Calculus

Problem 31101

Find the tangent line approximation for f(3.15)f(3.15) given f(3)=2f(3)=-2 and f(3)=4f'(3)=4.

See Solution

Problem 31102

Approximate f(3.85)f(-3.85) using the tangent line at x=4x=-4 where f(4)=8f(-4)=-8 and f(x)=x6f^{\prime}(x)=-x-6.

See Solution

Problem 31103

Find the tangent line at x=3x=-3 for ff with f(3)=0f(-3)=0 and f(x)=5x6f^{\prime}(x)=-5x-6. Estimate f(2.85)f(-2.85).

See Solution

Problem 31104

Calcule a taxa média de variação de f(x)f(x) no intervalo 3x43 \leq x \leq 4 usando os pontos (3,1)(3,-1) e (4,1)(4,1).

See Solution

Problem 31105

Find the average rate of change of g(x)=x2+2x+8g(x)=-x^{2}+2 x+8 from x=3x=-3 to x=3x=3.

See Solution

Problem 31106

The town's population is 20000 and decreases by 1.6%1.6\% per year. How long until it reaches 15000?

See Solution

Problem 31107

Solve the ODE dzdx8xz=8x21\frac{d z}{d x}-8 x z=8 x^{2}-1 with initial condition z(1)=e1z(1)=e-1.

See Solution

Problem 31108

Integrate the following: 1. xsinx2dx\int x \sin \frac{x}{2} d x, 3. t2costdt\int t^{2} \cos t d t, 5. 12xlnxdx\int_{1}^{2} x \ln x d x, 7. xexdx\int x e^{x} d x, 9. x2exdx\int x^{2} e^{-x} d x, 11. tan1ydy\int \tan ^{-1} y d y, 13. xsec2xdx\int x \sec ^{2} x d x, 15. x3exdx\int x^{3} e^{x} d x.

See Solution

Problem 31109

Find the slope of the tangent line to f1(x)f^{-1}(x) at (0,1) where f(x)=2xx3f(x)=2-x-x^{3}. Provide the exact answer.

See Solution

Problem 31110

Find the average rate of change of horsepower, H(s)=0.003s2+0.07s0.027H(s)=0.003 s^{2}+0.07 s-0.027, as speed increases from 80 mph to 100 mph.

See Solution

Problem 31111

Find the average rate of change of f(x)=2x+5f(x) = 2 \sqrt{x} + 5 on the interval [4,9][4, 9].

See Solution

Problem 31112

Prove that for all x,yRx, y \in \mathrm{R}, the inequality holds: arctan(x3)arctan(y3)Mxy\left|\arctan(x^3) - \arctan(y^3)\right| \leq M|x-y| where M=suptat3t21+t6M=\sup_{\operatorname{tat}} \frac{3t^2}{1+t^6}.

See Solution

Problem 31113

A store's profit function for fans is P(x)=x2+39x240P(x)=-x^{2}+39 x-240. Find the average profit change for price increases from \$10 to \$11 and from \$20 to \$21.

See Solution

Problem 31114

Find the rate of change of xx when x=π2x=\frac{\pi}{2}, given y=2ecos(x)y=2 e^{\cos (x)} and dydt=5\frac{dy}{dt}=5.

See Solution

Problem 31115

Find the expression for f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} where f(x)=4x29f(x)=4 x^{2}-9.

See Solution

Problem 31116

Evaluate the limit:
lim(x,y)(8,7)xy1xy1= \lim _{(x, y) \rightarrow(8,7)} \frac{x-y-1}{\sqrt{x-y}-1}=

See Solution

Problem 31117

1. Find 1x1x2dx\int \frac{1-x}{\sqrt{1-x^{2}}} d x
2. Evaluate ecotzsin2zdz\int \frac{e^{-\cot z}}{\sin ^{2} z} d z
3. Compute dzez+ez\int \frac{d z}{e^{z}+e^{-z}}
4. Solve 104dx1+(2x+1)2\int_{-1}^{0} \frac{4 d x}{1+(2 x+1)^{2}}
5. Determine dt1sect\int \frac{d t}{1-\sec t}
6. Find 0π/41+sinθcos2θdθ\int_{0}^{\pi / 4} \frac{1+\sin \theta}{\cos ^{2} \theta} d \theta

See Solution

Problem 31118

Prove that for all x,yRx, y \in \mathrm{R}, the inequality arctan(x3)arctan(y3)Mxy|\arctan(x^3) - \arctan(y^3)| \leq M|x-y| holds, where M=suptx3t21+t6M = \sup_{t \in x} \frac{3t^2}{1+t^6}.

See Solution

Problem 31119

Find the limit: limx37x2\lim _{x \rightarrow-3} 7 x^{2}. Complete the table for values around 3-3.

See Solution

Problem 31120

Find the limit: limx1(7x3)\lim _{x \rightarrow 1}\left(-7 x^{3}\right). Fill in the table for f(x)=7x3f(x)=-7 x^{3} at values near 1.

See Solution

Problem 31121

Find the displacement of a sled starting from rest, accelerating at 50 m/s250 \mathrm{~m/s^2} for 5 s5 \mathrm{~s}.

See Solution

Problem 31122

Find the limit: limx39x3\lim _{x \rightarrow 3} 9 x^{3}. Fill in the table for f(x)=9x3f(x)=9 x^{3} at values around x=3x=3.

See Solution

Problem 31123

Find the limit: limx3(3x2)\lim _{x \rightarrow 3}\left(-3 x^{2}\right) by completing the table for f(x)=3x2f(x)=-3 x^{2}.

See Solution

Problem 31124

Find the limit: limx2(4x2)\lim _{x \rightarrow-2}(-4 x^{2}) using a table of values around x=2x = -2.

See Solution

Problem 31125

Find the limit: limx3(3x2)\lim _{x \rightarrow 3}\left(-3 x^{2}\right). Complete the table for f(x)=3x2f(x)=-3 x^{2}.

See Solution

Problem 31126

Find the derivative f(x)f'(x) for the function f(x)=8lnx+5x212f(x)=-8 \ln x + 5 x^2 - 12.

See Solution

Problem 31127

Find the derivative f(x)f^{\prime}(x) for the function f(x)=3ex+2x5lnxf(x)=3 e^{x}+2 x-5 \ln x.

See Solution

Problem 31128

Differentiate the function f(x)=3+2x+2exf(x)=-3+2x+2e^{x}. Find f(x)f^{\prime}(x).

See Solution

Problem 31129

Find the derivative of f(x)=lnx10f(x)=\ln x^{10} with respect to xx. What is dfdx\frac{df}{dx}?

See Solution

Problem 31130

Find the derivative f(x)f^{\prime}(x) for the function f(x)=lnx9+7lnxf(x)=\ln x^{9}+7 \ln x.

See Solution

Problem 31131

Find the limit as xx approaches -7: limx7x=\lim _{x \rightarrow-7} x = \square or it does not exist.

See Solution

Problem 31132

Find the second order Taylor polynomial of ff at x0=0x_0=0 given f(0)=0f(0)=0 and x+f(x)+ln(1+f(x))=0x+f(x)+\ln(1+f(x))=0.

See Solution

Problem 31133

Find the limit: limx8(6x4)\lim _{x \rightarrow 8}(6 x-4). Choose A for a value or B if it doesn't exist.

See Solution

Problem 31134

Find the limit: limx38x4\lim _{x \rightarrow-3} 8 x^{4}. Is it an integer, fraction, or does it not exist?

See Solution

Problem 31135

Find the limit: limx15\lim _{x \rightarrow 1}-5. Choose A or B and fill in the answer.

See Solution

Problem 31136

Find the limit: limx4xx+5\lim _{x \rightarrow 4} \frac{x}{x+5}. A. Answer: \square (integer or simplified fraction) B. Limit does not exist.

See Solution

Problem 31137

Find the limit: limx6x236x6\lim _{x \rightarrow 6} \frac{x^{2}-36}{x-6}. Choose A (value) or B (does not exist).

See Solution

Problem 31138

Rewrite f(x)=15x+ln(15)+ln(x)f(x) = 15x + \ln(15) + \ln(x) using logarithm properties, then find f(x)f^{\prime}(x).

See Solution

Problem 31139

Given the function f(x)=2cos2(x)4sin(x)f(x)=2 \cos ^{2}(x)-4 \sin (x) for 0x2π0 \leq x \leq 2 \pi, find:
(a) Intervals of increase and decrease. (b) Local min and max values. (c) Inflection points and intervals of concavity.

See Solution

Problem 31140

Find the limit as hh approaches 0 for 9h+11h\frac{\sqrt{9 h+1}-1}{h}. Is it A. \square or B. Does not exist?

See Solution

Problem 31141

Find the limit: limx35x15x3\lim _{x \rightarrow 3} \frac{5 x-15}{x-3}. Choose A (value) or B (limit does not exist).

See Solution

Problem 31142

Évaluer les limites suivantes : a) lims2+[1s2+44s2]\lim _{s \rightarrow 2^{+}}\left[\frac{1}{s-2}+\frac{4}{4-s^{2}}\right] b) limx0[e2xsin5x1tan5x]\lim _{x \rightarrow 0^{-}}\left[\frac{e^{2 x}}{\sin 5 x}-\frac{1}{\tan 5 x}\right]

See Solution

Problem 31143

Find f(x)f^{\prime}(x) for f(x)=6x+4f(x)=-6x+4 and determine the tangent line slopes at x=4x=-4 and x=4x=4.

See Solution

Problem 31144

Find the derivative of f(x)=x24x+8f(x)=x^{2}-4x+8 and the slope at x=32x=\frac{3}{2} and x=2x=2.

See Solution

Problem 31145

Evaluate the limit: limx01cosxsinx\lim _{x \rightarrow 0} \frac{1-\cos x}{\sin x}.

See Solution

Problem 31146

Find df1dx\frac{d f^{-1}}{d x} at x=f(3)x=f(3) if df(x)dx=x23x+2\frac{d f(x)}{d x}=x^{2}-3 x+2 for x>1x>1. Choices: a. 2 b. 3 c. none d. 12\frac{1}{2} e. 13\frac{1}{3}

See Solution

Problem 31147

Find the slope and equation of the tangent line for f(x)=2x25xf(x)=2x^{2}-5x at the point (2,-2). Slope: \square.

See Solution

Problem 31148

Find the limit: limx2(3x28x+7)2\lim _{x \rightarrow 2}\left(3 x^{2}-8 x+7\right)^{2}. Is it A. \square or B. does not exist?

See Solution

Problem 31149

Rewrite f(x)=7ln(14x)f(x)=7 \ln \left(\frac{14}{x}\right) using logarithm properties, then find f(x)f^{\prime}(x). f(x)=f^{\prime}(x)=\square

See Solution

Problem 31150

Find the derivative of y=8log7xy=8 \log _{7} x. What is dydx=\frac{d y}{d x}=\square?

See Solution

Problem 31151

Find the limits: d) limx0+[1Arctanx1x]\lim _{x \rightarrow 0^{+}}\left[\frac{1}{\operatorname{Arctan} x}-\frac{1}{x}\right] and e) limθ0+[cscθcosθsinθ]\lim _{\theta \rightarrow 0^{+}}\left[\csc \theta-\frac{\cos \sqrt{\theta}}{\sin \theta}\right].

See Solution

Problem 31152

Find the limit: limx0+[1Arctanx1x]\lim _{x \rightarrow 0^{+}}\left[\frac{1}{\operatorname{Arctan} x}-\frac{1}{x}\right].

See Solution

Problem 31153

How much radium remains in 6836 if half-life is 1620 years, starting with 0.5 g? Also, find bacteria doubling time if 50 grow to 204800 in 3 min.

See Solution

Problem 31154

Evaluate limxf(x)\lim_{x \rightarrow \infty} f(x) for f(x)=2x2+3x(x+1)(x+2)f(x)=\frac{2x^{2}+3x}{(x+1)(x+2)} to find horizontal asymptotes.

See Solution

Problem 31155

Find the derivative dydx\frac{d y}{d x} for the function y=5xy=5^{x}. What is dydx=\frac{d y}{d x}=\square?

See Solution

Problem 31156

Find the derivative dydx\frac{d y}{d x} for the function y=6x+e4y=6^{x}+e^{4}. Type an exact answer.

See Solution

Problem 31157

Find the annual depreciation rate for the function S(t)=700,000(0.8)tS(t)=700,000(0.8)^{t} after 1 and 5 years.

See Solution

Problem 31158

Model train position is given by s(t)=2.5t+17s(t)=2.5 t+17. Find speed, position after 4 sec, and time to reach 32 feet.

See Solution

Problem 31159

Untersuchen Sie die Funktion f(x)=2xexf(x)=2 x \cdot e^{-x} auf Nullstellen, Extrema und Wendepunkte. Verhalten für xx \rightarrow \infty und xx \rightarrow -\infty? Zeichnen Sie den Graphen für 0.5x3-0.5 \leq x \leq 3 und bestimmen Sie die Tangentengleichung im Ursprung.

See Solution

Problem 31160

Find the limit: limθ0+[cscθcosθsinθ]\lim _{\theta \rightarrow 0^{+}}\left[\csc \theta-\frac{\cos \sqrt{\theta}}{\sin \theta}\right].

See Solution

Problem 31161

Find (A) the derivative of F(x)S(x)F(x) S(x) without the product rule, and (B) F(x)S(x)F^{\prime}(x) S^{\prime}(x). Given F(x)=x4+1F(x)=x^{4}+1, S(x)=x5S(x)=x^{5}.

See Solution

Problem 31162

Finde die Kostenfunktion KK aus den Ableitungen K(x)K^{\prime}(x) und beschreibe den Kostenverlauf.

See Solution

Problem 31163

Find f(x+h)f(x)f(x+h) - f(x) and f(x+h)f(x)h\frac{f(x+h) - f(x)}{h} for the function f(x)=6x2f(x) = 6 - x^{2}.

See Solution

Problem 31164

Evaluate the limits: x2limx0x2sin(1x)x2-x^{2} \leq \lim _{x \rightarrow 0} x^{2} \sin \left(\frac{1}{x}\right) \leq x^{2}.

See Solution

Problem 31165

A bucket with a mass of 2.30 kg2.30 \mathrm{~kg} is whirled in a circle of radius 1.40 m1.40 \mathrm{~m}. Find the acceleration at the top (m/s2\mathrm{m} / \mathrm{s}^2).

See Solution

Problem 31166

Find limθ0sin(θ)θ\lim _{\theta \rightarrow 0} \frac{\sin (\theta)}{\theta} using the inequality cos(θ)sin(θ)θ1\cos (\theta) \leq \frac{\sin (\theta)}{\theta} \leq 1.

See Solution

Problem 31167

Find the limit: limx+(15x)3x\lim _{x \rightarrow+\infty}\left(1-\frac{5}{x}\right)^{3 x}.

See Solution

Problem 31168

Find the integral of (ln(x))2(\ln (x))^{2} with respect to xx.

See Solution

Problem 31169

Find the integral of the function yeyy e^{-y} with respect to yy: yeydy\int y e^{-y} d y.

See Solution

Problem 31170

Calculate the integral: (πx)cos(πx)dx\int(\pi-x) \cos (\pi x) \, dx.

See Solution

Problem 31171

Find the limit as xx approaches 1 from the left: limx1[ln(11x)]1x\lim _{x \rightarrow 1^{-}}\left[\ln \left(\frac{1}{1-x}\right)\right]^{1-x}.

See Solution

Problem 31172

Aufgabe 1: Beschreibe die Graphen der Funktionen f(x)=1xf(x)=\frac{1}{x}, f(x)=0,7xf(x)=0,7^{x}, f(x)=3x2f(x)=\frac{3}{x^{2}}, f(x)=x2+1xf(x)=\frac{x^{2}+1}{x}.
Aufgabe 2: Bestimme den Definitionsbereich für f(x)=x24x2f(x)=\frac{x^{2}-4}{x-2} und f(x)=1(x3)2+1f(x)=\frac{1}{(x-3)^{2}}+1. Untersuche das Verhalten bei Definitionslücken.
Aufgabe 3: Tee hat 94C94^{\circ} \mathrm{C}, Umgebung 24C24^{\circ} \mathrm{C}. Temperaturunterschied verringert sich um 13\frac{1}{3} pro Minute. a) Formel für Abkühlung. b) Wann ist Temperatur 1010^{\circ}, 55^{\circ}, 11^{\circ}, 0,10,1^{\circ} von Raumtemperatur entfernt?

See Solution

Problem 31173

A student on a 50.0 m building kicks a stone at 4.00 m/s. How long until it hits the ground? Choices: (1) 5.10 s (2) 3.19 s (3) 10.2 s (4) 12.5 s

See Solution

Problem 31174

Find the slope and tangent line equation at point P(4,36)P(4,36) for the curve y=x2+5xy=x^{2}+5x.

See Solution

Problem 31175

Find the volume of the solid formed by rotating the area in the first quadrant bounded by y=secxy=\sec x, x=π3x=\frac{\pi}{3}, and the axes around the xx-axis.

See Solution

Problem 31176

Zbadaj zbieżność szeregów:
(5 pkt) n=1n55nn\sum_{n=1}^{\infty} \sqrt[n]{\frac{n^{5}}{5^{n}}},
(5 pkt) n=1(n+3n+2)n2\sum_{n=1}^{\infty}\left(\frac{n+3}{n+2}\right)^{n^{2}},
(5 pkt) n=1nnn!5n\sum_{n=1}^{\infty} \frac{n^{n}}{n ! 5^{n}},
(5 pkt) n=1n2+5n4+4n\sum_{n=1}^{\infty} \frac{n^{2}+5}{n^{4}+4 n},
(5 pkt) n=1(1)nn+6\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n+6}.

See Solution

Problem 31177

Oblicz granicę ciągu dla: an=n25+10+15++5na_{n}=\frac{n^{2}}{5+10+15+\ldots+5 n}, an=9n26n+23na_{n}=\sqrt{9 n^{2}-6 n+2}-3 n, an=2n+en+(56)nna_{n}=\sqrt[n]{2^{n}+e^{n}+\left(\frac{5}{6}\right)^{n}}, an=(n3+1n3)5n2a_{n}=\left(\frac{n^{3}+1}{n^{3}}\right)^{5 n^{2}}.

See Solution

Problem 31178

Find the derivative of f(x)=3sec(2x34)tan1(x3+1)2x5f(x)=3^{\sec(2x^{3}-4)} \sqrt{\tan^{-1}(x^{3}+1)-2x^{5}}.

See Solution

Problem 31179

Find the limit: limx1x2+4x5x1\lim _{x \rightarrow 1} \frac{x^{2}+4 x-5}{x-1}. Use l'Hospital's Rule if needed.

See Solution

Problem 31180

Find the curve with positive derivative and length L=141+4x2dxL=\int_{1}^{4} \sqrt{1+4 x^{2}} d x through (1,0)(1,0).

See Solution

Problem 31181

Find the limit using l'Hospital's Rule if needed: limx(π/2)+cos(x)1sin(x)\lim _{x \rightarrow(\pi / 2)^{+}} \frac{\cos (x)}{1-\sin (x)} and limx0tan(5x)sin(8x)\lim _{x \rightarrow 0} \frac{\tan (5 x)}{\sin (8 x)}.

See Solution

Problem 31182

Calculate the integral: x72x4+13dx\int x^{7} \sqrt[3]{2 x^{4}+1} \, dx.

See Solution

Problem 31183

Find the nnth partial sum formula for each series and determine the sum if it converges.

See Solution

Problem 31184

Evaluate the integral: 1/5e2/51x[ln(5x)+3]2dx\int_{1 / 5}^{e^{2} / 5} \frac{1}{x[\ln (5 x)+3]^{2}} d x

See Solution

Problem 31185

Find the average rate of change of f(x)=43x+5f(x) = \frac{4}{3x + 5} over the interval [3,5][3, 5].

See Solution

Problem 31186

Find the average rate of change of f(x)=22x+3f(x)=\frac{2}{2x+3} over the interval [2,4][2,4].

See Solution

Problem 31187

Find the relative maximum point of f(x)=13x32x2+3x+1f(x)=\frac{1}{3} x^{3}-2 x^{2}+3 x+1. Use f(x)f'(x) and f(x)f''(x).

See Solution

Problem 31188

Find the limit using l'Hospital's Rule or a simpler method: limxx+x225x2\lim _{x \rightarrow \infty} \frac{x+x^{2}}{2-5 x^{2}} and limx0e9x19xx2\lim _{x \rightarrow 0} \frac{e^{9 x}-1-9 x}{x^{2}}.

See Solution

Problem 31189

Evaluate the integral: (cos(3x))23(sin(3x))3dx\int \sqrt[3]{(\cos(3 x))^{2}}(\sin(3 x))^{3} d x

See Solution

Problem 31190

List the first 8 terms and find the sum or divergence for these series:
7. n=0(1)n4n\sum_{n=0}^{\infty} \frac{(-1)^{n}}{4^{n}}
8. n=214n\sum_{n=2}^{\infty} \frac{1}{4^{n}}
9. n=1(174n)\sum_{n=1}^{\infty}\left(1-\frac{7}{4^{n}}\right)
10. n=0(1)n54n\sum_{n=0}^{\infty}(-1)^{n} \frac{5}{4^{n}}
11. n=0(52n+13n)\sum_{n=0}^{\infty}\left(\frac{5}{2^{n}}+\frac{1}{3^{n}}\right)
12. n=0(52n13n)\sum_{n=0}^{\infty}\left(\frac{5}{2^{n}}-\frac{1}{3^{n}}\right)
13. n=0(12n+(1)n5n)\sum_{n=0}^{\infty}\left(\frac{1}{2^{n}}+\frac{(-1)^{n}}{5^{n}}\right)
14. n=0(2n+15n)\sum_{n=0}^{\infty}\left(\frac{2^{n+1}}{5^{n}}\right)

See Solution

Problem 31191

Determine if the series 1+(25)+(25)2+1+\left(\frac{2}{5}\right)+\left(\frac{2}{5}\right)^{2}+\cdots converges or diverges. Find the sum if it converges.

See Solution

Problem 31192

Find the limit using l'Hospital's rule if needed: limx0e9x19xx2\lim _{x \rightarrow 0} \frac{e^{9 x}-1-9 x}{x^{2}}.

See Solution

Problem 31193

Find the limit: limx0e9x19xx2\lim _{x \rightarrow 0} \frac{e^{9 x}-1-9 x}{x^{2}}. Use l'Hospital's rule if needed.

See Solution

Problem 31194

Find the average rate of change of f(x)=5x24f(x)=5 x^{2}-4 from x=5x=5 to x=ax=a. Express your answer in terms of aa.

See Solution

Problem 31195

Find the limit: limx03x+sin(x)7x+cos(x)\lim _{x \rightarrow 0} \frac{3 x+\sin (x)}{7 x+\cos (x)}. Use I'Hospital's Rule if needed.

See Solution

Problem 31196

Find the limit using l'Hospital's Rule if needed: limx(ln(x))25x \lim _{x \rightarrow \infty} \frac{(\ln (x))^{2}}{5 x}
Also, find this limit: limx03x+sin(x)7x+cos(x) \lim _{x \rightarrow 0} \frac{3 x+\sin (x)}{7 x+\cos (x)}

See Solution

Problem 31197

Find the average rate of change of f(x)=x2+7xf(x)=x^{2}+7x on [3,3+h][-3,-3+h]. Express your answer in terms of hh.

See Solution

Problem 31198

Find the function with derivative f(x)=e7xf^{\prime}(x)=e^{7 x} that goes through P=(0,6/7)P=(0,6/7). What is f(x)=?f(x)=?

See Solution

Problem 31199

Find the limit: limxxsin(2πx)\lim _{x \rightarrow \infty} x \sin \left(\frac{2 \pi}{x}\right). Use l'Hospital's Rule if needed.

See Solution

Problem 31200

Find the limit: limx0+cot(5x)sin(15x)\lim _{x \rightarrow 0^{+}} \cot (5 x) \sin (15 x). What indeterminate form is it? Options: 000^{0}, 0\infty^{0}, 0\frac{\infty}{0}, 11^{\infty}, 0\infty \cdot 0.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord