Calculus

Problem 16601

Find the xx-values where the function f(x)=320x513x3f(x)=\frac{3}{20} x^{5}-13 x^{3} has an inflection point.

See Solution

Problem 16602

Find the intervals where the function f(x)=16x419x2f(x)=\frac{1}{6} x^{4}-19 x^{2} is concave down.

See Solution

Problem 16603

Find all xx-values where the function f(x)=115x6+x5f(x)=\frac{1}{15} x^{6}+x^{5} has an inflection point.

See Solution

Problem 16604

Find the left Riemann sum for 23x3dx\int_{2}^{3} x^{3} dx using 5 equal subintervals. Round to the nearest thousandth.

See Solution

Problem 16605

A cylinder's radius decreases at 2 cm/min, volume at 467 cm³/min. When radius is 4 cm and volume is 347 cm³, find height's rate of change using V=πr2hV=\pi r^{2} h. Round to three decimal places.

See Solution

Problem 16606

A sphere's radius grows at 8 m/s. When the radius is 2 m, find the volume's rate of change using V=43πr3V=\frac{4}{3} \pi r^{3}. Round to three decimals.

See Solution

Problem 16607

Bestimmen Sie die Stammfunktion von ff: a) f(x)=4x3+2x21f(x)=4 x^{3}+2 x^{2}-1, b) f(x)=x54x3f(x)=x^{5}-4 x^{3}, e) f(x)=0,24x75,4xf(x)=0,24 x^{7}-5,4 x, f) f(x)=25x4+33x2f(x)=-25 x^{4}+33 x^{2}.

See Solution

Problem 16608

Bestimmen Sie eine Stammfunktion für die folgenden Funktionen: a) f(x)=14x2f(x)=\frac{1}{4} x^{-2}, b) f(x)=3x4f(x)=\frac{3}{x^{4}}, e) f(x)=5x6f(x)=\frac{-5}{x^{6}}, f) f(x)=x2+2xx5f(x)=\frac{x^{2}+2 x}{x^{5}}.

See Solution

Problem 16609

Calculate the integral π/4π/2sin3αcosαdα\int_{\pi / 4}^{\pi / 2} \sin^{3} \alpha \cos \alpha \, d\alpha.

See Solution

Problem 16610

Find the gradient of the curve y=84x5y=\frac{8}{4x-5} at x=2x=2.

See Solution

Problem 16611

Find the initial amount of Carbon14, the amount after 12208 years, and its half-life from A(t)=236e0.00012tA(t)=236 e^{-0.00012 t}.

See Solution

Problem 16612

Die Höhe einer Eisenkugel wird durch h(t)=3,5e0,2tsin(5t)h(t)=3,5 \cdot e^{-0,2 t} \cdot \sin (5 t) beschrieben.
a) Finde h(4)h(4) und v(4)v(4). b) Bestimme mit dem GTR, wann v(t)=3cmsv(t)=3 \frac{\mathrm{cm}}{\mathrm{s}}.

See Solution

Problem 16613

Berechnen Sie das Integral von f(x)=(x2+3x)2f(x)=(x^{2}+3 x)^{2}.

See Solution

Problem 16614

Hassan wants to know how much to invest at 2.3%2.3\% interest to have $1,130\$1,130 in 8 years. Calculate the amount needed.

See Solution

Problem 16615

Gegeben ist die Funktion f(x)=14x2+xf(x)=-\frac{1}{4} x^{2}+x.
a) Finde den Punkt PP mit Steigung -2.
b) Finde alle Stellen mit waagerechter Tangente.
c) Bestimme die Tangentengleichung im Punkt Q(4f(4))Q(4 \mid f(4)).
d) Finde Stellen, wo die Tangente parallel zu y=3x+5y=3x+5 ist.

See Solution

Problem 16616

Bestimmen Sie die Intervalle, in denen f(x)=23x3+x212x+1f(x)=\frac{2}{3} x^{3}+x^{2}-12 x+1 streng monoton wächst.

See Solution

Problem 16617

Ximena wants to invest to reach \$5,100 in 6 years at a 2.2% continuous interest rate. How much does she need to invest?

See Solution

Problem 16618

Hakeem wants to invest for an account to reach \3,700in15yearsatacontinuousinterestrateof3,700 in 15 years at a continuous interest rate of 3.5\%$. How much?

See Solution

Problem 16619

How much should London invest at a 5.7%5.7\% continuous interest to have $281,000\$281,000 in 19 years? Round to nearest \$10.

See Solution

Problem 16620

Verify that the tangent lines of the bicorn curve at (0,4)(0,4) and (0,4/3)(0,4/3) are horizontal using implicit differentiation.

See Solution

Problem 16621

Levi wants to know how much to invest at 3.4%3.4\% interest compounded continuously to reach \$620 in 16 years.

See Solution

Problem 16622

Berechnen Sie das unbestimmte Integral der Funktion 0,3x100,3 x^{-10}.

See Solution

Problem 16623

Berechnen Sie das unbestimmte Integral von f(x)=3x4f(x)=\frac{3}{x^{4}}.

See Solution

Problem 16624

A biologist has an 8824-gram sample of a radioactive substance. Find its mass after 3 hours with a decay rate of 9%9\% per hour. Round to the nearest tenth.

See Solution

Problem 16625

Find the half-life of a radioactive substance with a decay rate of 1.9%1.9\% per day. Round to the nearest hundredth.

See Solution

Problem 16626

Find the half-life of a substance with a decay rate of 1.9%1.9\% per day using the continuous exponential decay model.

See Solution

Problem 16627

Calculate the integral from 0 to 10 of 100x2\sqrt{100 - x^{2}} dx.

See Solution

Problem 16628

Find the interest rate needed for Jason's \$16,000 to grow to \$26,000 in 7 years with continuous compounding.

See Solution

Problem 16629

Which expression equals limni=13in3n\lim _{n \rightarrow \infty} \sum_{i=1}^{\infty} \sqrt{\frac{3 i}{n}} \frac{3}{n}? Options include various integrals.

See Solution

Problem 16630

Calculate the area under the curve x2x^{2} from x=0x=0 to x=3x=3 using the definition of the definite integral.

See Solution

Problem 16631

Given f(5)=7f(5)=-7, f(5)=0f^{\prime}(5)=0, and f(5)=1f^{\prime \prime}(5)=1, what can we conclude about ff at 5? A, B, C, or D?

See Solution

Problem 16632

Find critical points of f(x)=xex2f(x)=x e^{-x^{2}} and use the Second Derivative Test to classify them.

See Solution

Problem 16633

Find intervals where the function is concave up or down, and identify points of inflection for f(x)=4x3+4x25x+9f(x)=4 x^{3}+4 x^{2}-5 x+9.

See Solution

Problem 16634

Determine where the function f(x)=3x3f(x)=\frac{3}{x-3} is concave up, concave down, and find points of inflection.

See Solution

Problem 16635

Find critical points of f(x)=xex2f(x) = x e^{-x^{2}} and use the Second Derivative Test to classify them.

See Solution

Problem 16636

Determine the intervals where f(x)=3x3f(x)=\frac{3}{x-3} is concave up or down, and locate any points of inflection.

See Solution

Problem 16637

Find R(x)R^{\prime \prime}(x) and the point of diminishing returns for R(x)=x3+57x2+1000R(x)=-x^{3}+57x^{2}+1000 where 0x240 \leq x \leq 24.

See Solution

Problem 16638

Find the absolute max and min of f(x)=x36x263x+11f(x)=x^{3}-6x^{2}-63x+11 on intervals: (A) [4,0][-4,0], (B) [1,8][-1,8], (C) [4,8][-4,8]. Use -1000 for non-existent extrema.

See Solution

Problem 16639

Given R(x)=x3+57x2+1000R(x)=-x^{3}+57x^{2}+1000 for 0x240 \leq x \leq 24, find R(x)R^{\prime \prime}(x) and the point of diminishing returns.

See Solution

Problem 16640

Find critical numbers of f(x)=4x4+xf(x)=\frac{4-x}{4+x} and use the second derivative test for local max/min.

See Solution

Problem 16641

Find critical numbers of f(x)=2x33x2+12x+3f(x)=-2 x^{3}-3 x^{2}+12 x+3 and use the second derivative test to classify them. What is f(x)f''(x)?

See Solution

Problem 16642

Find the second derivative of f(x)=2x33x2+12x+3f(x)=-2x^3-3x^2+12x+3 and determine the critical numbers and local extrema.

See Solution

Problem 16643

Find the absolute max and min of f(x)=x4+32x2256f(x)=-x^{4}+32 x^{2}-256 on [5,5][-5,5]. Max at x=x=\square.

See Solution

Problem 16644

Find the production level xx that minimizes the average cost per wheel given C(x)=0.03x34.5x2+174xC(x)=0.03 x^{3}-4.5 x^{2}+174 x for x(0,100]x \in (0,100]. x=x=\square

See Solution

Problem 16645

Find the absolute extrema of f(x)=6+x6xf(x)=\frac{6+x}{6-x} on [3,5][3,5]. Max at x=x=\square.

See Solution

Problem 16646

Find the production level xx that minimizes the average cost function C(x)=0.03x34.5x2+174xC(x)=0.03 x^{3}-4.5 x^{2}+174 x for 0x1000 \leq x \leq 100.

See Solution

Problem 16647

Welche Stammfunktion von ff hat bei x=1x=1 den Wert 2? a) f(x)=3x2f(x)=3 x^{2} b) f(x)=x32x2+1f(x)=x^{3}-2 x^{2}+1

See Solution

Problem 16648

Find the point of diminishing returns for the function R(x)=10,000x3+36x2+700xR(x)=10,000-x^{3}+36 x^{2}+700 x in the interval 0x200 \leq x \leq 20.

See Solution

Problem 16649

Find the critical numbers of g(x)=x1xx3x+3g(x)=\frac{x-1}{x^{x-3x+3}}.

See Solution

Problem 16650

A graphing calculator is recommended.
The bird population follows the model n(t)=50000.5+24.5e0.044tn(t)=\frac{5000}{0.5+24.5 e^{-0.044 t}}.
(a) Find the initial population. (b) Graph n(t)n(t). (c) What is the population limit as tt \to \infty?

See Solution

Problem 16651

Bestimmen Sie den maximalen Gewinn und die Produktionsmenge für die Gewinnfunktion G(x)=2x3+12x26x20G(x)=-2 x^{3}+12 x^{2}-6 x-20 im Intervall [0;8][0; 8].

See Solution

Problem 16652

Given a fish population in a pond with the logistic growth model P(t)=12001+11e0.2tP(t)=\frac{1200}{1+11 e^{-0.2 t}}, find:
(a) Initial fish count. (b) Population at 10, 20, and 30 years (round to nearest whole number). (c) Limit of P(t)P(t) as tt \to \infty.
Does the graph confirm your results? Yes/No

See Solution

Problem 16653

Find the limit expression for the area under f(x)=3+sin2(x)f(x)=3+\sin ^{2}(x) from 00 to π\pi using A=limni=1nf(x)ΔxA=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f(x) \Delta x.

See Solution

Problem 16654

Given the logistic growth model:
P(t)=12001+11e0.2t P(t)=\frac{1200}{1+11 e^{-0.2 t}}
(a) What is the initial fish population?
(b) Find P(10)P(10), P(20)P(20), and P(30)P(30) (round to whole numbers).
(c) What does P(t)P(t) approach as tt \to \infty?
Does the graph confirm your results? Yes/No

See Solution

Problem 16655

Finde die Stückzahl xx für maximalen Gewinn in der Funktion G(x)=0,5x3+60x21225x30.000G(x)=-0,5 x^{3}+60 x^{2}-1225 x-30.000 im Intervall [0;90][0 ; 90]. Was ist der Gewinn?

See Solution

Problem 16656

Bestimme die Ableitungen der Funktionen: a) f(x)=3x3+2x2f(x)=3 x^{3}+2 x^{2}, b) f(t)=t4t+1f(t)=t^{4}-t+1, c) f(x)=(3+x)(3x)f(x)=(3+x)(3-x), d) f(x)=3x32x2f(x)=3 x^{3} \cdot 2 x^{2}, e) f(x)=3x24a2f(x)=3 x^{2}-4 a^{2}, f) f(a)=3x24a2f(a)=3 x^{2}-4 a^{2}, g) f(x)=2(xa)2f(x)=2(x-a)^{2}, h) f(t)=t2(2t)2f(t)=t^{2}-(2-t)^{2}.

See Solution

Problem 16657

Skizzieren Sie die Graphen und bestimmen Sie die lokale Änderungsrate von ff an x0x_0: a) f(x)=0,5x2f(x)=0,5 x^2, x0=2x_0=2 b) f(x)=1x2f(x)=1-x^2, x0=2x_0=2 c) f(x)=1xf(x)=\frac{1}{x}, x0=1x_0=1.

See Solution

Problem 16658

Given f(x)=x2(x1)2f^{\prime \prime}(x)=x^{2}(x-1)^{2}, determine the true statements about inflection points of f(x)f(x).

See Solution

Problem 16659

Snowboarder bewegt sich mit s(t)=1,5t2s(t)=1,5 t^{2}. Berechne: a) Weg nach 1s und 5s, b) mittlere Geschwindigkeit in 5s, c) Momentangeschwindigkeit nach 5s.

See Solution

Problem 16660

Find the antiderivative of f(x)=0.75x31.25x21f(x)=0.75x^{3}-1.25x^{2}-1.

See Solution

Problem 16661

Finde die lokalen Extrempunkte der Funktion a(x)=0,25x4x3+1a(x)=0,25x^{4}-x^{3}+1 durch Ableitungen.

See Solution

Problem 16662

Determine the max and min of f(θ)=1sin2(θ)f(\theta)=1-\sin^{2}(\theta) on [π4,π]\left[\frac{\pi}{4}, \pi\right].

See Solution

Problem 16663

Find the function f(x)f(x) if f(x)=7x6f^{\prime}(x)=7x^{6}.

See Solution

Problem 16664

Find the peak concentration of the drug given by C(t)=20te0.3tC(t)=20 t \cdot e^{-0.3 t}. Options: 1313, 5151, 1515, 2525, 33 mg/ml.

See Solution

Problem 16665

If f(x)f(x) is continuous on [a,b][a, b] with a unique critical point c(a,b)c \in (a, b) and f(x)f'(x) doesn't change sign, where does the global max occur?

See Solution

Problem 16666

Find the limit: limn((sin(π/2))n+(2sin(π/4))n+(1/10)n)1/n\lim _{n \rightarrow \infty}\left((\sin (\pi / 2))^{n}+(2 \sin (\pi / 4))^{n}+(1 / 10)^{n}\right)^{1 / n}.

See Solution

Problem 16667

Find the light intensity II that maximizes the photosynthesis rate P=80II2+I+9P=\frac{80 I}{I^{2}+I+9}.

See Solution

Problem 16668

Approximate the integral 02(3x+7)dx\int_{0}^{2}(3 x+7) d x using the Midpoint Rule with n=4n=4.

See Solution

Problem 16669

Maximize profit with revenue R(q)=140q0.5q2R(q)=140 q-0.5 q^{2} and cost C(q)=q2+20q+1050C(q)=q^{2}+20 q+1050. What is qq? Options: 260, 120, 40, 80.
Model virus spread with logistic equation P(t)P(t), starting with 10 infected, growth rate 1.45, max 4600. What is the equation? Options: P(t)=4600(1+1.45e10t)P(t)=\frac{4600}{\left(1+1.45 e^{-10 t}\right)}, P(t)=46001+10e1.45tP(t)=\frac{4600}{1+10 e^{-1.45 t}}, P(t)=10(1+459e1.45t)P(t)=\frac{10}{\left(1+459 e^{-1.45 t}\right)}, P(t)=4600(1+459e1.45t)P(t)=\frac{4600}{\left(1+459 e^{-1.45 t}\right)}.

See Solution

Problem 16670

Mosquito population grows uninhibitedly. Find N(t)N(t), size after 3 days, and time to reach 40,000 mosquitoes.
(a) N(t)=N0ektN(t)=N_0 \cdot e^{kt} (b) Start with 1000, after 1 day 1200, find size after 3 days. (c) Time to reach 40,000 mosquitoes?

See Solution

Problem 16671

Find the area between the xx-axis and f(x)=123x2f(x)=12-3x^{2} on the interval [0,4][0,4]. Does the graph cross the xx-axis? The area is \square.

See Solution

Problem 16672

Find the derivative of h(x)=1ex3ln(t)dth(x)=\int_{1}^{e^{x}} 3 \ln (t) dt using the fundamental theorem of calculus.

See Solution

Problem 16673

Find the area between the xx-axis and f(x)=123x2f(x) = 12 - 3x^2 over the interval [0,8][0,8]. Area = \square.

See Solution

Problem 16674

A rumor spreads in 400 people given by N(t)=4001+399e0.05tN(t)=\frac{400}{1+399 e^{-0.05 t}}. When does it spread fastest?
Select one: 15 hours 60 hours 400 hours 120 hours 180 hours
Medication concentration is C(t)=3te2tC(t)=3 t e^{-2 t}. When is peak concentration?
Select one: 2 hours 20 minutes 30 minutes 3 hours

See Solution

Problem 16675

Find 4f(x)dx\int_{4} f(x) d x for the piecewise function f(x)={8x+5x60.1x+1x>6f(x)=\begin{cases} 8x+5 & x \leq 6 \\ -0.1x+1 & x > 6 \end{cases} given that 48f(x)dx=0\int_{4}^{8} f(x) d x=0.

See Solution

Problem 16676

Mosquito population grows uninhibitedly. Find N(t)\mathrm{N}(t) and the population after 3 days if N0=1000\mathrm{N}_0 = 1000 and N(1)=1200\mathrm{N}(1) = 1200.

See Solution

Problem 16677

Find when the rumor spreads fastest for 400 people, given N(t)=4001+399e0.05tN(t)=\frac{400}{1+399 e^{-0.05 t}}. Round to nearest hour.

See Solution

Problem 16678

Find 48f(x)dx\int_{4}^{8} f(x) d x for the piecewise function: f(x)=8x+5f(x)=8x+5 if x6x \leq 6 and f(x)=0.1x+1f(x)=-0.1x+1 if x>6x>6.

See Solution

Problem 16679

Evaluate the integral from 0 to 1 of (9xe+2ex)(9 x^{e}+2 e^{x}).

See Solution

Problem 16680

Differentiate y=1x2sin1xy=\sqrt{1-x^{2}} \sin^{-1} x. Find yy'.

See Solution

Problem 16681

A bicyclist moves north at 60 ft/s and a jogger moves west at 15 ft/s. Find the distance change rate when 120 ft and 50 ft away.

See Solution

Problem 16682

Calculate the indefinite integral of the function: (5+8x)dx\int(5+8 x) \, dx

See Solution

Problem 16683

Set up the definite integral for total pollutant concentration in the lake after 4 years using f(t)f(t).

See Solution

Problem 16684

Evaluate the integral ee36dxxln(x)\int_{e}^{e^{36}} \frac{d x}{x \sqrt{\ln (x)}} using substitution.

See Solution

Problem 16685

Bestimmen Sie die Punkte von ff, wo die Steigung mm ist: a) f(x)=x2+1;m=2f(x)=x^{2}+1 ; m=2 b) f(x)=x33x;m=3f(x)=x^{3}-3 x ; m=3 c) f(x)=16x4;m=163f(x)=\frac{1}{6} x^{4} ; m=\frac{16}{3}

See Solution

Problem 16686

Bestimme die Punkte, wo ff die Steigung hat: a) f(x)=x2+1;m=2f(x)=x^{2}+1 ; m=2, b) f(x)=x33x;m=3f(x)=x^{3}-3 x ; m=3, c) f(x)=16x4;m=163f(x)=\frac{1}{6} x^{4} ; m=\frac{16}{3}.

See Solution

Problem 16687

Verify if f(x)=x+1xf(x)=x+\frac{1}{x} meets Rolle's Theorem on [13,3]\left[\frac{1}{3}, 3\right] and find all cc values.

See Solution

Problem 16688

Find critical numbers for the function g(x)=x1x23x+3g(x)=\frac{x-1}{x^{2}-3x+3}.

See Solution

Problem 16689

Find the line where the function g(x)=x2+4x+4x21g(x)=\frac{x^{2}+4 x+4}{x^{2}-1} has a horizontal asymptote. y=1y=1

See Solution

Problem 16690

Find the general antiderivative of f(x)=4x27x+9x2f(x)=\frac{4 x^{2}-7 x+9}{x^{2}}, for x>0x>0.

See Solution

Problem 16691

Radium's half-life is 1690 years. If 70 grams are present, how much remains after 540 years? Use A(t)=A0ektA(t)=A_{0} e^{k t}.

See Solution

Problem 16692

Find intervals where f(x)=x6exf(x)=x^{6} e^{-x} is increasing/decreasing and determine local max/min values.

See Solution

Problem 16693

Strontium-90 decays as A(t)=A0e0.0244tA(t)=A_{0} e^{-0.0244 t}. Given 400g, find: (a) decay rate, (b) amount after 30 yrs, (c) time for 100g, (d) half-life.

See Solution

Problem 16694

Die Höhe einer Kletterpflanze wird durch h(t)=0,02ekth(t)=0,02 \cdot e^{k t} beschrieben. Bestimme:
a) Höhe zu Beginn (t=0t=0). b) kk bei 40 cm40 \mathrm{~cm} nach 6 Wochen. c) Höhe nach 9 Wochen. d) Zeitpunkt für 3 m Höhe. e) Zeitpunkt für 150 cm Wachstum in einer Woche. f) Zeitpunkt für Wachstumsrate von 1mWoche1 \frac{m}{\text{Woche}}. g) Zeitpunkt für 3 m Höhe mit k(t)=3,58,2e0,175tk(t)=3,5-8,2 e^{-0,175 t}.

See Solution

Problem 16695

Find the limit: limx3x29x3\lim _{x \rightarrow 3} \frac{x^{2}-9}{x-3}.

See Solution

Problem 16696

Calculate the integral 03x1dx\int_{0}^{3}|x-1| dx. Choose the correct answer: A. 3, B. 92\frac{9}{2}, C. 52\frac{5}{2}, D. 5, E. 72\frac{7}{2}.

See Solution

Problem 16697

Evaluate g(a+h)g(a)h\frac{g(a+h)-g(a)}{h} for the function g(x)=5x2g(x)=5-x^{2}.

See Solution

Problem 16698

Ordnen Sie die Grenzwertterme den entsprechenden Grenzwerten zu:
limx2xx2,limx0x2xx,limx22x28x2,limx2(x2+1x),limxx2+1x \lim _{x \rightarrow \infty} \frac{2 x}{x-2}, \quad \lim _{x \rightarrow 0} \frac{x^{2}-x}{x}, \quad \lim _{x \rightarrow 2} \frac{2 x^{2}-8}{x-2}, \quad \lim _{x \rightarrow 2}\left(x^{2}+\frac{1}{x}\right), \quad \lim _{x \rightarrow \infty} \frac{x^{2}+1}{x}
Wählen Sie aus: 1-1, 0, 2, 8, 4.5, \infty.

See Solution

Problem 16699

Find the average rate of change of k(x)=7x3+3x2k(x)=7 x^{3}+\frac{3}{x^{2}} from x=2x=-2 to x=1x=1.

See Solution

Problem 16700

Find relative extrema or saddle points for the function f(x,y)=3x2+2y26x4y+16f(x, y)=3 x^{2}+2 y^{2}-6 x-4 y+16.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord