Calculus

Problem 4601

Evaluate and simplify f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} for f(x)=3x9f(x)=3x-9.

See Solution

Problem 4602

Calculate the average rate of change of g(x)=4x3+6x4g(x)=4 x^{3}+\frac{6}{x^{4}} over the interval [2,3][-2,3].

See Solution

Problem 4603

Evaluate f(x+h)f(x+h) and simplify f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} for f(x)=4x24x+5f(x)=4x^{2}-4x+5.

See Solution

Problem 4604

Calculate the average rate of change of f(x)=2x27f(x)=2 x^{2}-7 from x=1x=1 to x=bx=b. Express your answer in terms of bb.

See Solution

Problem 4605

Find f(a)f(a), f(a+h)f(a+h), and f(a+h)f(a)h\frac{f(a+h)-f(a)}{h} for f(x)=5+5x2f(x)=5+5x^{2}.

See Solution

Problem 4606

Find the slope mm of the tangent line to y=B(x)y=B(x) at x=12x=12 where B(12)=1B(12)=-1 and B(12)=12B'(12)=-\frac{1}{2}. Then, find the intersection point (x,y)(x, y) and the tangent line equation.

See Solution

Problem 4607

Find the difference quotient f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} for f(x)=2x2f(x)=-2x^{2}. Steps: 1) Simplify f(x+h)f(x+h); 2) Subtract f(x+h)f(x)f(x+h)-f(x); 3) Divide by hh.

See Solution

Problem 4608

Find the difference quotient f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} for f(x)=2x2f(x)=-2 x^{2}. Simplify f(x+h)f(x+h) and f(x+h)f(x)f(x+h)-f(x).

See Solution

Problem 4609

Find the difference quotient f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} for f(x)=x2f(x)=x^{2}. Step 1: Simplify f(x+h)f(x+h). Step 2: Simplify f(x+h)f(x)f(x+h)-f(x).

See Solution

Problem 4610

Find the difference quotient f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} for f(x)=x2f(x)=x^{2}. Steps: 1) Simplify f(x+h)f(x+h); 2) Find f(x+h)f(x)f(x+h)-f(x); 3) Divide by hh.

See Solution

Problem 4611

Calculate the integral 27(x6+2x43)dx\int_{2}^{7} (x^{6}+2x-43) \, dx.

See Solution

Problem 4612

Find the integrating factor for the linear differential equation: t2dxdt=4tt5xt^{2} \frac{d x}{d t}=4 t-t^{5} x.

See Solution

Problem 4613

Find the time for a sphere to drop from h=6rh=6r to h=2rh=2r using the equation dhdt=αrh\frac{d h}{d t}=-\frac{\alpha}{r} h.

See Solution

Problem 4614

Find the slope of the tangent to the graph of x21x2+x+1\frac{x^{2}-1}{x^{2}+x+1} at (1,0). Give your answer as a reduced fraction.

See Solution

Problem 4615

A radioactive substance decays as P(t)=100(1.2)tP(t)=100(1.2)^{-t}. Find the half-life and the decay rate after one half-life.

See Solution

Problem 4616

A town's population is decreasing at 1.8%1.8\% per year, currently at 12000. Model the population and find rates of change in 10 years and at half the population.

See Solution

Problem 4617

Find the slope of the tangent to the graph of x29x2+x+1\frac{x^{2}-9}{x^{2}+x+1} at (3,0)(-3,0) as a reduced fraction.

See Solution

Problem 4618

A radioactive substance decays exponentially. Given P(t)=100(1.2)tP(t)=100(1.2)^{-t}, find the half-life and the decay rate after one half-life.

See Solution

Problem 4619

A tornado's wind speed is given by S(d)=93logd+65S(d)=93 \log d+65. Find the average speed change from mile 10 to 100 and the speed change at miles 10 and 100.

See Solution

Problem 4620

The demand function for snack cakes is p(x)=152x2+11x+5p(x)=\frac{15}{2 x^{2}+11 x+5}.
a. Find the revenue function. b. Estimate marginal revenue at x=0.75x=0.75 and find it for x=2x=2.

See Solution

Problem 4621

Find the revenue function for snack cakes given p(x)=152x2+11x+5p(x)=\frac{15}{2 x^{2}+11 x+5}. Estimate marginal revenue at x=0.75x=0.75 and x=2x=2.

See Solution

Problem 4622

Find the slope of the secant line through (2,f(2))(2, f(2)) and (3,f(3))(3, f(3)) for f(x)=2x25x2f(x)=2x^{2}-5x-2. Also, find the tangent slope at x=2x=2.

See Solution

Problem 4623

Find the slope of the tangent to the graph of x24x2+x+1\frac{x^{2}-4}{x^{2}+x+1} at (2,0)(-2,0). Express as a reduced fraction.

See Solution

Problem 4624

Is there a time tt in (5,10)(5,10) where the water volume's rate changes from positive to negative? Justify your answer.

See Solution

Problem 4625

Find the difference quotient f(x)f(2)x2\frac{f(x)-f(2)}{x-2} for f(x)=2+5x5x2f(x)=2+5x-5x^2. Simplify as x2x \rightarrow 2.

See Solution

Problem 4626

Differentiate the function h(x)=ex8+ln(x)h(x)=e^{x^{8}+\ln (x)}. Find h(x)=h^{\prime}(x)=.

See Solution

Problem 4627

Calculate the area between the curves x=y4x=y^{4}, y=2xy=\sqrt{2-x}, and the line y=0y=0.

See Solution

Problem 4628

Find the derivative f(1)f^{\prime}(1) if f(x)=cos(ln(x7))f(x)=\cos(\ln(x^{7})).

See Solution

Problem 4629

Find the driver's velocity function given their position x(t)=4t33t2+2t8x(t)=4 t^{3}-3 t^{2}+2 t-8.

See Solution

Problem 4630

Find the derivative of y=x2+4x+3y=x^{\wedge} 2+4x+3 at x=4x=4.

See Solution

Problem 4631

Find the derivative of the constant function f(x)=16f(x)=16 at x=ax=a using the limit definition. f(a)=f^{\prime}(a)=

See Solution

Problem 4632

Find the driver's velocity function from the position x(t)=4t33t2+2t8x(t)=4 t^{3}-3 t^{2}+2 t-8. What is v(t)v(t)?

See Solution

Problem 4633

Find the derivative of the function k(z)=6z+17k(z)=6z+17 at z=az=a using the limit definition. What is k(a)=?k'(a)=?

See Solution

Problem 4634

Find the average velocity of a ball with position x(t)=30t3t2x(t)=30t-3t^{2} from t=0t=0 to t=5t=5 seconds.

See Solution

Problem 4635

Calculate the limit: limxex\lim _{x \rightarrow \infty} e^{x}.

See Solution

Problem 4636

Find the tangent line equation at (3,13)(3, 13) with slope 22.

See Solution

Problem 4637

Find the instantaneous acceleration of the function f(t)=0.24t3+2.2t2f(t) = 0.24t^3 + 2.2t^2 at t=1t=1 second.

See Solution

Problem 4638

Find the limit: limx1x\lim _{x \rightarrow \infty} \frac{1}{x}.

See Solution

Problem 4639

Find the limit as xx approaches infinity for the expression x23x+1x^{2}-3x+1.

See Solution

Problem 4640

Find the limit as xx approaches infinity for x23x+2x\frac{x^{2}-3 x+2}{x}.

See Solution

Problem 4641

Find the bee's instantaneous velocity at t=2t=2 seconds for x(t)=0.24t3+2.2t2x(t)=-0.24 t^{3}+2.2 t^{2}.

See Solution

Problem 4642

Find the average acceleration of a bee from t=1t=1 to t=3t=3 seconds, given velocities: 5.825.82 m/s at t=1t=1, 5.125.12 m/s at t=2t=2.

See Solution

Problem 4643

Find the limit: limxxx23x+2\lim _{x \rightarrow \infty} \frac{x}{x^{2}-3 x+2}.

See Solution

Problem 4644

Find the derivative of the function f(x)=2x(x36x+4)f(x)=2 \sqrt{x}(x^{3}-6 \sqrt{x}+4). What is f(x)f^{\prime}(x)?

See Solution

Problem 4645

Find the derivative of f(x)=x22x+3f(x)=x^{2}-2x+3 at aa.

See Solution

Problem 4646

Find the integral of y=xn2+4x+3y=x^{n} 2+4x+3 from x=0x=0 to x=1x=1.

See Solution

Problem 4647

Find the integral of y=x2+4x+3y=x^{\wedge} 2+4x+3 from x=0x=0 to x=1x=1.

See Solution

Problem 4648

Find the derivative of f(x)=8x3f(x)=8 x^{3} at x=1x=1 using the limit definition. Provide a whole or exact number.

See Solution

Problem 4649

Find the tangent line equation for f(x)=8x6f(x)=8 \sqrt{x}-6 at (64,58)(64,58) in the form y=mx+by=m x+b.

See Solution

Problem 4650

Find the second derivative yy^{\prime \prime} for the equation x25xy+y=8x^{2}-5xy+y=8.

See Solution

Problem 4651

Entscheiden Sie für die Aussagen a) bis f) ob sie immer, nie oder abhängig sind und begründen Sie Ihre Wahl.

See Solution

Problem 4652

Find the radius of curvature of y=x2+4x+3y=x^{2}+4x+3 at x=3x=3, which is 114\sqrt{11} - 4.

See Solution

Problem 4653

Find the derivative of y=1+4x3y=\sqrt[3]{1+4x}.

See Solution

Problem 4654

Find the local maximum values and their locations for the continuous function ff with points (2,0)(-2,0), (1,2)(-1,-2), (2,1)(2,1), and (4,4)(4,-4).

See Solution

Problem 4655

Find local minimum values and their points for function hh given points (-3,0), (0,4), (3,0), (4,1), (-4,1).

See Solution

Problem 4656

Find the derivative of f(x)=5x+42x5f(x)=\frac{5 x+4}{2 x-5} at x=0x=0 and provide the exact decimal answer. f(0)=f^{\prime}(0)=

See Solution

Problem 4657

Find the Fourier series of f(x)=1x2f(x)=1-x^2 on [1,1][-1,1] and its derivative, (x+1)sinx(x + 1) \sin x.

See Solution

Problem 4658

Evaluate the integral: 2x21+16x2dx\int \frac{2 x^{2}}{1+16 x^{2}} d x

See Solution

Problem 4659

Untersuchen Sie die Funktion f(x)=12x332x2+3,5f(x)=\frac{1}{2} x^{3}-\frac{3}{2} x^{2}+3,5 auf Symmetrie, Steigung, Extrempunkte und Wendepunkt.

See Solution

Problem 4660

Find the limit as xx approaches infinity for the expression 3x8+7x35-3 x^{8}+7 x^{3}-5.

See Solution

Problem 4661

Bestimmen Sie die Ableitung der Funktion h(x)=x23h(x)=\sqrt[3]{x^{2}}.

See Solution

Problem 4662

Find f(1)f^{\prime}(-1) if f(x)=x12h(x)f(x)=x^{12} h(x), with h(1)=2h(-1)=2 and h(1)=5h^{\prime}(-1)=5.

See Solution

Problem 4663

Find h(4)h^{\prime}(-4) for h(x)=arcsin(f(x))h(x)=\arcsin(f(x)) given f(4)=25f(-4)=-\frac{2}{5} and f(4)=4f^{\prime}(-4)=-4.

See Solution

Problem 4664

Find the derivative of F(t)=(3t1)4(2t+1)3F(t)=(3t-1)^{4}(2t+1)^{-3}.

See Solution

Problem 4665

Calculate the integral 12(4x31)dx\int_{-1}^{2}(4 x^{3}-1) dx.

See Solution

Problem 4666

Find the derivatives:
1. f(x)=5sin1(6x)f(x)=5 \sin ^{-1}(6 x)
2. f(x)=3cos1(8x+11)f(x)=3 \cos ^{-1}(8 x+11)
3. f(x)=6tan1(sin(x))f(x)=6 \cdot \tan ^{-1}(\sin (x))
4. f(x)=8cot1(x5)f(x)=8 \cot ^{-1}(x^{5})
5. f(x)=5sec1(6ln(x))f(x)=5 \sec ^{-1}(6 \ln (x))
6. f(x)=csc1(ex)f(x)=\csc ^{-1}(e^{x})

See Solution

Problem 4667

Untersuchen Sie die Abweichungen der Modellfunktion f(t)f(t) von Messwerten, bestimmen Sie Maximalwerte und Änderungszeiten. Prüfen Sie Fahrverbote und vergleichen Sie 2019 und 2023.

See Solution

Problem 4668

Find the velocity of a ground hog at t=0t=0 given its position function x(t)=t36t2+9t+12x(t)=t^{3}-6 t^{2}+9 t+12.

See Solution

Problem 4669

Calculate the integral: 2x215x45xdx\int \frac{2 x^{2}-15 x-4}{5 \sqrt{x}} d x

See Solution

Problem 4670

Find the derivative dydx\frac{d y}{d x} for the function y=x3x+1y=x^{3} \sqrt{x+1}.

See Solution

Problem 4671

Kostenfunktion K(x)=0,1x32,4x2+30x+640K(x)=0,1 x^{3}-2,4 x^{2}+30 x+640: a) Finde Betriebsminimum. b) Wo sind Grenzkosten minimal? c) Betriebsoptimum bei 20? d) Grenzkosten = Durchschnittskosten im Optimum?

See Solution

Problem 4672

Berechnen Sie die Niederschlagsmenge f(1)f(1), f(2)f(2), f(3)f(3), f(1)f^{\prime}(1) und den Zeitpunkt des stärksten Regens.

See Solution

Problem 4673

Gegeben ist die Kostenfunktion K(x)=0,1x32,4x2+30x+640K(x)=0,1 x^{3}-2,4 x^{2}+30 x+640. Zeigen Sie, dass im Optimum K(x)=K(x)xK'(x)=\frac{K(x)}{x} gilt.

See Solution

Problem 4674

Find the second derivative Dx2yD_{x}^{2} y for y=1xx3y=\frac{1-x}{x-3}. Options: A. 0 B. 8(x3)3\frac{-8}{(x-3)^{3}} C. 4(x2)3\frac{-4}{(x-2)^{3}} D. 4(x3)3\frac{-4}{(x-3)^{3}}

See Solution

Problem 4675

Finde den Wendepunkt der Funktion f(x)=3x44x3f(x)=3 x^{4}-4 x^{3}.

See Solution

Problem 4676

Feinstaubmessungen in Hamburg 2019: Untersuche f(t)=41000t415t3+2t2+45f(t)=\frac{4}{1000} t^{4}-\frac{1}{5} t^{3}+2 t^{2}+45. Vergleiche mit Messwerten, finde Höchstwert, Steig-/Fallzeiten, prüfe Fahrverbote und vergleiche mit 2023.

See Solution

Problem 4677

Find dydx\frac{d y}{d x} if y=xx+yy=\frac{x}{x+y}. Options: A. y(x+y)2+x\frac{y}{(x+y)^{2}+x} B. 1yx+2y\frac{1-y}{x+2 y} C. 1+5x2\frac{-1+\sqrt{5} x}{2} D. 11+y\frac{1}{1+y}

See Solution

Problem 4678

Find the derivative dydx\frac{d y}{d x} for the function y=x3x+1y=x^{3} \sqrt{x+1}.

See Solution

Problem 4679

Bestimme den größtmöglichen Wert von cc, sodass die Funktion v(x)=112x413x332x2+2x+12v(x) = \frac{1}{12} x^{4}-\frac{1}{3} x^{3}-\frac{3}{2} x^{2}+2 x+\frac{1}{2} für 0<x<c0<x<c rechtsgekrümmt ist.

See Solution

Problem 4680

Bestätige, dass vor der Einnahme eines Medikaments (t=0t=0) die Konzentration f(0)=100e0=0f(0)=10 \cdot 0 \cdot e^{0}=0 mg/L ist.

See Solution

Problem 4681

Bestimme den Zeitpunkt der höchsten Medikamentenkonzentration f(t)=10te0,5tf(t)=10 \cdot t \cdot e^{-0,5 t} und die Konzentration. Zeige, dass der Abbau nach 4 Stunden am schnellsten ist und berechne die Geschwindigkeit.

See Solution

Problem 4682

Nach Einnahme eines Medikaments beschreibt die Funktion f(t)=10te0,5tf(t)=10 \cdot t \cdot e^{-0,5 t} die Konzentration.
a) Zeige, dass vor der Einnahme die Konzentration 0 ist. b) Bestimme graphisch, wann die Konzentration 6 mg/L erreicht wird.

See Solution

Problem 4683

Zeigen Sie, dass die Folgen a) bis d) konvergent sind, indem Sie Monotonie und Beschränktheit nachweisen. Bestimmen Sie den Grenzwert. a) an=n+15na_{n}=\frac{n+1}{5 n} b) an=5nn+1a_{n}=\frac{\sqrt{5 n}}{\sqrt{n+1}} c) an=nn+10n2a_{n}=\frac{n \sqrt{n}+10}{n^{2}} d) an=nn2+1a_{n}=\frac{n}{n^{2}+1}

See Solution

Problem 4684

Bestimme den Zeitpunkt und die Konzentration der höchsten Medikamentenkonzentration f(t)=10te0,5tf(t)=10 \cdot t \cdot e^{-0,5 t}. Zeige, dass nach 4 Stunden der Abbau am schnellsten ist und berechne die Abbaugeschwindigkeit.

See Solution

Problem 4685

Bestimme den Zeitpunkt und die Konzentration der höchsten Medikamentenmenge f(t)=10te0,5tf(t)=10 \cdot t \cdot e^{-0,5 t}. Zeige, dass nach 4 Stunden der Abbau am schnellsten ist und berechne die Abbaugeschwindigkeit.

See Solution

Problem 4686

Bestimme die lineare Funktion ww, die die Abbaukonzentration des Medikaments nach 4 Stunden beschreibt.

See Solution

Problem 4687

Gegeben ist die Funktion f\mathrm{f} für die Medikamentenkonzentration im Blut.
a) Zeigen Sie, dass das Medikament vor der Einnahme nicht nachweisbar ist.
b) Bestimmen Sie graphisch, wann die Konzentration 6 mg/L beträgt.
c) Finden Sie den Zeitpunkt und die Konzentration der höchsten Medikamentenmenge.
d) Berechnen Sie, dass das Medikament nach 4 Stunden am schnellsten abgebaut wird und bestimmen Sie die Abbaugeschwindigkeit.

See Solution

Problem 4688

Gegeben ist die Funktion f(x)=x36x2+8xf(x)=x^{3}-6 x^{2}+8 x.
a) Berechne 04f(x)dx\int_{0}^{4} f(x) d x. b) Bestimme den Flächeninhalt im 4. Quadranten. c) Flächeninhalt im 1. Quadranten, begründe ohne Rechnung.
Für g(x)=0,5x+1g(x)=-0,5 x+1: d) Bestimme den Flächeninhalt zwischen ff und gg. e) Finde b>0b>0 so, dass 2bg(x)dx=4\int_{2}^{b} g(x) d x=-4.

See Solution

Problem 4689

Berechne die unbestimmten Integrale: a) x6dx\int x^{6} dx, b) 6x2dx\int 6 x^{2} dx, e) (2x34x+1)dx\int(2 x^{3}-4 x+1) dx, f) (ax2+6x)dx\int(a x^{2}+6 x) dx, i) (x+3x2)dx\int(x+\frac{3}{x^{2}}) dx, j) exex+2dx\int e^{x} \cdot e^{x+2} dx, c) nx2n1dx\int n \cdot x^{2 n-1} dx, d) (4x2+2x)dx\int(4 x^{2}+2 x) dx, g) 3x2dx\int 3 x^{-2} dx, h) (2x+1x)xdx\int(2 x+\frac{1}{x}) \cdot x dx, k) 4exdx\int \frac{4}{e^{x}} dx, l) (sinx+2cosx)dx\int(\sin x+2 \cos x) dx.

See Solution

Problem 4690

Zeige, dass F(t)=20(t+2)e0,5tF(t)=-20 \cdot(t+2) \cdot e^{-0,5 t} eine Stammfunktion von ff ist. Berechne 1808f(t)dt\frac{1}{8} \int_{0}^{8} f(t) d t.

See Solution

Problem 4691

Aufgabe: Analysiere die Bestellrate f(t)=4,98t4+126t31020t2+2700t+1440f(t)=-4,98 t^{4}+126 t^{3}-1020 t^{2}+2700 t+1440 für tt von 0 bis 12. Bestimme f(1)f(1), f(1)f'(1), max. Bestellungen und Gesamtbestellungen bis 12:00 Uhr. Ab 14:00 Uhr gilt g(t)=30t2+300t+1320g(t)=-30 t^{2}+300 t+1320. Finde die Schnittstellen von ff und gg und die verkauften Karten bis 18:00 Uhr.

See Solution

Problem 4692

Untersuchen Sie die Funktion f(x)=5e0.5x+6e3x+6f(x)=-5 e^{-0.5 x}+6 e^{-3 x}+6 auf Extrempunkte.

See Solution

Problem 4693

Untersuchen Sie das Flussbett mit der Funktion f(x)=2x2exf(x)=-2 x^{2} \cdot e^{x} für x(7;0)x \in(-7 ; 0).
1. a) Bestimmen Sie f(7)f(-7) und erläutern Sie die Bedeutung. b) Finden Sie den tiefsten Punkt des Flussbetts. c) Überprüfen Sie, ob der Winkel von 4545^{\circ} erreicht wird.

See Solution

Problem 4694

If arcsin(x)=ln(y)\arcsin (x)=\ln (y), find dydx\frac{d y}{d x}.

See Solution

Problem 4695

Find the limit as xx approaches -\infty for the function f(x)=2xe2xf(x)=2 x e^{2 x}.

See Solution

Problem 4696

Evaluate the limit: limx2x2x2\lim _{x \rightarrow 2} \frac{x-2}{\sqrt{x-2}}

See Solution

Problem 4697

Check if the function ff is differentiable at x=1x=-1, where f(x)={arcsin(x+1)if x<1arccos(x+2)if x1f(x)=\begin{cases} \arcsin (\sqrt{x+1}) & \text{if } x<-1 \\ \arccos (\sqrt{x+2}) & \text{if } x \geq -1 \end{cases}.

See Solution

Problem 4698

Calculate the arc length of y=exy=e^{x} from x=1x=1 to x=2x=2, rounding your answer to 3 decimal places.

See Solution

Problem 4699

Calculate the arc length of x=5y32x=5 y^{\frac{3}{2}} from y=0y=0 to y=4y=4, rounding to 3 decimal places.

See Solution

Problem 4700

Find the instantaneous rate of change of y=(2x1)2+xyy=(2 x-1)^{2}+x y at x=0x=0.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord