Calculus

Problem 33401

Evaluate the integral: sec(3x)tan(3x)2+sec(3x)dx\int \frac{\sec (3 x) \tan (3 x)}{2+\sec (3 x)} d x.

See Solution

Problem 33402

Find the derivative of the function f(x)=2x53x47x3x4f(x)=\frac{2 x^{5}-3 x^{4}-7 x^{3}}{x^{4}}. What is f(t)f^{\prime}(t)?

See Solution

Problem 33403

True or False: Does the integral 21x3ln(x)dx\int_{2}^{\infty} \frac{1}{x^{3} \ln (x)} dx converge?

See Solution

Problem 33404

Find the intervals when the acceleration of a particle, defined by x(t)=2t416t3x(t)=2 t^{4}-16 t^{3} for t0t \geq 0, is negative.

See Solution

Problem 33405

Find the derivative yy^{\prime} if y=lnty=\sqrt{\ln \sqrt{t}}. Options: a) 14tln(t)\frac{1}{4 t \sqrt{\ln (t)}} b) 12lnt\frac{1}{2 \sqrt{\ln \sqrt{t}}} c) 14tlnt\frac{1}{4 t \sqrt{\ln \sqrt{t}}} d) 12tln(t)\frac{1}{2 t \sqrt{\ln (t)}} e) 12tlnt\frac{1}{2 t \sqrt{\ln \sqrt{t}}}

See Solution

Problem 33406

Find the intervals where the particle moves right for x(t)=3t39t272tx(t)=3 t^{3}-9 t^{2}-72 t, t0t \geq 0.

See Solution

Problem 33407

Find the derivative of f(x)=(sin(4x+3))x32f(x) = \left(\sin(4x + 3)\right)^{x^3 - 2} using logarithms.

See Solution

Problem 33408

Find the derivative yy^{\prime} if y=lnty=\sqrt{\ln \sqrt{t}}. Options: a) 14tln(t)\frac{1}{4 t \sqrt{\ln (t)}}, b) 12lnt\frac{1}{2 \sqrt{\ln \sqrt{t}}}, c) 14tlnt\frac{1}{4 t \sqrt{\ln \sqrt{t}}}, d) 12tln(t)\frac{1}{2 t \sqrt{\ln (t)}}, e) 12tlnt\frac{1}{2 t \sqrt{\ln \sqrt{t}}}.

See Solution

Problem 33409

Find the critical points of the function f(x)=xex2f(x)=x e^{x^{2}}. Options: a. none, b. 13e\frac{1}{3 \sqrt{e}}, c. e12e^{-\frac{1}{2}}, d. 12-\frac{1}{2}.

See Solution

Problem 33410

Find the values of xx where the rate of change of y=13x33xy=\frac{1}{3} x^{3}-3 x equals that of xx. Options: ±1\pm 1, ±2\pm 2, ±1.5\pm 1.5, ±2.5\pm 2.5.

See Solution

Problem 33411

Find the tangent line approximation for f(3.9)f(3.9) given f(4)=9f(4)=-9 and f(4)=3f'(4)=3.

See Solution

Problem 33412

Evaluate the integral from 1 to e of 2lnx+3xdx\frac{2 \ln x + 3}{x} \, dx: Select one 3, None, 2, or 5.

See Solution

Problem 33413

Find the derivative of y=xln(ln(x))y=x^{\ln (\ln (x))} at x=ex=e. Options: 0, 1, e1e^{-1}, none, e.

See Solution

Problem 33414

Find the derivative of y=xln(ln(x))y=x^{\ln (\ln (x))} at x=ex=e. What is the value? Options: ee, e1e^{-1}, none, 1, 0.

See Solution

Problem 33415

Evaluate the integral from 1 to 2: 12xx(1+ln(x))dx=\int_{1}^{2} x^{x}(1+\ln (x)) d x= Select one: 00, 2, none, 33, 10.

See Solution

Problem 33416

Find the derivative yy^{\prime} of the function y=(t)ty=(\sqrt{t})^{t}.

See Solution

Problem 33417

Find the derivative of y=(t)ty=(\sqrt{t})^{t}. What is y=y^{\prime}=?

See Solution

Problem 33418

Evaluate the integral from 3 to 4: 34xx(1+ln(x))dx=\int_{3}^{4} x^{x}(1+\ln (x)) d x=. Choose from: 5, 229, 221, none, 7.

See Solution

Problem 33419

Calculate the integral from 3 to 4 of xx(1+ln(x))x^{x}(1+\ln (x)) dx. What is the result? Options: none, 221, 7, 5, 229.

See Solution

Problem 33420

Find the derivative of the function y=xln(x)y=x^{\ln (x)} for x>0x>0.

See Solution

Problem 33421

Evaluate the integral from e2e^{2} to e3e^{3} of 1+ln(x)xln(x)dx\frac{1+\ln (x)}{x \ln (x)} \, dx.

See Solution

Problem 33422

Find the derivative yy^{\prime} if y=tlog3(e(sint)(ln3))y=t \log _{3}\left(e^{(\sin t)(\ln 3)}\right).

See Solution

Problem 33423

Determine if the series n=1nn5n2\sum_{n=1}^{\infty} \frac{n^{n}}{5^{n^{2}}} converges or diverges.

See Solution

Problem 33424

Calculate the integral from 1 to 2 of xx(1+ln(x))dxx^{x}(1+\ln (x)) \, dx. What is the result? Choices: 1, 0, none, 3, 2.

See Solution

Problem 33425

Evaluate the integral from 2 to e: 2e1+ln(x)xln(x)dx=\int_{2}^{e} \frac{1+\ln (x)}{x \ln (x)} d x=. Select the correct answer.

See Solution

Problem 33426

Find the derivative yy', if y=log2(8tln2)y=\log_{2}(8 t^{\ln 2}).

See Solution

Problem 33427

Find the derivative of y=sin(xx)y=\sin \left(x^{x}\right), i.e., y=y^{\prime}=? Select the correct option.

See Solution

Problem 33428

Evaluate the integral from e2e^2 to e3e^3 of 1+ln(x)xln(x)dx\frac{1+\ln(x)}{x \ln(x)} \, dx. What is the result?

See Solution

Problem 33429

Find the derivative yy', where y=(x+1)xy=(x+1)^{x}. Choose the correct option.

See Solution

Problem 33430

Find the derivative yy', where y=xsin(log7x)y=x \sin(\log_7 x). Select the correct expression for yy'.

See Solution

Problem 33431

Find the limit limnan+1an\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}} for the series n=1(10)n(n+5)!(2n+1)!\sum_{n=1}^{\infty} \frac{(10)^{n}(n+5) !}{(2 n+1) !}. Choose from: a. 12\frac{1}{2} b. 0 c. 10 d. \infty e. 5

See Solution

Problem 33432

Calculate the integral from e2e^{2} to e3e^{3} of 1+ln(x)xln(x)dx\frac{1+\ln (x)}{x \ln (x)} \, dx and choose the correct answer.

See Solution

Problem 33433

Find the derivative yy', if y=3log8(log2t)y=3 \log _{8}(\log _{2} t).

See Solution

Problem 33434

Find the tangent line to ff at x=1x=1 and use it to approximate f(0.95)f(0.95). Given f(1)=7f(1)=7 and f(x)=3x+5f'(x)=-3x+5.

See Solution

Problem 33435

Evaluate the integral: 2log2(x1)(x1)dx\int \frac{2 \log _{2}(x-1)}{(x-1)} d x

See Solution

Problem 33436

Find the derivative of y=sin(xx)y=\sin \left(x^{x}\right), i.e., calculate yy^{\prime}.

See Solution

Problem 33437

Find the derivative of y=(t)ty=(\sqrt{t})^{t}. What is y=y^{\prime}=?

See Solution

Problem 33438

Find the derivative of y=xln(ln(x))y=x^{\ln (\ln (x))} at x=ex=e. What is the value? Choose from: e1e^{-1}, 1, 0, e, none.

See Solution

Problem 33439

Evaluate the integral: dxx(log8x)2\int \frac{d x}{x\left(\log _{8} x\right)^{2}}. Choose the correct answer from the options.

See Solution

Problem 33440

Find the derivative yy^{\prime} if y=log2(8tln2)y=\log _{2}(8 t^{\ln 2}). Choices: tln2\frac{t}{\ln 2}, ln8t\frac{\ln 8}{t}, none, 3+lnt3+\ln t, 1t\frac{1}{t}.

See Solution

Problem 33441

Calculate the integral from 1 to 2 of xx(1+ln(x))x^{x}(1+\ln (x)) dx. What is the value? Options: 0, 3, 2, 1, none.

See Solution

Problem 33442

Find the derivative of y=xln(x)y=x^{\ln (x)} for x>0x>0. Choose the correct option from the list.

See Solution

Problem 33443

Evaluate the integral: dxxlog10x\int \frac{d x}{x \log _{10} x}. Select the correct answer from the options given.

See Solution

Problem 33444

Find the derivative yy', where y=xsin(log7x)y=x \sin(\log_{7} x). Options include various expressions involving sin\sin and cos\cos.

See Solution

Problem 33445

Evaluate the integral from 2 to e of (1 + ln(x)) / (x ln(x)) dx. What is the result?

See Solution

Problem 33446

Find the derivative of y=xln(ln(x))y=x \ln (\ln (x)) at x=ex=e. What is the value? Options: e, 2, 0, none, 1.

See Solution

Problem 33447

Calculate the integral 12xx(1+ln(x))dx\int_{1}^{2} x^{x}(1+\ln (x)) d x.

See Solution

Problem 33448

Evaluate the integral dxx(log8x)2\int \frac{d x}{x(\log_{8} x)^{2}} and choose the correct answer.

See Solution

Problem 33449

Find the derivative of y=xln(ln(x))y=x^{\ln (\ln (x))} at x=ex=e. What is the value? Options: ee, e1e^{-1}, none, 0, 1.

See Solution

Problem 33450

Calculate the integral from 3 to 4 of xx(1+ln(x))x^{x}(1+\ln (x)) with respect to xx.

See Solution

Problem 33451

Find the derivative of y=(x+1)xy=(x+1)^{x}. What is y=y^{\prime}=?

See Solution

Problem 33452

Determine the convergence or divergence of the series n=11n+1\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}+1}.

See Solution

Problem 33453

Determine the convergence of the series n=15nn2+1\sum_{n=1}^{\infty} \frac{5 n}{n^{2}+1} using comparison tests.

See Solution

Problem 33454

Find the derivative of y=xln(x)y=x^{\ln (x)} for x>0x>0. Choose the correct option from the list provided.

See Solution

Problem 33455

Find the limit limnan+1an\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}} for the series n=1(2n)!(n!)(n+1)!\sum_{n=1}^{\infty} \frac{(2 n) !}{(n !)(n+1) !}. Choices: a. 4 b. \infty c. 0 d. 1 e. 2

See Solution

Problem 33456

Evaluate the integral from 2 to 3 of xx(1+ln(x))dxx^{x}(1+\ln (x)) \, dx. What is the result? Choose from: 23, none, 1, 21, 5.

See Solution

Problem 33457

Find the derivative yy^{\prime} of y=tlog3(e(sint)(ln3))y=t \log _{3}(e^{(\sin t)(\ln 3)}).

See Solution

Problem 33458

Find the derivative of y=(lnx)lnxy=(\ln x)^{\ln x}. What is yy'?

See Solution

Problem 33459

Calculate the integral from 2 to 3 of xx(1+ln(x))dxx^{x}(1+\ln (x)) \, dx. What is the result? Choose: 21, none, 1, 23, 5.

See Solution

Problem 33460

Evaluate the integral from 2 to 3 of xx(1+ln(x))dxx^{x}(1+\ln (x)) \, dx. What is the result? Options: 1, 5, 21, none, 23.

See Solution

Problem 33461

Determine the convergence of the series n=21n21\sum_{n=2}^{\infty} \frac{1}{\sqrt{n^{2}-1}}. Options: a. none b. diverges with n=21n\sum_{n=2}^{\infty} \frac{1}{n} c. diverges with n=21n2+1\sum_{n=2}^{\infty} \frac{1}{\sqrt{n^{2}+1}} d. converges with n=21n2\sum_{n=2}^{\infty} \frac{1}{n^{2}} e. converges with n=21n\sum_{n=2}^{\infty} \frac{1}{n}.

See Solution

Problem 33462

Evaluate the integral: I=2log2(x1)(x1)dxI = \int \frac{2 \log _{2}(x-1)}{(x-1)} d x. Choose the correct answer from the options.

See Solution

Problem 33463

Find the integral of 1xlog10x\frac{1}{x \log_{10} x} and choose the correct answer from the options given.

See Solution

Problem 33464

Find the derivative yy^{\prime} if y=tlog3(e(sint)(ln3))y=t \log _{3}\left(e^{(\sin t)(\ln 3)}\right).

See Solution

Problem 33465

Find the derivative of y=(t)ty=(\sqrt{t})^{t}. What is yy^{\prime}?

See Solution

Problem 33466

Calculate the integral from 2 to 3 of xx(1+ln(x))x^{x}(1+\ln (x)). What is the result? Options: 23, none, 21, 5, 1.

See Solution

Problem 33467

Find the derivative of y=xln(x)y=x^{\ln (x)} for x>0x>0. Choose from: 2xln(x)1ln(x)2 x^{\ln (x)-1} \ln (x), 2xln(x)ln(x)2 x^{\ln (x)} \ln (x), xln(x)1ln(x)x^{\ln (x)-1} \ln (x), none, xln(x)ln(x)x^{\ln (x)} \ln (x).

See Solution

Problem 33468

Find the integral of x2x(1+lnx)dxx^{2 x}(1+\ln x) \, dx. What is the result?

See Solution

Problem 33469

Find the derivative yy^{\prime} if y=log2(8tln2)y=\log _{2}(8 t^{\ln 2}). Options: 3+lnt3+\ln t, 1t\frac{1}{t}, tln2\frac{t}{\ln 2}, ln8t\frac{\ln 8}{t}, none.

See Solution

Problem 33470

Find the derivative yy', where y=(x+1)xy = (x+1)^x. Choose from: (x+1)x(1x+1+ln(x+1))(x+1)^{x}(\frac{1}{x+1}+\ln(x+1)) or others.

See Solution

Problem 33471

Find the derivative of y=xln(ln(x))y=x \ln (\ln (x)) at x=ex=e.

See Solution

Problem 33472

Calculate the integral from 2 to 3 of xx(1+ln(x))x^{x}(1+\ln (x)) dx. What is the result? Options: 21, 5, 23, 1.

See Solution

Problem 33473

Calculate the integral from e2e^{2} to e3e^{3} of 1+ln(x)xln(x)dx\frac{1+\ln (x)}{x \ln (x)} \, dx.

See Solution

Problem 33474

Find the derivative yy^{\prime} of y=3log8(log2t)y=3 \log _{8}(\log _{2} t). Choices include 3t(lnt)(ln2)\frac{3}{t(\ln t)(\ln 2)} and others.

See Solution

Problem 33475

Evaluate the integral: dxx(log8x)2\int \frac{d x}{x\left(\log _{8} x\right)^{2}}. Choose the correct result.

See Solution

Problem 33476

Calculate the integral from 2 to 3 of xx(1+ln(x))dxx^{x}(1+\ln (x)) \, dx.

See Solution

Problem 33477

Find the derivative yy^{\prime} if y=tlog3(e(sint)(ln3))y=t \log _{3}\left(e^{(\sin t)(\ln 3)}\right).

See Solution

Problem 33478

Determine if the series n=17+10cosnn4\sum_{n=1}^{\infty} \frac{7+10 \cos n}{n^{4}} diverges or converges.

See Solution

Problem 33479

Find the derivative yy^{\prime} if y=log2(8tln2)y=\log _{2}(8 t^{\ln 2}).

See Solution

Problem 33480

Calculate the integral from 3 to 4 of xx(1+ln(x))dxx^{x}(1+\ln(x)) \, dx. What is the result? Options: none, 7, 221, 229, 5.

See Solution

Problem 33481

Find the derivative of y=xln(ln(x))y=x^{\ln (\ln (x))} at x=ex=e.

See Solution

Problem 33482

Find the integral of the function xx(1+ln(x))x^{x}(1+\ln (x)).

See Solution

Problem 33483

Evaluate the integral from 3 to 4 of xx(1+ln(x))x^{x}(1+\ln (x)). What is the result? Select from: 229, 5, 221, none, 7.

See Solution

Problem 33484

Find the derivative of y=(x+1)xy=(x+1)^{x}. What is yy^{\prime}? Choose the correct option.

See Solution

Problem 33485

Find the derivative yy^{\prime} of y=tlog3(e(sint)(ln3))y=t \log _{3}\left(e^{(\sin t)(\ln 3)}\right).

See Solution

Problem 33486

Find the derivative of y=xln(ln(x))y=x^{\ln (\ln (x))} at x=ex=e. What is the value? Options: e1e^{-1}, none, 0, 1.

See Solution

Problem 33487

Evaluate the integral from 2 to 3 of xx(1+ln(x))x^{x}(1+\ln (x)). What is the result? Options: 23, 21, 5, none, 1.

See Solution

Problem 33488

Find the derivative of y=xln(ln(x))y=x^{\ln (\ln (x))} at x=ex=e. What is the value? Options: none, 1, 0, e1e^{-1}, ee.

See Solution

Problem 33489

Find the derivative of y=(lnx)lnxy=(\ln x)^{\ln x}. What is y=y^{\prime}=?

See Solution

Problem 33490

Find the derivative yy^{\prime} if y=tlog3(e(sint)(ln3))y=t \log _{3}\left(e^{(\sin t)(\ln 3)}\right).

See Solution

Problem 33491

Evaluate the integral: dxxlog10x\int \frac{d x}{x \log_{10} x}.

See Solution

Problem 33492

Find the derivative yy' if y=(x+1)xy = (x+1)^x.

See Solution

Problem 33493

Calculate the integral from 2 to 3 of xx(1+ln(x))dxx^{x}(1+\ln (x)) \, dx. What is the result? Choose: none, 1, 5, 23, 21.

See Solution

Problem 33494

Find the integral: 2log2(x1)(x1)dx\int \frac{2 \log _{2}(x-1)}{(x-1)} d x. Choose the correct result from the options given.

See Solution

Problem 33495

Find the derivative yy^{\prime} of the function y=(x+1)xy=(x+1)^{x}.

See Solution

Problem 33496

Find the derivative yy^{\prime} of y=xsin(log7x)y=x \sin(\log_{7} x). Choose from the options provided.

See Solution

Problem 33497

Find the derivative y y' of y=(x+1)x y = (x+1)^x . Choose the correct expression for y y' .

See Solution

Problem 33498

Find the derivative of y=sin(xx)y=\sin \left(x^{x}\right), i.e., y=y^{\prime}=?

See Solution

Problem 33499

Evaluate the integral: dxx(log8x)2\int \frac{d x}{x\left(\log _{8} x\right)^{2}}. Choose the correct answer from the options provided.

See Solution

Problem 33500

Calculate the integral from 2 to 3 of xx(1+ln(x))x^{x}(1+\ln (x)) dx. What is the result? Options: 1, 23, none, 5, 21.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord