Evaluate the following limits as x approaches 0: 1. limx→0x2(1+x)sinx−xcosx 2. limx→0xsinxex2−cosx 3. limx→0x(cosx−1)sinx−xex+x2 4. limx→0{sin2x1−x21}
Sketch the graph of the piecewise function and find the limits: 1. For f(x)=⎩⎨⎧sinxx2xx<00≤x<2x≥2, find:
i. limx→0f(x)
ii. limx→2f(x) 2. For f(x)=⎩⎨⎧ex∣x∣+1lnxx≤00<x<1x≥1, find:
i. limx→0f(x)
ii. limx→1f(x)