Calculus

Problem 17801

Berechnen Sie den Flächeninhalt unter f(x)=12x252xf(x) = \frac{1}{2}x^2 - \frac{5}{2}x von x=2x = 2 bis x=5x = 5.

See Solution

Problem 17802

Find the limit: limn12n3+n12n35n\lim _{n \rightarrow \infty} \sqrt{12 n^{3}+n}-\sqrt{12 n^{3}-5 n}.

See Solution

Problem 17803

Berechnen Sie das Integral: 02e(x3)dx\int_{0}^{2} e^{-(x-3)} d x

See Solution

Problem 17804

Find the limit as xx approaches 0 for the expression cos5x5\frac{\cos 5 x}{5}.

See Solution

Problem 17805

Find the limit: limx3π2xsinx\lim _{x \rightarrow \frac{3 \pi}{2}} x \sin x.

See Solution

Problem 17806

Find the limit as xx approaches 0 for sin3x7x\frac{\sin 3 x}{7 x}.

See Solution

Problem 17807

Find the limit as xx approaches 0 for 3tan2x6x\frac{3 \tan 2 x}{6 x}.

See Solution

Problem 17808

Find the limit: limx01cos2x3x\lim _{x \rightarrow 0} \frac{1-\cos 2 x}{3 x}.

See Solution

Problem 17809

Find the limit as xx approaches 0 for xsin3x3xsinx\frac{x-\sin 3x}{3x-\sin x}.

See Solution

Problem 17810

Find the limit: limx0tan2x2x\lim _{x \rightarrow 0} \frac{\tan ^{2} x}{2 x}.

See Solution

Problem 17811

Find the limit: limxπ3xcosx\lim _{x \rightarrow \pi} 3 x \cos x.

See Solution

Problem 17812

Find the limit as xx approaches 0 for cos5xtan7x3x\frac{\cos 5 x \tan 7 x}{3 x}.

See Solution

Problem 17813

Bestimmen Sie die Förderquote f(t)f(t) für Kupfererz und beantworten Sie Fragen zu Zeitraum, Maximalquote und Durchschnitt.

See Solution

Problem 17814

Use the squeeze theorem to find limx0xcos1x=0\lim_{x \to 0} x \cos \frac{1}{x} = 0 and limx0f(x)\lim_{x \to 0} f(x) for 54x2f(x)5+4x25 - 4x^2 \leq f(x) \leq 5 + 4x^2.

See Solution

Problem 17815

Find the limit as xx approaches π\pi for the expression sin3x2x\frac{\sin 3x}{2x}.

See Solution

Problem 17816

Find the limit as xx approaches 0 of tan2x2x\frac{\tan ^{2} x}{2 x}.

See Solution

Problem 17817

Bestimme den Wendepunkt und die Wendetangente der Funktion f(x)=x3+3x24f(x)=x^{3}+3x^{2}-4. Finde die Länge der Strecke PQ\overline{PQ}.

See Solution

Problem 17818

Given the equation 2x21xp+50p2=312002 x^{2} - 1 x p + 50 p^{2} = 31200, find the demand's rate of change when p=20p = 20 and dpdt=2\frac{dp}{dt} = 2.

See Solution

Problem 17819

Find the rate of change of total resistance RR for resistors R1=80ΩR_{1}=80 \Omega and R2=100ΩR_{2}=100 \Omega with rates .3.3 and .2Ω/s.2 \Omega/s.

See Solution

Problem 17820

Bestimmen Sie die Grenzwerte für x+x \rightarrow+\infty und xx \rightarrow-\infty sowie die Asymptoten für die Funktionen: a) f(x)=1,1xf(x) = 1,1^{x}, b) g(x)=31x47g(x) = 3 \cdot \frac{1}{x-4}-7, c) h(x)=0,75xh(x) = 0,75^{x}, d) i(x)=sin(0,5x)i(x) = \sin(0,5 x).

See Solution

Problem 17821

A 13 ft ladder leans against a wall. If the top slips down at 3ft/s3 \mathrm{ft/s}, how fast is the foot moving when the top is 8 ft up? The foot moves at ft/s\square \mathrm{ft/s}.

See Solution

Problem 17822

A point moves along xy=1xy=1 with dydt=3\frac{dy}{dt}=3. Find dxdt\frac{dx}{dt} when x=3x=3. dxdt=\frac{dx}{dt} =

See Solution

Problem 17823

Find the value of the series k=11(5k2)(5k+3)\sum_{k=1}^{\infty} \frac{1}{(5 k-2)(5 k+3)}.

See Solution

Problem 17824

Finde die Punkte, wo die Funktion f(x)=x22x3f(x) = x^2 - 2x - 3 eine Steigung von m=6m=6 hat.

See Solution

Problem 17825

Calculate the series value: k=11(5k2)(5k+3)\sum_{k=1}^{\infty} \frac{1}{(5 k-2)(5 k+3)}.

See Solution

Problem 17826

Find the Laplace operator applied to h(x,y,z)=e3xsin(7y)h(x, y, z)=e^{-3 x} \sin (-7 y). Calculate 2h\nabla^{2} h.

See Solution

Problem 17827

At t=2t=2 min, is the sand leak rate speeding up or slowing down if μ=6\mu=6? Justify your answer.

See Solution

Problem 17828

Compute for the vector field F=(8yz)i+(5xz)j+(10xy)k\mathbf{F}=(8 y z) \mathbf{i}+(5 x z) \mathbf{j}+(10 x y) \mathbf{k}: A. F=\nabla \cdot \mathbf{F}=, B. ×F=i+j+k\nabla \times \mathbf{F}=\square \mathbf{i}+\square \mathbf{j}+\square \mathbf{k}, C. (×F)=\nabla \cdot(\nabla \times \mathbf{F})=

See Solution

Problem 17829

Use linear approximation to estimate 64.1\sqrt{64.1} with f(x)=xf(x)=\sqrt{x} at x=64x=64. Find mm and bb for y=mx+by=m x+b. m=1/16m=1/16, b=4b=4. What is the approximation for 64.1\sqrt{64.1}?

See Solution

Problem 17830

Ein Ball wird nach oben geschossen. Gegeben ist die Funktion h(t)=5t2+64th(t)=-5 t^{2}+64 t.
a) Bestimme die Definitionsmenge von hh und begründe es. b) Finde die mittlere Geschwindigkeit in 3s und die Momentangeschwindigkeit nach 2s. c) Bestimme den höchsten Punkt und die maximale Höhe.

See Solution

Problem 17831

Find the linearization L(x)L(x) of g(x)=xf(x2)g(x)=x f(x^2) at x=2x=2 given f(2)=0f(2)=0, f(2)=8f'(2)=8, f(4)=4f(4)=4, f(4)=3f'(4)=-3.

See Solution

Problem 17832

Finde die Punkte, wo die Tangente der Funktionen die Steigung 4 hat: a) f(x)=x2f(x)=x^{2}, b) f(x)=x4f(x)=x^{4}, c) f(x)=1x4f(x)=\frac{1}{x^{4}}, d) f(x)=x3f(x)=x^{3}.

See Solution

Problem 17833

Find numbers satisfying the Mean Value Theorem for f(x)=3x2+2x+5f(x)=3x^{2}+2x+5 on [1,1][-1,1].

See Solution

Problem 17834

Bestimme die Ableitungen für die Funktionen: a) f(x)=x13f(x)=x^{\frac{1}{3}}, b) f(x)=xf(x)=\sqrt{x}, c) f(x)=1x3f(x)=\frac{1}{x^{3}}, d) f(x)=x32f(x)=x^{\frac{3}{2}}, e) f(x)=x4f(x)=\sqrt[4]{x}, f) f(x)=x6f(x)=\sqrt[6]{x}, g) f(x)=1xf(x)=\frac{1}{\sqrt{x}}, h) f(x)=x34f(x)=x^{\frac{3}{4}}.

See Solution

Problem 17835

Find the limits of these sequences or prove divergence: a) an=sinπna_{n}=\sin \frac{\pi}{n}, b) an=sinna_{n}=\sin n, c) an=1n12na_{n}=\frac{1-n}{1-2 \sqrt{n}}, d) an=1+n991+n100a_{n}=\frac{1+\sqrt[99]{n}}{1+\sqrt[100]{n}}.

See Solution

Problem 17836

Berechnen Sie den Flächeninhalt zwischen dem Graphen von ff und der X-Achse über dem Intervall II. Bestimmen Sie zuerst die Nullstellen von ff.
a) f(x)=x3+2x23xf(x)=x^{3}+2 x^{2}-3 x, I=[2;2,5]I=[-2 ; 2,5] b) f(x)=(x+2)(x1)2f(x)=(x+2)(x-1)^{2}, I=[2;2]I=[-2 ; 2]

See Solution

Problem 17837

Finde die Punkte, wo die Tangente von f\mathrm{f} parallel zu y=3x+4y=3x+4 ist. a) f(x)=x3f(x)=x^{3} b) f(x)=x2f(x)=x^{2} c) f(x)=x32f(x)=x^{\frac{3}{2}} d) f(x)=x6f(x)=x^{6}

See Solution

Problem 17838

Find (S1)(10)\left(S^{-1}\right)^{\prime}(10) for K=80K=80, μ=8\mu=8. Also, find dS1dμ\frac{d S_{1}}{d \mu} for S1(μ)=80(11μ)3S_{1}(\mu)=80\left(1-\frac{1}{\mu}\right)^{3}. Is more sand leaking for larger μ\mu?

See Solution

Problem 17839

Ein Körper wird mit der Geschwindigkeit v0=65m/sv_{0}=65 \, \mathrm{m/s} senkrecht nach oben geschossen.
1) Wann trifft er den Boden wieder? 2) Wie schnell ist er in 25m25 \, \mathrm{m} Höhe beim Auf- und Abstieg? 3) Wann erreicht er die größte Höhe und wie hoch ist diese?

See Solution

Problem 17840

Find the drug concentration after 10 minutes using C(t)=0.07(1e0.2t)C(t) = 0.07(1 - e^{-0.2t}). Round to three decimal places.

See Solution

Problem 17841

Ein Auto hat die kinetische Energie E(t)=5000t2E(t)=5000 \cdot t^{2}. Berechne die Energiezunahme in den Intervallen [0;5][0;5] und [5;10][5;10].

See Solution

Problem 17842

Gegeben ist die Funktion f(x)=30x290x3+240f(x) = 30x^2 - 90x^3 + 240. Finde die Nullstellen, Grenzwerte für x±x \rightarrow \pm \infty und einen möglichen Term.

See Solution

Problem 17843

Untersuchen Sie die Folgen auf Häufungspunkte und geben Sie konvergierende oder divergierende Teilfolgen an: (a) an=25(n+7)na_n = \sqrt{25(n+7)} - \sqrt{n} (b) bn=6sin(π2n)(5n+3)b_n = 6 \sin\left(\frac{\pi}{2} n\right)(5n+3) (c) cn=Im((1+i)n)2n/2c_n = \operatorname{Im}\left((1+\mathrm{i})^{n}\right) 2^{-n/2}

See Solution

Problem 17844

Untersuche die Funktion f(x)=30x390x2+240f(x)=30 x^{3}-90 x^{2}+240 auf Symmetrien und Grenzwerte. Bestimme die Geschwindigkeit des ICE und Bedingungen für fp(x)f_{p}(x).

See Solution

Problem 17845

Ein Auto mit m=1200 kgm=1200 \mathrm{~kg} fährt eine Kurve mit r=100 mr=100 \mathrm{~m}.
1) Bestimme F(v)=1200v2100F(v) = \frac{1200 v^{2}}{100}. 2) Finde die Änderungsrate dFdv\frac{dF}{dv}. 3) Berechne die Änderung der Fliehkraft bei v=100 km/hv=100 \mathrm{~km/h}.

See Solution

Problem 17846

Die Blutgeschwindigkeit ist v=C(R2r2)v=C \cdot (R^{2}-r^{2}). 1) Bestimme die Ableitung dv/drdv/dr und erkläre die negative Änderungsrate. 2) Wie beeinflusst die Erweiterung der Blutgefäße die Geschwindigkeit bei rr?

See Solution

Problem 17847

Researchers study arctic ecosystems. Answer the following:
1. What does H(t)>0H^{\prime}(t)>0 and H(t)<0H^{\prime \prime}(t)<0 indicate about snowshoe hares?
2. Given L(t)35te0.2t+200L(t) \approx 35 t e^{-0.2 t}+200: (a) When was the lemming population largest and how many? (b) When was it smallest and how many?
3. Given P(t)80t2t2+192+150P(t) \approx \frac{-80 t^{2}}{t^{2}+192}+150, when did puffin population decrease most rapidly and how many?
4. For snowy owls, S(23)=47S(23)=47 and S(23)=4.5S^{\prime}(23)=-4.5: (a) Find linear approximation LL of SS. (b) When will snowy owls be below 20? (c) If S(t)<0S^{\prime}(t)<0 and S(t)<0S^{\prime \prime}(t)<0 for t>23t>23, will they drop below 20 sooner or later? Explain.

See Solution

Problem 17848

Eine Kugel wird von einem 140 m140 \mathrm{~m} hohen Gebäude mit 60 m/s60 \mathrm{~m/s} nach oben geschossen.
1. Wann erreicht sie wieder die Höhe 140 m140 \mathrm{~m}?
2. Was ist die mittlere Geschwindigkeit in den ersten 5 s?
3. Wie schnell ist die Kugel nach 5 s?
4. Wann und mit welcher Geschwindigkeit trifft sie den Boden?

See Solution

Problem 17849

Untersuchen Sie die Monotonie und Beschränktheit der Folgen:
(a) n(cos(32π(2n43)))nn(\cos(\frac{3}{2} \pi(2n-\frac{4}{3})))^{n}
(d) 1n4(sin(π2(2n1)))n\frac{1}{n^{4}}(\sin(\frac{\pi}{2}(2n-1)))^{n}

See Solution

Problem 17850

Find the limit: limx2x24x+2\lim _{x \rightarrow-2} \frac{x^{2}-4}{x+2}.

See Solution

Problem 17851

Calculez l'intégrale suivante : 01e2t3e2t6t+6dt\int_{0}^{1} \frac{e^{2 t}-3}{e^{2 t}-6 t+6} d t et donnez sa valeur exacte.

See Solution

Problem 17852

Evaluate the triple integral: 01033x033xydzdydx\int_{0}^{1} \int_{0}^{3-3 x} \int_{0}^{3-3 x-y} d z d y d x.

See Solution

Problem 17853

Find the limit: limx5x+5x225\lim _{x \rightarrow-5} \frac{x+5}{x^{2}-25}.

See Solution

Problem 17854

Find the limit as xx approaches 2 for the expression 3x6x24\frac{3x - 6}{x^2 - 4}.

See Solution

Problem 17855

Find the derivative of the following functions:
a) f(x)=3lnx2cosx+x3+4x573f(x)=3 \ln x-2 \cos x+x^{3}+4 \sqrt[7]{x^{5}}-3
b) f(x)=x2chxf(x)=x^{2} \operatorname{ch} x and f(x)=cthxex+1f(x)=\frac{\operatorname{cth} x}{e^{x}+1}
d) f(x)=lnx1x+1f(x)=\ln \frac{x-1}{x+1}
e) f(x)=arcsin2x1+x2f(x)=\arcsin \frac{2 x}{1+x^{2}}
f) f(x)=xe2xcos2(4x+sin22x)f(x)=\frac{x e^{2 x}}{\cos ^{2}(4 x+\sin ^{2} 2 x)}
g) f(x)=tg5(lnsin3x)f(x)=\operatorname{tg}^{5}(\ln \sin^{3} x)
h) f(x)=sinxarctg1xf(x)=\sin x \operatorname{arctg} \frac{1}{x}

See Solution

Problem 17856

Find the derivatives of these functions:
1) f(x)=x2chxf(x)=x^{2} \operatorname{ch} x
2) f(x)=cthxex+1f(x)=\frac{\operatorname{cth} x}{e^{x}+1}

See Solution

Problem 17857

Oblicz pochodną funkcji f(x)=ln(x1x+1)f(x)=\ln \left( \frac{x-1}{x+1} \right).

See Solution

Problem 17858

Explain average vs. instantaneous rates of change. Define secant and tangent lines and their roles in this context.

See Solution

Problem 17859

Find the best u-substitution for 3x2(4x3+8)4dx\int 3 x^{2}(4 x^{3}+8)^{4} d x. Choose one: u=(4x3+8)4u=(4 x^{3}+8)^{4}, ux3+8u x^{3}+8, u=xu=x, or u=3x2u=3 x^{2}.

See Solution

Problem 17860

Berechne die mittlere Steigung von f(x)=x2f(x)=x^2 auf [2;a][2; a] für a>2a > 2 und finde aa, wenn die Steigung 6 ist.

See Solution

Problem 17861

Find the best u-substitution for x7+1x8+8xdx\int \frac{x^{7}+1}{x^{8}+8 x} d x. Choose one: u=x8+8xu=x^{8}+8 x, u=x+1u=x+1, u=x8u=x^{8}, u=x7+1u=x^{7}+1, u=xu=x.

See Solution

Problem 17862

Berechnen Sie die mittlere Steigung von ff in den Intervallen: a) f(x)=12x,I=[0;1]f(x)=\frac{1}{2} x, I=[0 ; 1] b) f(x)=12x3,I=[1;3]f(x)=\frac{1}{2} x^{3}, I=[1 ; 3] c) f(x)=x24x,I=[0;2]f(x)=x^{2}-4 x, I=[0 ; 2]

See Solution

Problem 17863

Oblicz pochodną funkcji f(x)=arcsin(2x1+x2)f(x)=\arcsin \left( \frac{2 x}{1+x^{2}} \right).

See Solution

Problem 17864

Profil einer Skischanze: f(x)=1120x2x+60f(x)=\frac{1}{120} x^{2}-x+60 für 0x300 \leq x \leq 30. Bestimme die mittlere Steigung (a) und auf den letzten Meter (b).

See Solution

Problem 17865

Find the derivative of y=tan1xy = \tan^{-1} x.

See Solution

Problem 17866

Find the derivative of the function y=sin1xy = \sin^{-1} x.

See Solution

Problem 17867

Find the derivative of the function y=sec1(x)y = \sec^{-1}(x).

See Solution

Problem 17868

Find the slope of the tangent line to y=tan1(2x)y=\tan^{-1}(-2x) at x=3x=-3.

See Solution

Problem 17869

Find (f1)(6)\left(f^{-1}\right)^{\prime}(6) given f(1)=6f(1)=6 and f(1)=2f^{\prime}(1)=2 for a one-to-one function ff.

See Solution

Problem 17870

Find the slope of the curve y=sin1xy=\sin^{-1} x at the point (32,π3)\left(\frac{\sqrt{3}}{2}, \frac{\pi}{3}\right) without using derivatives.

See Solution

Problem 17871

Find the derivative of the function f(x)=sin1(8x3)f(x)=\sin^{-1}(8x^{3}).

See Solution

Problem 17872

Find the derivative of the function f(w)=sin[cos1(6w)]f(w)=\sin \left[\cos ^{-1}(6 w)\right].

See Solution

Problem 17873

Find the derivative of y=(cosx+4sinx)6y=(\cos x+4 \sin x)^{6}.

See Solution

Problem 17874

Oblicz pochodną funkcji f(x)=xe2xcos2(4x+sin22x)f(x)=\frac{x e^{2 x}}{\cos ^{2}(4 x+\sin ^{2} 2 x)}.

See Solution

Problem 17875

Find the derivative of the function f(x)=cos1(e5cosx)f(x)=\cos^{-1}(e^{5 \cos x}).

See Solution

Problem 17876

Find the derivative of the function y=(sinx+2cosx)7y=(\sin x+2 \cos x)^{7}.

See Solution

Problem 17877

Find the derivative of the function f(t)=(cos1t)6f(t)=(\cos^{-1} t)^{6}.

See Solution

Problem 17878

Find the derivative of f(y)=tan1(6y2+1)f(y)=\tan^{-1}(6y^2+1).

See Solution

Problem 17879

Find the derivative of yy where y=csc1(x6+1)y=\csc^{-1}(x^{6}+1) for x>0x>0.

See Solution

Problem 17880

1. Derive the labor supply function from the utility U(C,L)=C(1L)2U(C, L)=C-(1-L)^{2} where h=1Lh=1-L. (5 marks)
2. Show the slope of an indifference curve as wh=(1uˉh2)\frac{\partial w}{\partial h}=\left(1-\frac{\bar{u}}{h^{2}}\right). (5 marks)
3. Prove the slope of the indifference curve is zero at optimal labor supply. (5 marks)
4. Write the profit function for f(E)=2EE2f(E)=2E-E^{2} and derive the labor demand function. (5 marks)
5. Find equilibrium wage, worker utility, and firm profit using labor supply and demand functions. (5 marks)
6. Derive wage, employment, utility, and profit in the monopoly union model. (10 marks)
7. Explain why the monopoly union model outcome is inefficient. (5 marks)
8. Use the Lagrangean method to find optimal labor supply and wage under profit constraint (πˉ=2hh2wh)\left(\bar{\pi}=2h-h^{2}-wh\right). Show it dominates previous results. (10 marks)

See Solution

Problem 17881

Find the derivative of the function f(y)=cot1(2y2+1)f(y)=\cot^{-1}\left(\frac{2}{y^{2}+1}\right).

See Solution

Problem 17882

Find the tangent line equation at the point (5,π6)\left(5, \frac{\pi}{6}\right) for y=sin1(x10)y=\sin^{-1}\left(\frac{x}{10}\right).

See Solution

Problem 17883

Find the derivative of the function f(x)=4csc1(tanex)f(x)=4 \csc^{-1}\left(\tan e^{x}\right).

See Solution

Problem 17884

Find the derivative of the function y=sin4(cos(5x))y=\sin^{4}(\cos(5x)).

See Solution

Problem 17885

Find the number of points of inflection for the polynomial kk with rate of change R(x)=3.261x3+5.362x1.584R(x)=-3.261 x^{3}+5.362 x-1.584.

See Solution

Problem 17886

Determine which statements about a polynomial gg with a point of inflection at x=3x=3 must be true.

See Solution

Problem 17887

Find the Elasticity of Demand for D(p)=3753pD(p)=\sqrt{375-3p} at price \$32. Is it Inelastic, Unitary, or Elastic? To increase revenue, should we keep prices unchanged, raise, or lower them?

See Solution

Problem 17888

Evaluate the derivative of the inverse of f(x)=ln(3x+e)f(x)=\ln (3 x+e) at the point (1,0)(1,0).

See Solution

Problem 17889

Find the integral x76x67dx\int \frac{\sqrt[7]{x}-6}{\sqrt[7]{x^{6}}} d x using substitution with u=x67u=\sqrt[7]{x^{6}}.

See Solution

Problem 17890

Find the derivative of the inverse function at -5 for f(x)=x3+x7f(x)=x^{3}+x-7.

See Solution

Problem 17891

Calculate the integral (ln(z))2zdz\int \frac{(\ln (z))^{2}}{z} d z using substitution. Find uu and dudu to transform it to du\int \square d u.

See Solution

Problem 17892

Find the coffee temperature after 10 minutes if it starts at 80C80^{\circ}C, room temp is 22C22^{\circ}C, and cools to 60C60^{\circ}C in 5 min. Use T(t)=T0+(TroomT0)ektT(t)=T_{0}+(T_{\text{room}}-T_{0}) e^{-kt}.

See Solution

Problem 17893

Find the derivative of the inverse of f(x)=ln(2x+e)f(x)=\ln(2x+e) at the point (1,0)(1,0). Answer: \square.

See Solution

Problem 17894

Estimez la solution négative de e3x5x7=0e^{3 x}-5 x-7=0 avec la méthode de Newton en partant de x0=0x_{0}=0. Trouvez x1,x2,x3x_{1}, x_{2}, x_{3} à 5 décimales.

See Solution

Problem 17895

Find the derivative of the inverse function for f(x)=x5+8f(x)=x^{5}+8 where x>0x>0.

See Solution

Problem 17896

A particle moves on a circle of diameter RR. Let θ\theta be the angle between diameter PQ\overline{PQ} and the line to the particle.
(a) Find dθdc\frac{d\theta}{dc}.
(b) Answer related questions for parts (a) and (b).

See Solution

Problem 17897

Find the derivative of the inverse of the function f(x)=xx+7f(x)=\frac{x}{x+7}.

See Solution

Problem 17898

Find the derivative of the function y=(sinx+5cosx)7y=(\sin x+5 \cos x)^{7}.

See Solution

Problem 17899

Check if the sequence an=n4n32na_{n}=\frac{n^{4}}{n^{3}-2 n} converges or diverges.

See Solution

Problem 17900

Calculez la limite suivante : limy(1+2y)2y \lim _{y \rightarrow \infty}\left(1+\frac{2}{y}\right)^{2 y} a) Quelle est la forme indéterminée ? b) Évaluez la limite avec la règle de l'Hôpital.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord