Discrete

Problem 1

1. Prove n7n n^{7}-n is divisible by 42 for all positive integers n n . Show primes ≠ 2, 5 divide numbers like 1, 11, etc.
2. Prove if p>3 p>3 is prime, then p21(mod24) p^{2} \equiv 1(\bmod 24) .
3. Find the number of trailing zeros in 1000! 1000! .
4. If p p and p2+2 p^{2}+2 are primes, prove p3+2 p^{3}+2 is prime.
5. Prove gcd(2a1,2b1)=2gcd(a,b)1 \operatorname{gcd}(2^{a}-1,2^{b}-1)=2^{\operatorname{gcd}(a, b)}-1 for positive integers a,b a, b .

See Solution

Problem 2

Tom has 4 different marbles and 3 identical yellow ones. How many unique pairs of marbles can he select?

See Solution

Problem 3

Tom has 4 unique marbles and 3 identical yellow ones. How many ways can he choose 2 marbles?

See Solution

Problem 4

Ibrahim dan Zahra datang ke mesjid setiap 4 dan 6 hari. Apakah mereka bersama lagi pada 12, 14, dan 26 Juli 2022?

See Solution

Problem 5

Ibrahim dan Zahra datang bersama pada 2 Juli 2022. Kapan mereka akan bersama lagi? Tandai dengan \sqrt{ } pilihanmu!
1. 12 Juli 2022
2. 14 Juli 2022
3. 26 Juli 2022
4. 7 Agustus 2022

See Solution

Problem 6

How many unique 4-letter passwords can be formed from the 26-letter English alphabet without repeating letters? [?] ways

See Solution

Problem 7

How many ways can you choose 3 books from 11? Use the formula for combinations: (113)\binom{11}{3}.

See Solution

Problem 8

What is the converse of "If I studied for it, then I did well on the exam"?

See Solution

Problem 9

Calculate 12/2012 / 20 and find the missing number in the sequence: 100, 93, 84, 73.

See Solution

Problem 10

Find the next number in the sequence: 6,3,12,9,36,336, 3, 12, 9, 36, 33.

See Solution

Problem 11

If this animal is a dog, it has four legs. Which statement is equivalent? A, B, or C?

See Solution

Problem 12

How many ways can you play 3 songs from 8 using random shuffle? Use 8P3=8!(83)!{ }_{8} \mathrm{P}_{3}=\frac{8 !}{(8-3) !}.

See Solution

Problem 13

Choose 3 light bulbs from a batch of 100. How many ways can this be done? Use 100C3=100!3!(1003)!{ }_{100} \mathrm{C}_{3}=\frac{100 !}{3 !(100-3) !}.

See Solution

Problem 14

En un grupo de 100 personas, 60 hablan inglés, 50 alemán y 15 no hablan ninguno. ¿Cuántas hablan ambos idiomas?

See Solution

Problem 15

Sean A y B subconjuntos de un conjunto Re. ¿Cuáles son las afirmaciones verdaderas sobre ellos?

See Solution

Problem 16

Identify the FALSE statement among these:
a) A(p(x)q(x))=Acq(x)Ap(x)A(p(x) \rightarrow q(x))=A^{c} q(x) \cup A p(x)
b) A(p(x)q(x))=Ap(x)Aq(x)A(p(x) \vee q(x))=A p(x) \cup A q(x)
c) A(p(x)q(x))=Ap(x)Aq(x)A(p(x) \wedge q(x))=A p(x) \cap A q(x)
d) Acq(x)=A¬q(x)A^{c} q(x)=A \neg q(x)
e) (q(a)1)(aAq(x))(q(a) \equiv 1) \rightarrow(a \in A q(x))

See Solution

Problem 17

Identify which sequence is arithmetic and which is geometric: Sequence #1: 5,15,45,135,4055, 15, 45, 135, 405; Sequence #2: 5,15,25,35,455, 15, 25, 35, 45.

See Solution

Problem 18

Find the 6th and 7th terms of the sequence 7n57n-5; also, find the sum of the 100th and 200th terms. Is 99 a term?

See Solution

Problem 19

En la secuencia, cada número es la suma de los dos anteriores. ¿Cuál es el valor de xx en la fila? 10, 16, 28, 26, 149.

See Solution

Problem 20

Un vector tiene magnitud y dirección, mientras que un escalar solo tiene magnitud. ¿Cuál es la diferencia?

See Solution

Problem 21

For n100n \geq 100, show that in two piles of cards numbered nn to 2n2n, at least one pile has two cards summing to a perfect square.

See Solution

Problem 22

What is the probability of randomly selecting the correct answer: A: 25%25\%, B: 0%0\%, C: 50%50\%, D: 25%25\%?

See Solution

Problem 23

Show that p(qr)(pq)(pr)p \Rightarrow(q \wedge r) \equiv(p \Rightarrow q) \wedge(p \Rightarrow r) is always true.

See Solution

Problem 24

In a solid 'AB' with NaCl structure, if one face's atoms are removed, what is the new stoichiometry? (1) A₄B₃ (2) AB (3) A₃B₄ (4) AB₂

See Solution

Problem 25

How many ways can you choose 5 numbers from 1 to 59 and 1 bonus number from 1 to 35?

See Solution

Problem 26

How many ways can 10 athletes finish in the top 3 positions of a 400 m400 \mathrm{~m} race? Options: a. 720 b. 120 c. 10310^{3} d. 3

See Solution

Problem 27

A college conference has 3 presenters in Hall A, 2 in Hall B, and 4 in Hall C. How many ways to attend 2 from C and 1 from A or B?

See Solution

Problem 28

How many ways can you attend 2 presentations in Hall C and 1 in either Hall A or B if there are 3 in A, 2 in B, and 4 in C?

See Solution

Problem 29

Prove the following for subsets A,BSA, B \subset S: (a) ABA \subset B iff AB=BA \cup B = B; (b) ABA \subset B iff AB=AA \cap B = A; (c) AC(B)A \subset C(B) iff AB=A \cap B = \varnothing; (d) C(A)BC(A) \subset B iff AB=SA \cup B = S; (e) ABA \subset B iff C(B)C(A)C(B) \subset C(A); (f) AC(B)A \subset C(B) iff BC(A)B \subset C(A).

See Solution

Problem 30

Find the union of the sets A={xxA=\{x \mid x is a prime number between 1 and 10}\} and B={xxB=\{x \mid x is an even number between 1 and 10}\}.

See Solution

Problem 31

Given the sets A={1,2,3,4,5,6,7,8,9,10}A=\{1,2,3,4,5,6,7,8,9,10\} and B={2,4,6,8,10,12,14,16,18,20}B=\{2,4,6,8,10,12,14,16,18,20\}, find ABA \cap B'.

See Solution

Problem 32

Find the intersection of set A and the complement of set B, where A = {1,2,...,10} and B = {2,4,...,20}.

See Solution

Problem 33

Find the union of set AA and the intersection of sets BB and CC: A(BC)A \cup (B \cap C).

See Solution

Problem 34

Toss a fair coin and a four-sided die. Find the probability of heads and an even die result. Complete the diagram.

See Solution

Problem 35

Execute nn processes with given times. When executing time[i], reduce all equal times to time[i]/2\lceil \text{time}[i]/2 \rceil. Find total execution time.

See Solution

Problem 36

Goldbach's conjecture states that every even number greater than 2 can be written as a sum of two primes. Is it true? Why?

See Solution

Problem 37

Find the next number in the sequence: 3,4,1,8,5,2,9,10,1,?3,4,1,8,5,2,9,10,1, ? a. 13 b. 6 c. 5 d. 7

See Solution

Problem 38

Identify the pattern in the sequence 0,3,18,570, 3, 18, 57 and extend it. Prove your conclusion using induction.

See Solution

Problem 39

Find the intersection of set AA and the complement of set BB within the universe UU.

See Solution

Problem 40

Find the union of set A and the intersection of sets B and C: A(BC)A \cup (B \cap C).

See Solution

Problem 41

Find the union of the sets A={xxA=\{x \mid x is a prime number between 1 and 10}\} and B={xxB=\{x \mid x is an even number between 1 and 10}\}.

See Solution

Problem 42

एक व्यक्ति को 3 और 5 लीटर के बर्तनों से बिना अन्य बर्तन का उपयोग किए 4 लीटर पानी बनाना है। क्या वह कर सकता है?

See Solution

Problem 44

Is the statement true or false? 9{2,4,6,,20} 9 \in\{2,4,6, \ldots, 20\} True or False?

See Solution

Problem 45

Is the statement true or false? 17{1,2,3,,10}17 \notin\{1,2,3, \ldots, 10\}

See Solution

Problem 46

Is the statement true or false? If false, explain why. 4{1,3,5,7,} 4 \in\{1,3,5,7, \ldots\}

See Solution

Problem 47

Find the union of sets A={a,b,c,d}A=\{a, b, c, d\} and B={b,c,1,2}B=\{b, c, 1, 2\}. What is ABA \cup B? A) {a,b,1,2}\{a, b, 1, 2\} B) {a,b,c,d,1,2}\{a, b, c, d, 1, 2\} C) {d,c,a,a,2}\{d, c, a, a, 2\} D) {a,b,c,1,2}\{a, b, c, 1, 2\}

See Solution

Problem 48

Find the Cartesian products: A×BA \times B, B×AB \times A, and A×AA \times A for A={a,b,c}A=\{a,b,c\} and B={1,2}B=\{1,2\}.

See Solution

Problem 49

Decida si 2 es un elemento de cada conjunto: a. {{{2}}}\{\{\{2\}\}\}, b. {2,{2}}\{2,\{2\}\}, c. {xRx\{x \in \mathbb{R} \mid x es el cuadrado de un entero }\}, d. {xRx\{x \in \mathbb{R} \mid x es un número mayor que 1}\}, e. {{2,{2}}}\{\{2,\{2\}\}\}, f. {{2},{2,{2}}}\{\{2\},\{2,\{2\}\}\}.

See Solution

Problem 50

a.) ¿Cuántas delegaciones diferentes se pueden formar con al menos un miembro de 18 estudiantes? b.) ¿Cuántas delegaciones diferentes se pueden formar con al menos dos miembros de 18 estudiantes?

See Solution

Problem 51

Is the set {a,b,c}\{a, b, c\} an element of the set {a,b,c,{a,b,c}}\{a, b, c, \{a, b, c\}\}?

See Solution

Problem 52

Choose \in, \subseteq, or their negations to complete: ϕ\phi ___\_\_\_ {x;x\{x ; x is a negative number between 20 and 21}\}. Options: a. \notin, b. \subseteq, c. \in, d. \nsubseteq.

See Solution

Problem 53

Encuentra y simplifica la intersección de {,4](0,)\{-\infty, 4] \cap(0, \infty).

See Solution

Problem 54

หาจำนวนรหัส 4 ตัวที่สร้างจากพยัญชนะ ก, ข, ค, ง โดยไม่ซ้ำกัน (24)

See Solution

Problem 55

11. หาเลข 3 หลักคู่ที่ใช้เลขซ้ำและไม่ซ้ำได้ทั้งหมด (450,328)(450,328)
12. หาวิธีนั่ง 3 คู่สามีภรรยา โดยผู้ชายต้องนั่งปลายแถวเสมอ (144)
13. จัดหลอดไฟสีแดง 3 หลอด, เหลือง 4 หลอด, น้ำเงิน 2 หลอด ใน 9 ขั้ว (1,260)
14. จัดแถว 5 คนจากห้อง ก, 3 คนจากห้อง ข, 2 คนจากห้อง ค โดยนักเรียนห้องเดียวกันติดกัน (8,640)

See Solution

Problem 56

หาเลข 3 หลักคู่ที่มีเลขซ้ำและไม่ซ้ำกัน (450,328)(450,328) และวิธีนั่งของสามีภรรยาที่ผู้ชายต้องนั่งปลายแถว (144)

See Solution

Problem 57

Rappresenta con un diagramma di Eulero-Venn gli insiemi: a. A={xxA=\{x \mid x è un giorno della settimana}\} b. B={xxB=\{x \mid x è un mese che inizia con A}A\} c. C={xxC=\{x \mid x è una cifra di 96.820}\}

See Solution

Problem 58

Given sets X={1,2,3}X=\{1,2,3\} and Y={13,31,65,23}Y=\{13,31,65,23\}, do the following:
1. Write the relation RR and draw an arrow diagram.
2. Determine if 2R652 R 65, 1R311 R 31, 3R133 R 13 are true, with reasons.
3. List M={(y,23):(y,23)R}M=\{(y, 23):(y, 23) \in R\}.

See Solution

Problem 59

Describe the set BB where B={1,2}B=\{1,2\}.

See Solution

Problem 60

Are the sets A={literature, geometry, algebra}A=\{\text{literature, geometry, algebra}\} and B={geometry, trigonometry, literature}B=\{\text{geometry, trigonometry, literature}\} equal, equivalent, both, or neither?

See Solution

Problem 61

Check if sets AA (letters in 'dime') and BB (letters in 'car') are equal, equivalent, both, or neither.

See Solution

Problem 62

Find the number of terms in the sequence 20,18,16,20, 18, 16, \ldots that ends with -4.

See Solution

Problem 63

In a survey of 100 traders selling fruits, find those selling only oranges and mangoes using a Venn diagram.

See Solution

Problem 64

Use the OPT replacement algorithm on the page references 0,6,3,0,2,6,3,5,2,4,1,3,0,6,1,4,2,3,5,70,6,3,0,2,6,3,5,2,4,1,3,0,6,1,4,2,3,5,7. How many page faults with 3 frames?

See Solution

Problem 65

A 32-bit address with 2KB page size requires how many entries in a single-level page table?

See Solution

Problem 66

Arrange 8 students with the following conditions: 1) A & B together: 10,080; 2) A & B at ends: 1,440; 3) A & B apart: 30,240; 4) Alternating genders: 1,152; 5) 4 boys & 4 girls together: 1,152.

See Solution

Problem 67

Identify the domain and range of the set {(3,2),(5,7),(1,4),(9,2),(3,7)}\{(3,2),(5,7),(1,4),(9,2),(3,7)\} and determine if it is a function.

See Solution

Problem 68

Find the domain and range of the set {(1,2),(2,5),(3,1),(1,6),(4,8)}\{(1,2),(2,5),(3,1),(1,6),(4,8)\}. Is it a function?

See Solution

Problem 69

Determine the domain and range of the set {(6,2),(3,5),(9,0),(5,7),(8,1)}\{(6,2),(3,5),(9,0),(5,7),(8,1)\} and check if it's a function.

See Solution

Problem 70

Find the domain and range of the set of points {(1,9),(2,7),(5,4),(7,12),(3,9)}\{(1,9),(2,7),(5,4),(7,12),(3,9)\}.

See Solution

Problem 71

Find the domain and range of the set {(0,2),(3,3),(8,7),(2,2),(3,9)}\{(0,2),(3,3),(8,7),(2,2),(3,9)\} and determine if it's a function.

See Solution

Problem 72

Find the page number and offset for the virtual address 30000 with a page size of 2048 Bytes.

See Solution

Problem 73

A web server tracks hits with multi-threading. Is the lock method valid for preventing race conditions? Options: A) True B) Mutex C) None D) Not valid due to concurrency E) Not valid due to non-atomic increase.

See Solution

Problem 74

Given six memory partitions: A (100 MB), B (170 MB), C (40 MB), D (205 MB), E (300 MB), F (185 MB) and processes P1 (200 MB), P2 (15 MB), P3 (185 MB), P4 (75 MB), P5 (175 MB), P6 (80 MB). Use worst-fit to find remaining memory in D.

See Solution

Problem 75

Select all possible outputs of the given C program when run on a Unix system. Possible outputs include:
1. ABBDD
2. A A B C D
3. A B D C D
4. ACBDD
5. ABBCCDD
6. ACD
7. A B C D
8. A B C D D

See Solution

Problem 76

Calculate the average waiting time for processes P1 (12), P2 (4), P3 (8), P4 (2), and P5 (6) using Shortest-Job-First scheduling.

See Solution

Problem 77

Identify possible outputs of the given C program when run on a Unix system. Options include: ABBDD, A A B C D, A B D C D, ACBDD, ABBCCDD, ACD, A B C D, A B C D D.

See Solution

Problem 78

A web server tracks request hits using a lock. Is this solution valid for preventing race conditions? Choose true statements.

See Solution

Problem 79

Find the next term in the sequence: 2, 2, 4, 6, 10, 16, 26, 42. Provide your answer as an integer, decimal, or E notation.

See Solution

Problem 80

Find the next term in the sequence: 45, 94, 143, 192.

See Solution

Problem 81

Find the next term in the sequence: 55, 66, 78, 91.

See Solution

Problem 82

Match the sequences: 126,139,152,165,178126,139,152,165,178; 89,222.5,556.25,1390.625,3,476.562589,222.5,556.25,1390.625,3,476.5625; 3,3,6,9,15,243,3,6,9,15,24; 36,45,55,66,7836,45,55,66,78; 441,484,529,576,625441,484,529,576,625 with sequence types: Fibonacci, Arithmetic, Cube, Square, Geometric, Triangular.

See Solution

Problem 83

An office has 8 floors. Which set represents the xx-coordinates for the elevator stops? Options: A) {1,2,3,4,5,6,7,8}, B) {0,1,2,3,4,5,6,7}, C) {0,1,2,3,4,5,6,7,8}, D) {-1,-2,-3,-4,-5,-6,-7,-8}.

See Solution

Problem 84

Soit II et JJ deux intervalles ouverts, avec (IQ)(JQ)=(I \cap \mathbb{Q}) \cap (J \cap \mathbb{Q}) = \varnothing. Prouvez que IJ=I \cap J = \varnothing.

See Solution

Problem 85

Identify the correct notation for permutation from these options: rPn\mathrm{rPn}, P(n,r)P(n, r), C(n,r)C(n, r), nCr\mathrm{nCr}.

See Solution

Problem 86

Найдите n(B)n(B), если n(AB)=31n(A \cup B)=31, n(A)=18n(A)=18, n(AB)=9n(A \cap B)=9.

See Solution

Problem 87

Who can always manage a close corporation? Options: a. (4) b. (1), (2) & (4) c. (1) & (4) d. (1), (2), (3) & (4) e. (2) & (4)

See Solution

Problem 88

Find the total number of members in three teams: cricket (21), hockey (26), football (29), with overlaps given.

See Solution

Problem 89

Identify the correct concepts related to negation and matrices, and find the power set of the empty set.

See Solution

Problem 90

Find the next number in the series: 36,34,30,28,24,36, 34, 30, 28, 24, \ldots.

See Solution

Problem 91

Determine if the statement "Gamestation {\in\{ Port'n'Play, Gamestation, Port'n'Play EX }\}" is true or false. If false, explain why.

See Solution

Problem 92

Determine if {Larry,Fred}{Curly,Larry,Moe}\{ Larry, Fred \} \subseteq \{ Curly, Larry, Moe \} is true or false. If false, explain why.

See Solution

Problem 93

Determine if the statement "7 is not in the set {1, 5, 6}" is true or false. If false, explain why.

See Solution

Problem 94

Determine the relationship between sets A={A=\{ winter, autumn, summer, spring }\} and B={B=\{ winter, spring }\}.

See Solution

Problem 95

Find an index ii in array A\mathrm{A} where the sum before ii equals the sum after ii. Return 1-1 if none exist.

See Solution

Problem 96

What is the probability of guessing a 5-digit code from 5 unique numbers? A. 112\frac{1}{12} B. 1120\frac{1}{120} C. 140\frac{1}{40} D. 160\frac{1}{60}

See Solution

Problem 97

How many elements are in the union of sets A and B if A has 8 elements, B has 20, and 5 are common?

See Solution

Problem 98

In a pet supply store survey, 27 owned dogs, 30 owned mice, and 17 owned both. Find how many owned either a dog or a mouse.

See Solution

Problem 99

A restaurant gives 10%10\% of customers a discount coupon. Which model simulates this? A) Spinner, B) Dice, C) Cards, D) Random numbers?

See Solution

Problem 100

What is the next number in the sequence? 1,2,2,4,8,32,?1, 2, 2, 4, 8, 32, ?

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord