Calculus

Problem 14001

Find intervals where the drug concentration function K(t)=8tt2+4K(t)=\frac{8 t}{t^{2}+4} is increasing or decreasing for 0<t<0<t<\infty.

See Solution

Problem 14002

Find the points on the graph of f(x)=x32x2+xf(x)=x^{3}-2 x^{2}+x where the gradient equals 1.

See Solution

Problem 14003

Show that the polynomial f(x)=6x3+6x24x+6f(x)=6x^{3}+6x^{2}-4x+6 has a zero in [6,1][-6,-1] using the intermediate value theorem. Find f(6)f(-6) and f(1)f(-1).

See Solution

Problem 14004

Show that the polynomial f(x)=8x43x2+4x1f(x)=8 x^{4}-3 x^{2}+4 x-1 has a zero in the interval [0,1]. Find f(0)f(0).

See Solution

Problem 14005

Find the derivative f(x)f^{\prime}(x), partition numbers, and critical numbers for f(x)=x348x4f(x)=x^{3}-48x-4.

See Solution

Problem 14006

Find limx1g(f(x))\lim _{x \rightarrow 1} g(f(x)) for f(x)=52xf(x)=5-2x and g(x)=x3g(x)=x^{3}. Options: (A) 64 (B) 9 (C) 27 (D) none.

See Solution

Problem 14007

Find the area between the function f(x)=2x+6f(x)=2x+6 and the xx-axis from x=7x=-7 to x=0x=0.

See Solution

Problem 14008

Find the derivative of the function f(x)=2sin(x)sin1(x)f(x)=2 \sin (x) \sin ^{-1}(x). What is f(x)f^{\prime}(x)?

See Solution

Problem 14009

Find the area between the line f(x)=x4f(x)=-x-4 and the xx-axis from x=8x=-8 to x=6x=6.

See Solution

Problem 14010

Calculate the area between f(x)=3x+8f(x)=3x+8 and the xx-axis from x=4x=-4 to x=1x=-1. Provide the answer as a fraction.

See Solution

Problem 14011

Find the area between the line f(x)=2xf(x)=2x and the xx-axis from x=5x=-5 to x=5x=5.

See Solution

Problem 14012

Find dydx\frac{d y}{d x} for the equation y7ln(x2)10x2y9=4y^{7} \ln(x^{2}) - 10x^{2} - y^{9} = -4.

See Solution

Problem 14013

Find the global max and min of g(θ)=3θ5sin(θ)g(\theta)=3 \theta-5 \sin (\theta) on [0,π][0, \pi]. Round to the nearest thousandth.

See Solution

Problem 14014

Find the limit using L'Hospital's rule: limx01cos8x1cos7x.\lim _{x \rightarrow 0} \frac{1-\cos 8 x}{1-\cos 7 x}.

See Solution

Problem 14015

Find the absolute max and min of f(x)=3x210x+7f(x)=3x^{2}-10x+7 on [0,6][0,6]. Give xx values and their corresponding function values.

See Solution

Problem 14016

The bacteria count is n(t)=990e0.25tn(t)=990 e^{0.25 t}. Find the growth rate, initial population, and count at t=5t=5.

See Solution

Problem 14017

Evaluate the integrals: a. C1izz2+2iz+3dz\oint_{C} \frac{1-i z}{z^{2}+2 i z+3} d z and b. ccos(z)z5dz\oint_{c} \frac{\cos (z)}{z^{5}} d z.

See Solution

Problem 14018

Find the absolute maximum and minimum of f(x)=xx2x+25f(x)=\frac{x}{x^{2}-x+25} for 0x270 \leq x \leq 27.

See Solution

Problem 14019

Find the absolute extreme values of the function f(x)=3x+243xf(x)=3x+\frac{243}{x} for 0<x<0<x<\infty.

See Solution

Problem 14020

Find the derivative of the function f(x)=2x3+24x2120x+9f(x)=2 x^{3}+24 x^{2}-120 x+9 on [10,3][-10,3] and identify its min and max values.

See Solution

Problem 14021

Find the derivative dydx\frac{d y}{d x} for the equation y=ln(6x2+y2)y=\ln(6 x^{2}+y^{2}).

See Solution

Problem 14022

Find the first derivative of g(x)=8x3+60x2+96xg(x)=8 x^{3}+60 x^{2}+96 x and check concavity at x=4x=-4 using g(x)g^{\prime \prime}(x).

See Solution

Problem 14023

1. Find the line integral czˉdz\oint_{c} \bar{z} d z for the curve c:z=2c:|z|=2.
2. Compute the line integral c(1+z+z2+z3)dz\oint_{c}(1+z+z^{2}+z^{3}) d z.
3. Evaluate 1izz2+n2zdz\oint \frac{1-i z}{z^{2}+n^{2}-z} d z for complex zz and real nn.

See Solution

Problem 14024

Find the first and second derivatives of f(x)=x3+6x296x+19f(x)=x^{3}+6 x^{2}-96 x+19. Determine intervals where ff is increasing, decreasing, concave up, and concave down.

See Solution

Problem 14025

Find dydx\frac{d y}{d x} for the equation y7ln(x2)10x2y9=4y^{7} \ln(x^{2}) - 10x^{2} - y^{9} = -4.

See Solution

Problem 14026

Find the min and max of f(x)=x432x2+3f(x)=x^{4}-32x^{2}+3 on [3,9][-3,9] using derivatives and endpoint values.

See Solution

Problem 14027

Find the limit of the sequence an=n4+3n2+5n4n2+na_{n}=\sqrt{n^{4}+3 n^{2}+5}-\sqrt{n^{4}-n^{2}+n}, or explain why it doesn't exist.

See Solution

Problem 14028

An electron starts far from a stationary proton. What is its speed at 0.07 m0.07 \mathrm{~m} from the proton?

See Solution

Problem 14029

Analyze and sketch the graph of y=xx2+49y=\frac{x}{x^{2}+49}. Find intercepts, extrema, inflection points, and asymptotes.

See Solution

Problem 14030

Analyze and sketch the graph of y=xx2+49y=\frac{x}{x^{2}+49}, finding intercepts, extrema, inflection points, and asymptotes.

See Solution

Problem 14031

Find relative extrema for f(x)=x39x2+9f(x)=x^{3}-9x^{2}+9 using the Second Derivative Test. Enter DNE if none exist.

See Solution

Problem 14032

Find the integral 12f(x)dx\int_{1}^{2} f(x) d x given 01f(x)dx=1\int_{0}^{1} f(x) d x=-1, 02f(x)dx=2\int_{0}^{2} f(x) d x=2, and 14f(x)dx=11\int_{1}^{4} f(x) d x=11.

See Solution

Problem 14033

Find 42(f(x)9g(x))dx\int_{4}^{-2}(f(x)-9 g(x)) d x given 21f(x)dx=4\int_{-2}^{1} f(x) d x=4, 14f(x)dx=6\int_{1}^{4} f(x) d x=-6, and 24g(x)dx=4\int_{-2}^{4} g(x) d x=4.

See Solution

Problem 14034

Estimate the number of people hearing a rumor on day 14 using the model f(x)=1,0001+499e0.6030xf(x)=\frac{1,000}{1+499 e^{-0.6030 x}}. Round to the nearest person.

See Solution

Problem 14035

Find the integral 04f(x)dx\int_{0}^{4} f(x) d x given 01f(x)dx=2\int_{0}^{1} f(x) d x=-2, 02f(x)dx=5\int_{0}^{2} f(x) d x=5, and 14f(x)dx=7\int_{1}^{4} f(x) d x=7.

See Solution

Problem 14036

Calculate the Riemann sum R(f,P,C)R(f, P, C) for f(x)=31x+28f(x)=31x+28, P={4,1,1,4,8}P=\{-4,-1,1,4,8\}, and C={2,0,3,7}C=\{-2,0,3,7\}.

See Solution

Problem 14037

Find the integrals 04g(t)dt\int_{0}^{4} g(t) dt and 15g(t)dt\int_{1}^{5} g(t) dt for the triangle g(t)g(t) with vertices (1,0), (4,0), (3,2).

See Solution

Problem 14038

Find the Riemann sum R(f,P,C)R(f, P, C) for f(x)=x2+7xf(x)=x^{2}+7x, with partition P={4,7,9,12}P=\{4,7,9,12\} and points C={4,7.5,11.5}C=\{4,7.5,11.5\}. Give your answer to two decimal places. R(f,P,C)= R(f, P, C)=

See Solution

Problem 14039

Find the inflection points of f(x)=x+7cosxf(x)=x+7 \cos x on [0,2π][0,2\pi]. Describe concavity in interval notation.

See Solution

Problem 14040

Berechne die Fallzeit und Endgeschwindigkeit eines Steins vom Freiburger Münster (h=116 mh=116 \mathrm{~m}) und Eiffelturm (h=300 mh=300 \mathrm{~m}).

See Solution

Problem 14041

Evaluate the integral 121x3dx\int_{1}^{\infty} 21 x^{-3} dx using limits.

See Solution

Problem 14042

Untersuche die Stetigkeit der Funktion f(x)={sin(x) fu¨x01x fu¨x>0f(x)=\left\{\begin{array}{cl} \sin (x) & \text { für } x \leq 0 \\ \frac{1}{x} & \text { für } x>0 \end{array}\right.. Gibt es eine Unstetigkeit?

See Solution

Problem 14043

Max springt aus 10 m Höhe. Berechne die Sprungdauer und Eintauchgeschwindigkeit (t=1,43 st=1,43 \mathrm{~s}). Paula springt 3 m hoch. Wie lange nach Max kommt sie ins Wasser? (Δt=0,54 s\Delta t=0,54 \mathrm{~s})

See Solution

Problem 14044

A coffee at 130F130^{\circ} \mathrm{F} cools in a freezer at 0F0^{\circ} \mathrm{F}. After 15 min, it's 39F39^{\circ} \mathrm{F}. Find its temp after 20 min. Answer: F\square^{\circ} \mathrm{F}.

See Solution

Problem 14045

Find the function f(x)f(x) if its derivative is f(x)=e2x+ex2+2exf'(x)=e^{2} x+e x^{2}+2 e x.

See Solution

Problem 14046

Bestimmen Sie die Ableitung von x2+2e+1x^{2}+2 e+1.

See Solution

Problem 14047

Find the function f(x)f(x) if its derivative is f(x)=ex+x+2f'(x)=e^x+x+2.

See Solution

Problem 14048

Bestimmen Sie die Ableitung von f(x)=ex3+e3+exf(x)=e x^{3}+e^{3}+e^{x}.

See Solution

Problem 14049

A 17 ft ladder leans against a wall. If the top slips down at 2ft/s2 \mathrm{ft/s}, how fast is the foot moving when the top is 16 ft up?

See Solution

Problem 14050

A triangle's height increases at 2 cm/min2 \mathrm{~cm/min} and area at 3 cm2/min3 \mathrm{~cm}^2/\mathrm{min}. Find base's rate of change when height is 8 cm and area is 91 cm².

See Solution

Problem 14051

Invest \$6000 at 2% interest compounded continuously. Find account value after 6 years and time to reach \$75000.

See Solution

Problem 14052

Invest \$10000 at 7% interest compounded continuously. (a) Find the value after 6 years. (b) When will it reach \$24000?

See Solution

Problem 14053

Analyze the curve y=3x424x3y=3 x^{4}-24 x^{3} for concavity, inflection points, and local maxima.

See Solution

Problem 14054

Analyze the curve y=3x424x3y=3 x^{4}-24 x^{3} for concavity, inflection points, and local extrema. Sketch the curve.

See Solution

Problem 14055

Find critical numbers of f(x)=3x424x3f(x)=3x^{4}-24x^{3} by solving f(x)=0f^{\prime}(x)=0. Use the Second Derivative Test for concavity.

See Solution

Problem 14056

Find the limit: limx0(x+3)29x\lim _{x \rightarrow 0} \frac{(x+3)^{2}-9}{x}.

See Solution

Problem 14057

Given the function f(x)=x33x29x+2f(x)=x^{3}-3 x^{2}-9 x+2, determine:
(a) Intervals where ff is increasing and decreasing. (b) Local min and max values. (c) Inflection point (x,y)=()(x, y)=(\square) and intervals for concavity.

See Solution

Problem 14058

Find the inflection point of the function f(x)=x33x29x+2f(x)=x^{3}-3x^{2}-9x+2.

See Solution

Problem 14059

Find the interval where the function ff is increasing given its derivative f(x)=(x+1)2(x4)7(x6)4f^{\prime}(x)=(x+1)^{2}(x-4)^{7}(x-6)^{4}.

See Solution

Problem 14060

Find the interval where the function ff is increasing, given its derivative f(x)=(x+1)2(x4)7(x6)4f^{\prime}(x)=(x+1)^{2}(x-4)^{7}(x-6)^{4}.

See Solution

Problem 14061

Find the interval where the function ff is increasing given f(x)=(x+1)2(x4)7(x6)4f^{\prime}(x)=(x+1)^{2}(x-4)^{7}(x-6)^{4}. Answer: (1,4)(6,)(-1,4) \cup(6, \infty).

See Solution

Problem 14062

Find the average value gaveg_{\text{ave}} of g(t)=91+t2g(t)=\frac{9}{1+t^{2}} over the interval [0,5][0,5].

See Solution

Problem 14063

Analyze the function f(x)=x3f(x)=-x^{3} as xx \rightarrow -\infty. What does f(x)f(x) approach? \infty, -\infty, or 0?

See Solution

Problem 14064

Find the average value of the function f(x)=3x2+8xf(x)=3x^2+8x over the interval [1,3][-1,3].

See Solution

Problem 14065

Given the function f(x)=e4x+exf(x)=e^{4 x}+e^{-x}, find where ff is increasing and decreasing, and its local min and max values.

See Solution

Problem 14066

Analyze the limits of f(x)=x3f(x)=-x^{3} as xx \to -\infty and xx \to \infty. What do they approach?

See Solution

Problem 14067

Evaluate the limits of the polynomial function f(r)=3r9+r8+3r6+2f(r)=-3 r^{9}+r^{8}+3 r^{6}+2 as rr \rightarrow -\infty and rr \rightarrow \infty.

See Solution

Problem 14068

Given the function f(x)=e4x+exf(x)=e^{4 x}+e^{-x}, find:
(a) Intervals where ff is increasing and decreasing.
(b) Local minimum and maximum values.
(c) Inflection point (x,y)=()(x, y)=(\square) and intervals of concavity.

See Solution

Problem 14069

Evaluate the integral from 0 to 4 of x2+x+1(x+1)2(x+2)\frac{x^{2}+x+1}{(x+1)^{2}(x+2)} dx.

See Solution

Problem 14070

Calculate the integral: 8t3t+1dt\int \frac{8 t-3}{t+1} d t

See Solution

Problem 14071

Calculate the integral: 09dt81+t2\int_{0}^{9} \frac{d t}{\sqrt{81+t^{2}}}.

See Solution

Problem 14072

Find the interval where the function f(x)=(x212)exf(x)=(x^{2}-12)e^{-x} is concave up for x>0x>0. Answer in the form (,)(*, *).

See Solution

Problem 14073

Find the initial number of flu cases using the function N(t)=10,0001+999etN(t)=\frac{10,000}{1+999 e^{-t}} at t=0t=0. Round to the nearest person.

See Solution

Problem 14074

Find the increase in car sales over 6 years with advertising: from 5+0.5t3/25 + 0.5 t^{3/2} to 5e0.3t5 e^{0.3 t}.

See Solution

Problem 14075

Find how many times faster the growth rate of U.S. citizens aged 65+ from 2000-2050 is than from 1910-1960 using R(t)=0.063t20.48t+3.87 R(t)=0.063 t^{2}-0.48 t+3.87 .

See Solution

Problem 14076

A rare isotope decays at 12%12\% per second. How much remains after 8 seconds from an initial 6 grams? Round to the nearest gram.

See Solution

Problem 14077

Find F(3)F'(3) given F(x)=f(g(x))F(x)=f(g(x)), g(3)=6g(3)=6, g(3)=4g'(3)=4, f(3)=7f'(3)=-7, and f(6)=7f'(6)=7.

See Solution

Problem 14078

Find how many times faster the growth rate of U.S. citizens aged 65+ from 2000-2050 is compared to 1910-1960. Round to two decimals.

See Solution

Problem 14079

Esquissez le graphique de la fonction f(x)f(x) avec les informations suivantes : f(x)f'(x) change de signe à -1 et 1, f(x)f''(x) à 0.

See Solution

Problem 14080

Find how many times faster the growth rate of U.S. citizens aged 65+ from 2000 to 2050 is compared to 1910 to 1960 using R(t)=0.063t20.48t+3.87R(t)=0.063 t^{2}-0.48 t+3.87. Round to two decimal places.

See Solution

Problem 14081

Find f(1)f'(1) for f(x)=h(g(x)k(x))f(x)=h(g(x) k(x)) given g(1)=7g(1)=7, k(1)=0k(1)=0, h(1)=2h(1)=-2, g(1)=5g'(1)=5, k(1)=1k'(1)=-1, h(1)=1h'(1)=1, h(0)=3h'(0)=3.

See Solution

Problem 14082

Find the expectation E\mathbb{E} and variance V\mathbb{V} of the PDF ρ(x)=2π1x2+1\rho(x)=\frac{2}{\pi} \frac{1}{x^{2}+1} on [0,+)[0,+\infty). Check for convergence.

See Solution

Problem 14083

Evaluate the integrals: (i) sec5(θ2)tan(θ2)dθ\int \sec ^{5}\left(\frac{\theta}{2}\right) \tan \left(\frac{\theta}{2}\right) d \theta (ii) cost1+costdt\int \frac{\cos t}{1+\cos t} d t

See Solution

Problem 14084

Given F(x)=f(f(x))F(x)=f(f(x)) and G(x)=(F(x))2G(x)=(F(x))^{2} with f(8)=5f(8)=5, f(5)=2f(5)=2, f(5)=10f^{\prime}(5)=10, f(8)=2f^{\prime}(8)=2, find F(8)F^{\prime}(8) and G(8)G^{\prime}(8).

See Solution

Problem 14085

Find (f1)(8)\left(f^{-1}\right)^{\prime}(-8) for the function f(x)=x3+6x1f(x)=x^{3}+6x-1. If no answer, enter DNE.

See Solution

Problem 14086

Find the linear approximation for f(0.5)f(-0.5) using the values of f(x)f(x) and f(x)f^{\prime}(x) from the table.

See Solution

Problem 14087

Find the derivative of y=ln(t2)arctan(t2)y=\ln(t^2)-\arctan\left(\frac{t}{2}\right).

See Solution

Problem 14088

Find the derivative of f(x)=arccsc(7x)f(x)=\operatorname{arccsc}(7x). What is f(x)=f'(x)=\square?

See Solution

Problem 14089

Find the derivative of f(x)=sin(ex5sin(x))f(x)=\sqrt{\sin(e^{x^{5} \sin(x)})}.

See Solution

Problem 14090

Given F(x)=f(f(x))F(x)=f(f(x)) and G(x)=(F(x))2G(x)=(F(x))^{2} with f(7)=9f(7)=9, f(9)=3f(9)=3, f(9)=15f^{\prime}(9)=15, f(7)=10f^{\prime}(7)=10, find F(7)F^{\prime}(7) and G(7)G^{\prime}(7).

See Solution

Problem 14091

Find the derivative of f(x)=cos(ex4sin(x))f(x)=\sqrt{\cos(e^{x^{4} \sin(x)})}.

See Solution

Problem 14092

Find the derivative of y=12[x25x2+25arcsin(x5)]y=\frac{1}{2}\left[x \sqrt{25-x^{2}}+25 \arcsin \left(\frac{x}{5}\right)\right].

See Solution

Problem 14093

Find (f1)(8)\left(f^{-1}\right)^{\prime}(-8) for the function f(x)=x3+6x1f(x)=x^{3}+6x-1. Enter DNE if it doesn't exist.

See Solution

Problem 14094

Evaluate the integral: 32x2ex3+27dx\int_{-3}^{-2} x^{2} e^{x^{3}+27} d x using a change of variables.

See Solution

Problem 14095

Find the limit as xx approaches 3 for the expression 3x37x23 x^{3}-7 x-2.

See Solution

Problem 14096

Evaluate limx8x35x22x3+7x2\lim _{x \rightarrow \infty} \frac{8 x^{3}-5 x^{2}}{2 x^{3}+7 x^{2}}. Options: A. \infty, B. 8, C. 4, D. 0.

See Solution

Problem 14097

Find the limit as xx approaches 3 for the expression 2x2x15x3\frac{2 x^{2}-x-15}{x-3}.

See Solution

Problem 14098

What is the best choice for dvdv in xneaxdx\int x^{n} e^{a x} dx for integration by parts?
A. xndxx^{n} dx B. xnx^{n} C. eaxe^{ax} D. e2xdxe^{2x} dx

See Solution

Problem 14099

Given curve CC: 2x2+axy+y2=562 x^{2}+a x y+y^{2}=56.
(a) Prove dydx=4x+ayax+2y\frac{d y}{d x}=-\frac{4 x+a y}{a x+2 y}. (b) For normal line L:x+y+4=0L: x+y+4=0 at P(2,6)P(2,-6), find gradient and value of aa. (c) Show points QQ and RR on CC with horizontal tangents are (2,8)(2,8) and (2,8)(-2,-8).

See Solution

Problem 14100

Find the limit as xx approaches infinity: limx6x43x3+2x2+46x3+1\lim _{x \rightarrow \infty} \frac{6 x^{4}-3 x^{3}+2 x^{2}+4}{6 x^{3}+1}.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord