Calculus

Problem 2201

Find the slope of the tangent line for y=x42x3+8y=x^{4}-2 x^{3}+8 at x=2x=2. What is the equation of the line?

See Solution

Problem 2202

Find the slope and equation of the tangent line for y=x413x2+36y=x^{4}-13 x^{2}+36 at x=2x=2. Simplify your answer.

See Solution

Problem 2203

Find the slope of the tangent line for y=11x1/2+x3/2y=11 x^{1/2}+x^{3/2} at x=4x=4. Simplify your answer.

See Solution

Problem 2204

Find values of xx where the tangent line of f(x)=2x3+39x2+240x+6f(x)=2 x^{3}+39 x^{2}+240 x+6 is horizontal. x=x=

See Solution

Problem 2205

Find xx where the tangent line to f(x)=2x3+39x2+240x+6f(x) = 2x^3 + 39x^2 + 240x + 6 is horizontal.

See Solution

Problem 2206

1. (a) Calculate the 1st order partial derivatives of f(x,y,z)=x3y+4z3y2xyz+x2z53f(x, y, z)=x^{3} \sqrt{y}+4 z^{3} y^{2}-x y z+x^{2}-\sqrt[3]{z^{5}}. (b) Water drips from an inverted cone at 0.8 cm3 s10.8 \mathrm{~cm}^{3} \mathrm{~s}^{-1}. (i) Show V=427πh3V=\frac{4}{27} \pi h^{3} for r=12 cmr=12 \mathrm{~cm}, h=18 cmh=18 \mathrm{~cm}. (ii) Find the height decrease rate when h=6 cmh=6 \mathrm{~cm}.

See Solution

Problem 2207

A parachutist drops a camera from 50 m while descending at 10 m/s. Find (a) time to hit ground and (b) impact velocity.

See Solution

Problem 2208

A rocket accelerates at +29.4 m/s2+29.4 \mathrm{~m} / \mathrm{s}^{2} for 4.0 s4.0 \mathrm{~s}. Find (a) max height, (b) time to max height, (c) position and velocity graphs.

See Solution

Problem 2209

A ball is thrown up at 19.6 m/s19.6 \mathrm{~m/s}. Find its velocity and height at 1, 2, 3, and 4 seconds. Also, graph position and velocity vs. time.

See Solution

Problem 2210

Find the derivative D(3)D^{\prime}(3) for the demand function D(p)=3p2+3p+7D(p)=-3 p^{2}+3 p+7.

See Solution

Problem 2211

Find the marginal profit for the function P(x)=0.08x24x+4x0.65700P(x)=0.08 x^{2}-4 x+4 x^{0.6}-5700 at x=500,1000,5000,10000x=500, 1000, 5000, 10000.

See Solution

Problem 2212

Find the derivative of the function: y=x37x2+15x+9y=x^{3}-7 x^{2}+15 x+9.

See Solution

Problem 2213

Find f(3)f^{\prime}(3) for the function f(x)=x4+6x32x2f(x)=x^{4}+6x^{3}-2x-2.

See Solution

Problem 2214

Calculate the average rate of change of y=x3+x28x7y=x^{3}+x^{2}-8 x-7 from x=0x=0 to x=2x=2.

See Solution

Problem 2215

Calculate the integral 510lnx25x2dx\int_{-5}^{10} \frac{\ln x}{25 x^{2}} d x.

See Solution

Problem 2216

Find the derivative of the function f(x)=5+2x212x2f(x)=\frac{5+2 x^{2}}{1-2 x^{2}}, denoted as f(x)f^{\prime}(x).

See Solution

Problem 2217

Evaluate the integral 11cosx1+e1/xdx\int_{-1}^{1} \frac{\cos x}{1+e^{1 / x}} d x.

See Solution

Problem 2218

Evaluate the integral 1cosx1+e1/xdx\int^{1} \frac{\cos x}{1+e^{1 / x}} d x.

See Solution

Problem 2219

Find the derivative yy^{\prime} for the function y=65x4y=\frac{6}{5 x^{4}}.

See Solution

Problem 2220

Differentiate the function 2x3749x3\frac{2 x^{3}}{7}-\frac{4}{9 x^{3}} with respect to xx.

See Solution

Problem 2221

Calculate the average rate of change of f(x)=3x2f(x)=\sqrt{3x-2} from x=2x=2 to x=6x=6.

See Solution

Problem 2222

Find the average rate of change of employees (in thousands) with respect to revenue (in billions) for these intervals:
a. From \$11B to \$16B: 147K to 191K.
b. From \$16B to \$27B: 191K to 346K.
c. From \$11B to \$27B: 147K to 346K.

See Solution

Problem 2223

Sales function is S(t)=0.02t3+0.8t2+9t+2S(t)=0.02 t^{3}+0.8 t^{2}+9 t+2. Find S(t)S^{\prime}(t), S(2)S(2), S(2)S^{\prime}(2), and interpret S(13)S(13) and S(13)S^{\prime}(13).

See Solution

Problem 2224

Find the marginal cost from the total cost function C(x)=100+12x+0.1x2+0.001x3C(x)=100+12x+0.1x^{2}+0.001x^{3} for x=0x=0, x=10x=10, and x=30x=30.

See Solution

Problem 2225

Find the marginal cost for producing 1500 and 2000 shirts given the cost function C(x)=1500+1000x9C(x)=1500+1000 x^{9}, where xx is in hundreds.

See Solution

Problem 2226

Given the sales function S(t)=0.02t3+0.7t2+7t+9S(t)=0.02 t^{3}+0.7 t^{2}+7 t+9, find: (A) S(t)S^{\prime}(t), (B) S(4)S(4) and S(4)S^{\prime}(4), (C) Interpret S(8)=120.04S(8)=120.04 and S(8)=22.04S^{\prime}(8)=22.04.

See Solution

Problem 2227

Find the marginal profit from selling xx smartwatches given P(x)=0.03x24x+3x0.85000P(x)=0.03x^{2}-4x+3x^{0.8}-5000 for x=100x=100.

See Solution

Problem 2228

Find the marginal revenue function for R(x)=0.016x2+1.034x+11.338R(x)=0.016x^{2}+1.034x+11.338 and calculate it at x=10x=10.

See Solution

Problem 2229

Find the speed vv that minimizes energy E(v)=2.73v314v7E(v)=2.73 v^{3} \frac{14}{v-7} for a fish swimming against a 7mi/h7 \mathrm{mi/h} current.

See Solution

Problem 2230

Find the difference quotient f(a+h)f(a)h\frac{f(a+h)-f(a)}{h} for: (a) f(x)=x2xf(x)=\sqrt{x^{2}-x}, (b) g(x)=2x24x+5g(x)=2x^{2}-4x+5. Also, given the line y=67x+37y=-\frac{6}{7}x+\frac{3}{7}, find the parallel and perpendicular lines through (3,8)(3,8). Rate class difficulty from 1 to 10.

See Solution

Problem 2231

Order the values II, RnR_{n}, and LnL_{n} for a decreasing function ff on [a,b][a, b] and for an increasing function. Explain.

See Solution

Problem 2232

Complete the table and find the limit: limx1f(x)\lim _{x \rightarrow 1} f(x) for f(x)=x31x21f(x)=\frac{x^{3}-1}{x^{2}-1}.

See Solution

Problem 2233

Find the tangent slope at (5,0) for f(x)=3(5x)2f(x)=3(5-x)^{2} and at (0,0) for f(θ)=4sinθθf(\theta)=4 \sin \theta - \theta.

See Solution

Problem 2234

Find the absolute minimum and maximum of the function f(x)=2.5x4+3x32.6x25.1x5.6f(x)=2.5 x^{4}+3 x^{3}-2.6 x^{2}-5.1 x-5.6 on [0.5,1.2][-0.5,1.2].

See Solution

Problem 2235

Determine the slope of f(t)=34etf(t)=\frac{3}{4} e^{t} at the point (0,34)(0, \frac{3}{4}).

See Solution

Problem 2236

Find the derivative of g(t)=t24t3g(t)=t^{2}-\frac{4}{t^{3}}.

See Solution

Problem 2237

Find the derivative of f(x)=4x3+3x2xf(x)=\frac{4x^{3}+3x^{2}}{x}.

See Solution

Problem 2238

Find the derivative of these functions and note restrictions for the second:
1. f(x)=xxf(x)=\frac{x}{x}
2. f(x)=x33x2+4x2f(x)=\frac{x^{3}-3 x^{2}+4}{x^{2}}

See Solution

Problem 2239

Find the derivative of the function f(x)=x33x2+4x2f(x)=\frac{x^{3}-3x^{2}+4}{x^{2}}.

See Solution

Problem 2240

Find the derivative of the function y=x(x2+1)y=x(x^{2}+1).

See Solution

Problem 2241

Find the derivative of f(x)=x6x3f(x)=\sqrt{x}-6\sqrt[3]{x}.

See Solution

Problem 2242

Sketch a function gg such that g(0)=1g(0)=1, g(0)=2g'(0)=-2, g(1)=0g'(1)=0, and g(2)=4g'(2)=4.

See Solution

Problem 2243

Find the derivative of h(s)=s4/5s2/3h(s)=s^{4/5}-s^{2/3}.

See Solution

Problem 2244

Given the limits, determine which statements about function ff are true: A. removable discontinuity at x=1x=1; B. differentiable at x=1x=1; C. f(1)=2f(1)=2, f(1)=3f'(1)=3.

See Solution

Problem 2245

Find the derivative of f(x)=6x+5cosxf(x) = 6 \sqrt{x} + 5 \cos x.

See Solution

Problem 2246

Find the derivative of f(x)=x22exf(x)=x^{-2}-2 e^{x}.

See Solution

Problem 2247

Find the tangent line for f(x)=x4xf(x)=x^{4}-x at the given points and confirm using a graphing utility. Points: (1,2)(-1,2), (1,2)(1,2), (0,1)(0,1), (π,12eπ)(\pi, \frac{1}{2} e^{\pi}).

See Solution

Problem 2248

Find points where the following functions have a horizontal tangent line:
61. y=x42x2+3y=x^{4}-2 x^{2}+3
62. y=x3+xy=x^{3}+x
63. y=1x2y=\frac{1}{x^{2}}
64. y=x2+9y=x^{2}+9
65. y=x+sinx,0x<2πy=x+\sin x, \quad 0 \leq x<2 \pi
66. y=3x+2cosx,0x<2πy=\sqrt{3} x+2 \cos x, \quad 0 \leq x<2 \pi
67. y=4x+exy=-4 x+e^{x}
68. y=x+4exy=x+4 e^{x}

See Solution

Problem 2249

Find the horizontal tangent line for the function y=1x2y=\frac{1}{x^{2}}.

See Solution

Problem 2250

Find the horizontal tangent line for y=x+sinxy=x+\sin x in the interval 0x<2π0 \leq x < 2\pi.

See Solution

Problem 2251

Find values of aa and bb so that the piecewise function f(x)={ax3,x2x2+b,x>2f(x)=\begin{cases}a x^{3}, & x \leq 2 \\ x^{2}+b, & x>2\end{cases} is differentiable everywhere.

See Solution

Problem 2252

Find the derivative or integral of the function f(x)=3(x+2)2f(x)=\frac{3}{(x+2)^{2}}.

See Solution

Problem 2253

Graph the function f(x)={xx<212x+32x<612xx6f(x)=\left\{\begin{array}{lr}|x| & x<2 \\ -\frac{1}{2} x+3 & 2 \leq x<6 \\ -\frac{1}{2} x & x \geq 6\end{array}\right. and find: a) Where is ff continuous? b) limh0f(1+h)f(1)h\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h} c) f(4)=1f^{\prime}(4)=1 d) limh0f(6+h)f(6)h\lim _{h \rightarrow 0^{-}} \frac{f(6+h)-f(6)}{h} e) limh0+f(6+h)f(6)h\lim _{h \rightarrow 0^{+}} \frac{f(6+h)-f(6)}{h} f) Where is ff differentiable? x=0x=1x=2x=3x=4x=0 \quad x=1 \quad x=2 \quad x=3 \quad x=4

See Solution

Problem 2254

Find the derivative of the constant function y=7y=7 using the definition of a derivative. What is the result?

See Solution

Problem 2255

Find the derivatives using the definition: a) f(x)=x3f(x)=x^{3}, b) g(x)=x2g(x)=x^{2}. Also, state the Constant Rule: ddx[c]=\frac{d}{d x}[c]=.

See Solution

Problem 2256

Find the derivative of f(x)=x33xf(x) = x^{3} 3x.

See Solution

Problem 2257

Find the derivative of f(x)=x3f(x)=x^{3}.

See Solution

Problem 2258

Find the tangent line equation to y=x2y=x^{2} at x=2x=-2. What do we need to write the line's equation?

See Solution

Problem 2259

Find the average velocity of s=4sin(πt)+4cos(πt)s=4\sin(\pi t) + 4\cos(\pi t) over intervals and estimate instantaneous velocity at t=1t=1.

See Solution

Problem 2260

Find constants aa and bb such that the derivative of 3x24x44x+1\frac{3x^2 - 4x - 4}{4x + 1} equals 12x2+ax+b(4x+1)2\frac{12x^2 + ax + b}{(4x + 1)^2}.

See Solution

Problem 2261

Find the limit: limx4x24xx23x4\lim _{x \rightarrow 4} \frac{x^{2}-4 x}{x^{2}-3 x-4}.

See Solution

Problem 2262

Find the derivative of xpx^{p} and choose the correct answer: pxp+1p \cdot x^{p+1}, pxp1p \cdot x^{p-1}, xp1x^{p-1}, xp+1x^{p+1}, or None.

See Solution

Problem 2263

Find h(4)h'(4) for h(x)=f(x)×g(x)h(x)=f(x) \times g(x) using f(4)=5f(4)=-5, f(4)=2f'(4)=2, g(4)=3g(4)=3, g(4)=3g'(4)=-3.

See Solution

Problem 2264

Find the derivative of f(x)=3x3tan(x)f(x)=3 x^{3} \tan (x). What is f(x)f^{\prime}(x)?

See Solution

Problem 2265

Find h(0)h^{\prime}(0) for h(x)=f(x)g(x)h(x)=\frac{f(x)}{g(x)} given f(0)=6f(0)=-6, f(0)=5f^{\prime}(0)=5, g(0)=2g(0)=2, g(0)=2g^{\prime}(0)=-2.

See Solution

Problem 2266

Find f(4)f^{\prime}(4) if f(x)=2h(x)+4xh(x)f(x)=-2h(x)+\frac{4x}{h(x)}, with h(4)=5h(4)=5 and h(4)=2h^{\prime}(4)=-2.

See Solution

Problem 2267

Find the limit: limx2x26x+4x2\lim _{x \rightarrow 2} \frac{x^{2}-6 x+4}{x-2}.

See Solution

Problem 2268

Find f(8)f^{\prime}(8) if f(x)=2xh(x)f(x)=2x \cdot h(x), h(8)=1h(8)=-1, and h(8)=4h^{\prime}(8)=-4. Options: -65, -66, 62, -62, -48.

See Solution

Problem 2269

Find the derivative of f(x)=3x2cos(x)xf(x)=3 x^{2} \cos (x)-x. What is f(x)f^{\prime}(x)?

See Solution

Problem 2270

Find the derivative of the function f(x)=4x+52x10f(x)=-\frac{4 x+5}{2 x-10}. Choices include various forms of f(x)f^{\prime}(x).

See Solution

Problem 2271

Find the derivative of h(t)=3t3+5t2tth(t)=\frac{3 t^{3}+5 t^{2}-\sqrt{t}}{t}.

See Solution

Problem 2272

Find the derivative of r=θ3452θ3θ42r=\sqrt[4]{\theta^{3}}-\frac{5}{2 \theta^{3}}-\frac{\theta^{4}}{2}.

See Solution

Problem 2273

Find the derivative of G(x)=(5x3+2x2)5G(x)=(-5 x^{3}+2 x^{2})^{5}. What is G(x)G'(x)?

See Solution

Problem 2274

Find g(1)g^{\prime}(1) for the function g(x)=15x2+2xg(x)=\frac{1}{5 x^{2}+2 x}. Choices: 4912\frac{49}{12}, 149\frac{1}{49}, 1249\frac{12}{49}.

See Solution

Problem 2275

Find the slope of the tangent line for f(x)=2x5x2+8f(x)=\frac{2 x}{5 x^{2}+8} at x=1x=1. Options: 6169\frac{6}{169}, 16169\frac{16}{169}, 21169\frac{21}{169}, 46169\frac{46}{169}, 8169-\frac{8}{169}, None.

See Solution

Problem 2276

Find the limit: limx0f(x)\lim _{x \rightarrow 0} f(x) for the function f(x)=2xxf(x)=\frac{2|x|}{x}.

See Solution

Problem 2277

What is the slope of the secant line from (a,f(a))(a, f(a)) to (b,f(b))(b, f(b)) if f(x)f(x) is constant on [a,b][a, b]? Explain.

See Solution

Problem 2278

Find the limit: limx2x23x2\lim _{x \rightarrow 2^{-}} \frac{x-2}{3|x-2|}. What is the value?

See Solution

Problem 2279

Find f(4)f^{\prime}(4) if f(x)=2h(x)+4xh(x)f(x)=-2h(x)+\frac{4x}{h(x)}, with h(4)=5h(4)=5 and h(4)=2h^{\prime}(4)=-2.

See Solution

Problem 2280

Find f(4)f^{\prime}(4) if f(x)=2h(x)+4xh(x)f(x)=-2h(x)+\frac{4x}{h(x)}, with h(4)=5h(4)=5 and h(4)=2h^{\prime}(4)=-2.

See Solution

Problem 2281

Find f(4)f^{\prime}(4) if f(x)=2h(x)+4xh(x)f(x)=-2h(x)+\frac{4x}{h(x)}, h(4)=5h(4)=5, and h(4)=2h^{\prime}(4)=-2.

See Solution

Problem 2282

Find the limit: limx0x2x\lim _{x \rightarrow 0^{-}} \frac{x}{2|x|}. What is the value?

See Solution

Problem 2283

Find where the tangent line is horizontal or vertical for f(x)=3x+3sinxf(x)=3 x+3 \sin x in 0x2π0 \leq x \leq 2 \pi.

See Solution

Problem 2284

Evaluate the limit: limx2x+42x2=\lim _{x \rightarrow 2} \frac{\sqrt{x+4}-2}{x-2}=. Justify your answer.

See Solution

Problem 2285

Find the limit: limx0(sec(x)1xsec(x))\lim _{x \rightarrow 0}\left(\frac{\sec (x)-1}{x \sec (x)}\right).

See Solution

Problem 2286

Find the limit: limx0(sec(x)1xsec(x))=\lim _{x \rightarrow 0}\left(\frac{\sec (x)-1}{x \sec (x)}\right)=

See Solution

Problem 2287

Evaluate the limit:
limx2x28x+62x2\lim _{x \rightarrow 2} \frac{x^{2}-8 x+62}{x-2}
Is it DNE or a real number? Justify your answer.

See Solution

Problem 2288

Find the tangent line equation for y=g(x)y=g(x) at x=3x=3 where g(3)=4g(3)=-4 and g(3)=5g'(3)=5. Answer: y=5(x3)4y=5(x-3)-4

See Solution

Problem 2289

Find the average and instantaneous rate of change of C(x)=8000+6x+0.15x2C(x)=8000+6x+0.15x^2 at x=101x=101 and x=103x=103, and at x=100x=100.

See Solution

Problem 2290

Differentiate z=Ay14+Beyz=\frac{A}{y^{14}}+B e^{y} with respect to yy. What is z=?z^{\prime}=?

See Solution

Problem 2291

A ball is thrown with a velocity of 40ft/s40 \mathrm{ft/s}. Its height is s(t)=40t16t2s(t)=40t-16t^2. Find the velocity at t=1t=1 second.

See Solution

Problem 2292

Determine if the limit limx0+3+2x1+f(1x)\lim _{x \rightarrow 0+} \frac{3+2 x}{1+f\left(\frac{1}{x}\right)} exists, given limxf(x)=4\lim _{x \rightarrow-\infty} f(x)=4 and limxf(x)=8\lim _{x \rightarrow \infty} f(x)=8.

See Solution

Problem 2293

Find the tangent line to y=xxy=x \sqrt{x} parallel to y=9+3xy=9+3x. What is the equation? y=y=

See Solution

Problem 2294

Evaluate the limit: limx864x2x8\lim _{x \rightarrow 8} \frac{64-x^{2}}{x-8} using algebraic transformation and continuity. Enter "DNE" if it doesn't exist.

See Solution

Problem 2295

Find h(3)h'(3) for h(x)=f(x)g(x)h(x)=\frac{f(x)}{g(x)} using given values of ff and gg.

See Solution

Problem 2296

Find h(3)h^{\prime}(3) for h(x)=f(x)g(x)h(x)=\frac{f(x)}{g(x)} given f(3)=6f(3)=-6, f(3)=2f^{\prime}(3)=2, g(3)=5g(3)=5, g(3)=5g^{\prime}(3)=-5.

See Solution

Problem 2297

Find the derivative of f(x)=3x4cot(x)f(x)=3 x^{4} \cot (x).

See Solution

Problem 2298

Differentiate y=1p+kepy=\frac{1}{p+k e^{p}} with respect to pp. Find y(p)=y^{\prime}(p)=

See Solution

Problem 2299

Find f(8)f^{\prime}(-8) if f(x)=2xh(x)f(x)=2x \cdot h(x), with h(8)=4h(-8)=-4 and h(8)=3h^{\prime}(-8)=3.

See Solution

Problem 2300

Find f(1)f^{\prime}(1) if f(x)=3h(x)4xh(x)f(x)=-3 \cdot h(x)-\frac{4 x}{h(x)}, with h(1)=4h(1)=4 and h(1)=3h^{\prime}(1)=-3.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord