unit disc x2+y21x^{2}+y^{2} \leq 1.

See Solution

Problem 12917

If 3f(x)43 \leq f^{\prime}(x) \leq 4, find the min and max of f(4)f(1)f(4) - f(1).

See Solution

Problem 12918

Find the surface area for the parametrization G(s,t)=(st,st,s+t)G(s,t) = (st, s-t, s+t) where s2+t24s^2 + t^2 \leq 4.

See Solution

Problem 12919

Find dydx\frac{d y}{d x} for the equation xy=3y3+2x2-x y=3 y^{3}+2 x^{2} in terms of xx and yy.

See Solution

Problem 12920

Differentiate the function 3xln(x)3 x \ln (x) with respect to xx.

See Solution

Problem 12921

Given the function f(x)=3x2+4x2f(x)=-3 x^{2}+4 x-2, find the critical number, intervals of increase/decrease, and local extrema type.

See Solution

Problem 12922

Find where the function f(x)=6x+2x1f(x)=6x + 2x^{-1} is decreasing, given it increases on (,13)(13,)\left(-\infty,-\sqrt{\frac{1}{3}}\right) \cup\left(\sqrt{\frac{1}{3}}, \infty\right).

See Solution

Problem 12923

Evaluate the Riemann sum R6R_{6} for f(x)=5x24xf(x)=5x^{2}-4x using right endpoints with n=6n=6.

See Solution

Problem 12924

Berechnen Sie die 1. und 2. Ableitung von ft(x)=52tx2tx+3tf_{t}(x)=\frac{5}{2 t} x^{2}-t x+3 t ohne Taschenrechner.

See Solution

Problem 12925

Invest \15,000at15,000 at 6\%compoundedmonthlyor compounded monthly or 5.93\%$ continuously. Which yields more in 5 years?

See Solution

Problem 12926

Invest \10,000at10,000 at 6\%dailyor daily or 5.90\%$ continuously. Which gives more in 1 year?

See Solution

Problem 12927

Find critical points of f(x)=2x321x2+36x+11f(x)=2x^{3}-21x^{2}+36x+11 and classify them using the second derivative test.

See Solution

Problem 12928

Find the first and second derivatives of ft(x)=52tx2tx+3tf_{t}(x)=\frac{5}{2 t} x^{2}-t x+3 t.

See Solution

Problem 12929

Calculate the derivative of f(x)=3x2+4x+2f(x) = 3x^2 + 4x + 2 when x=1x = -1.

See Solution

Problem 12930

Një gur hidhet lart me 20 m/s20 \mathrm{~m/s} nga 24 m24 \mathrm{~m}. Gjeni shpejtësinë kur godet tokën dhe kohën e udhëtimit.

See Solution

Problem 12931

Find a point cc that meets the MVT for y(x)=8xy(x)=8\sqrt{x} on [0,23][0,23].

See Solution

Problem 12932

Find the limit of f(1+h)f(1)h\frac{f(1+h)-f(1)}{h} for f(x)=x3+2xf(x)=x^{3}+2x as hh approaches 0.

See Solution

Problem 12933

Find the antiderivative FF of f(v)=25secvtanvf(v)=\frac{2}{5} \sec v \tan v with F(0)=3F(0)=3, where π2<v<π2-\frac{\pi}{2}<v<\frac{\pi}{2}.

See Solution

Problem 12934

Find the difference quotient for f(x)=x3+2xf(x)=x^{3}+2x at a=1a=1: f(1+h)f(1)h\frac{f(1+h)-f(1)}{h}.

See Solution

Problem 12935

Analyze the vertical motion of a softball launched at 31 m/s31 \mathrm{~m/s} under gravity g=9.8 m/s2g=-9.8 \mathrm{~m/s}^2. Find its velocity, position, time to highest point, height, and time to hit the ground.

See Solution

Problem 12936

Find the derivative of f(x)=x3+2xf(x)=x^{3}+2x and calculate it at x=1x=1.

See Solution

Problem 12937

Find the tangent line equation for g(x)g(x) at x=3x=3, given g(3)=g(3)=4g(3)=g'(3)=4. Format: y=mx+by=mx+b.

See Solution

Problem 12938

Find limx3f(x)\lim_{x \to -3^-} f(x), limx3+f(x)\lim_{x \to 3^+} f(x), and limx+f(x)\lim_{x \to +\infty} f(x) for f(x)=3+x9x2f(x)=\frac{3+x}{9-x^2}.

See Solution

Problem 12939

Find the derivative dydx\frac{d y}{d x} for the function y=x5y=x^{5}.

See Solution

Problem 12940

Find the tangent line equation for f(x)=x2f(x)=x^{2} at x=1x=-1. The equation is \square.

See Solution

Problem 12941

Find the derivative f(x)f^{\prime}(x) for the constant function f(x)=4f(x)=-4.

See Solution

Problem 12942

Find the derivative g(x)g^{\prime}(x) of the function g(x)=x4/9g(x)=x^{4/9}.

See Solution

Problem 12943

Find the derivative dydx\frac{dy}{dx} for the function y=x7y = x^{-7}.

See Solution

Problem 12944

Find the derivative of y=1x10y=\frac{1}{x^{10}}.

See Solution

Problem 12945

Find the derivative f(x)f^{\prime}(x) for the function f(x)=6x4f(x)=6 x^{4}.

See Solution

Problem 12946

Find a point cc that meets the MVT for y(x)=5x2/3y(x)=5 x^{2/3} on the interval [0,64][0, 64].

See Solution

Problem 12947

Find f(5)f^{\prime}(5) for f(x)=1/xf(x)=1 / \sqrt{x} using the expression f(5+h)f(5)h\frac{f(5+h)-f(5)}{h}.

See Solution

Problem 12948

Find the derivative f(x)f^{\prime}(x) of the function f(x)=3x5f(x)=3 x^{5}.

See Solution

Problem 12949

Find the absolute minimum and maximum of f(x)=x418x2+7f(x)=x^{4}-18 x^{2}+7 on the interval 2x7-2 \leq x \leq 7.

See Solution

Problem 12950

Find the derivative of x832\frac{x^{8}}{32} with respect to xx. What is ddx(x832)\frac{d}{d x}\left(\frac{x^{8}}{32}\right)?

See Solution

Problem 12951

Find the derivative yy^{\prime} for y=5x3y=\frac{-5}{\sqrt[3]{x}}. What is yy^{\prime}?

See Solution

Problem 12952

Calculate the derivative of the function: ddx(3x7)=\frac{d}{d x}(-3 x-7) = \square

See Solution

Problem 12953

Find the derivative f(t)f^{\prime}(t) for the function f(t)=3t2+6t+9f(t)=3 t^{2}+6 t+9.

See Solution

Problem 12954

Find the derivative yy^{\prime} of the function y=8x64x1y=8 x^{-6}-4 x^{-1}.

See Solution

Problem 12955

Find the derivative f(x)f^{\prime}(x) of the function f(x)=ex+5x2lnxf(x)=e^{x}+5x-2\ln x.

See Solution

Problem 12956

Find the derivative f(x)f^{\prime}(x) of the function f(x)=11lnx+9x29f(x)=-11 \ln x + 9 x^{2} - 9.

See Solution

Problem 12957

Find the derivative h(t)h^{\prime}(t) for the function h(t)=5.16.9t+0.7t3h(t)=5.1-6.9 t+0.7 t^{3}. What is h(t)h^{\prime}(t)?

See Solution

Problem 12958

Find the derivative f(x)f^{\prime}(x) of the function f(x)=lnx+2ex3x2f(x)=\ln x+2 e^{x}-3 x^{2}.

See Solution

Problem 12959

A penny falls from a 425 m425 \mathrm{~m} high skyscraper. How long does it take to reach the ground?

See Solution

Problem 12960

Berechne den Differenzenquotienten der Funktion f(x)=12xf(x)=\frac{1}{2 x} im Intervall [1;2][1 ; 2] und [1;1,5][1 ; 1,5].

See Solution

Problem 12961

Given f(x)=3x48x3+9f(x)=3 x^{4}-8 x^{3}+9, find f(x)f'(x), slope at x=1x=-1, tangent line at x=1x=-1, and where tangent is horizontal.

See Solution

Problem 12962

Find the marginal-cost function for C(x)=0.04x3+0.6x2+30x+140C(x)=0.04 x^{3}+0.6 x^{2}+30 x+140 at x=800x=800.

See Solution

Problem 12963

Graph the drug concentration c(t)=3tt2+1c(t)=\frac{3t}{t^2+1}.
(a) What is the maximum concentration? (b) What happens to the concentration over time? (c) When does it drop below 0.3mg/L0.3 \mathrm{mg}/L? t=hr\mathrm{t}=\square \mathrm{hr}

See Solution

Problem 12964

Ein Radfahrer hat die Geschwindigkeit v(t)=0,006t3+0,21t21,92t+10v(t)=-0,006 t^{3}+0,21 t^{2}-1,92 t+10.
a) Erkläre die Fläche unter dem Geschwindigkeitsdiagramm.
b) Finde die maximale Geschwindigkeit zwischen 5 und 20 Sekunden in km/h\mathrm{km/h}.
c) Berechne die durchschnittliche Geschwindigkeit in den ersten 10 Sekunden.

See Solution

Problem 12965

Find (a) the rate of change of yy with respect to xx, (b) the relative rate of change, and (c) at x=6x=6, find y=x2+x2y=x^{2}+x-2.

See Solution

Problem 12966

Construisez la table des valeurs de f(x)=x1+3x1f(x)=\frac{x}{\sqrt{1+3x}-1} près de 0 et conjecturez la limite.

See Solution

Problem 12967

Find the minimum slope of the tangent line to the graph of f(x)=6+2x4x2+13x3f(x)=6+2x-4x^{2}+\frac{1}{3}x^{3}.

See Solution

Problem 12968

The drug concentration C=15(t60+t2)C=15 \cdot\left(\frac{t}{60+t^{2}}\right); find CC after 1 hour, time to reach 0.5\%, and end behavior.

See Solution

Problem 12969

Find the maximum area of a rectangle with corners on the axes and one on the graph of y=6x2+1y=\frac{6}{x^{2}+1}.

See Solution

Problem 12970

A circle's radius increases by 5 mm/s5 \mathrm{~mm/s}. Find the area change rate when the radius is 29 mm29 \mathrm{~mm}.

See Solution

Problem 12971

Find the Riemann sum for f(x)=ex1f(x)=e^{x}-1 over [0,2][0, 2] with n=4n=4 using midpoints, accurate to six decimal places.

See Solution

Problem 12972

Find the critical points of y(x)=x(x7)5y(x)=x(x-7)^{5}. Provide your answer as a comma-separated list.

See Solution

Problem 12973

Find critical points cc and intervals where g(x)=3x5+3x3+3xg(x)=3 x^{5}+3 x^{3}+3 x is increasing or decreasing. Identify local min/max.

See Solution

Problem 12974

Find critical points and intervals of increase/decrease for f(x)=6x4+9x3f(x)=6 x^{4}+9 x^{3}. Provide a list of results.

See Solution

Problem 12975

Find the Riemann sum for f(x)=6sinxf(x)=6 \sin x over [0,3π2][0, \frac{3\pi}{2}] using 6 right endpoints. Round to six decimal places.

See Solution

Problem 12976

Find critical points and intervals of increase/decrease for f(x)=7excos(x)f(x)=7 e^{-x} \cos (x) on [π2,π2][-\frac{\pi}{2}, \frac{\pi}{2}]. Use First Derivative Test.

See Solution

Problem 12977

Hochbehälter: Gegeben ist h(t)=18t22t+8h(t)=\frac{1}{8} t^{2}-2 t+8. Bestimme a) Graph, b) Leerzeit, c) Halbleer und 1/41/4 voll, d) Sinkgeschwindigkeit.

See Solution

Problem 12978

Find the rates of change of revenue R(x)=4xR(x)=4x and cost C(x)=0.01x2+0.4x+5C(x)=0.01x^2+0.4x+5 at x=25x=25 when dxdt=7\frac{dx}{dt}=7.

See Solution

Problem 12979

Zeichnen Sie den Graphen der Funktionen ff und berechnen Sie die Fläche zwischen dem Graphen und der xx-Achse für: a) f(x)=x34x2+4xf(x)=x^{3}-4 x^{2}+4 x, b) f(x)=0,5x34,5x2f(x)=0,5 x^{3}-4,5 x^{2}, c) f(x)=6x3(x21)f(x)=6 x^{3}(x^{2}-1), d) f(x)=59x45x2f(x)=\frac{5}{9} x^{4}-5 x^{2}, e) f(x)=6x(x21)2f(x)=6 x(x^{2}-1)^{2}, f) f(x)=16x4+12x2+23f(x)=-\frac{1}{6} x^{4}+\frac{1}{2} x^{2}+\frac{2}{3}.

See Solution

Problem 12980

Estimate the coffee's temperature after 10 minutes if it cools at a rate of f(t)=6(0.6)tf^{\prime}(t)=-6(0.6)^{t}.

See Solution

Problem 12981

Show that the polynomial P(x)=3x22x6P(x)=3x^2-2x-6 has a real zero between 1 and 2 using the Intermediate Value Theorem.

See Solution

Problem 12982

Find the total cost for producing 25 units if C(q)=2q213q+68C^{\prime}(q)=2 q^{2}-13 q+68 and C(0)=440C(0)=440.

See Solution

Problem 12983

Analyze the limits as x0x \rightarrow 0 for these functions: (a) U(x)=0U(x)=0 if x<0x<0, 11 if x0x \geq 0; (b) g(x)=1/xg(x)=1/x if x0x \neq 0, 00 if x=0x=0; (c) f(x)=0f(x)=0 if x0x \leq 0, sin(1/x)\sin(1/x) if x>0x>0.

See Solution

Problem 12984

Leite die Funktionen mit der Produktregel ab:
1) f(x)=x4exf(x)=-x^{4} \cdot e^{x}
2) f(x)=xexf(x)=\sqrt{x} \cdot e^{x}

See Solution

Problem 12985

A bike manufacturer has a marginal cost function C(q)=7000.7q+4C^{\prime}(q)=\frac{700}{0.7 q+4}.
a) If fixed costs are \$2200, find total cost for 35 bikes.
b) If each bike sells for \$150, what is the profit/loss on the first 35 bikes?
c) What is the marginal profit for bike 36?

See Solution

Problem 12986

Find the derivative of f(x)=1xf(x)=\frac{1}{\sqrt{x}} at x=4x=4.

See Solution

Problem 12987

Kostenfunktion K(x)K(x): K(x)=0,0003x30,017x2+0,4x+40K(x)=0,0003 x^{3}-0,017 x^{2}+0,4 x+40, Nachfrage pN(x)=1,5p_{N}(x)=1,5. Bestimme maximalen Erlös, Gewinnfunktion GG und Cournot-Punkt.

See Solution

Problem 12988

Find the derivative of f(x)=(x2+x+1)(x3+1)f(x)=(x^{2}+x+1)(x^{3}+1) using the product rule.

See Solution

Problem 12989

Bestimmen Sie die Ableitung von f(x)=ex(1x3+x)f(x)=e^{x} \cdot\left(\frac{1}{x^{3}}+x\right) mit der Produktregel.

See Solution

Problem 12990

Differentiate f(x)=(3x+2)2exf(x)=(3 x+2)^{2} \cdot e^{x} using product and chain rules.

See Solution

Problem 12991

Bestimmen Sie die Ableitung von f(x)=xex2f(x) = \sqrt{x} \cdot e^{-x^{2}} mit Produkt- und Kettenregel.

See Solution

Problem 12992

A particle moves with s=f(t)=t39t2+24ts=f(t)=t^{3}-9t^{2}+24t. Find velocity v(t)v(t), when it's at rest, moving positively, and acceleration.

See Solution

Problem 12993

Find the derivative of f(x)=(x2+2)2e4xf(x)=(x^{2}+2)^{2} \cdot e^{-4 x} using product and chain rule.

See Solution

Problem 12994

Find the derivative of f(x)=(x2+2)2e4xf(x)=\left(x^{2}+2\right)^{2} \cdot e^{-4 x} using product and chain rules.

See Solution

Problem 12995

Berechne den Differenzenquotienten für f(x)=12xf(x)=\frac{1}{2 x} im Intervall [1;2][1 ; 2] und [1;1,5][1 ; 1,5]. Finde geometrisch den Differenzenquotienten im Intervall [2;4][2 ; 4] und [0;2][0 ; 2]. Bestimme ein Intervall, wo der Differenzenquotient 0 ist.

See Solution

Problem 12996

Find the marginal-revenue function for the demand equation p=5q+69q+8p=\frac{5 q+6}{9 q+8}, where revenue =pq=p q.

See Solution

Problem 12997

Find λ\lambda so that ρ(x)=λx2ex\rho(x)=\lambda x^{2} e^{-x} is a probability density function on [0,+)[0,+\infty). Round to three decimal places.

See Solution

Problem 12998

Berechnen Sie den Differenzenquotienten der Funktion f(x)=12xf(x)=\frac{1}{2 x} für die Intervalle [1;2][1; 2] und [1;1,5][1; 1,5].

See Solution

Problem 12999

If a hammer falls from a roof twice as tall, how does its kinetic energy change? Explain using KE=12mv2KE = \frac{1}{2}mv^2.

See Solution

Problem 13000

Find the marginal-revenue function from the demand equation p=6q+77q+4p=\frac{6 q+7}{7 q+4}, where revenue =pq=p q.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord