Calculus

Problem 18201

Evaluate the integral: (7x2+3x5)dx=+C\int(7 x^{2}+3 x-5) \, dx = \square + C

See Solution

Problem 18202

Check if the series n=21n13\sum_{n=2}^{\infty} \frac{1}{\sqrt[3]{n-1}} and n=11n13\sum_{n=1}^{\infty} \frac{1}{n 13} converge or diverge.

See Solution

Problem 18203

Evaluate the integral: dx12x3=+C\int \frac{d x}{12 x^{3}}=\square+C

See Solution

Problem 18204

Find an antiderivative GG for g(z)=1z6g(z)=\frac{1}{z^{6}}. What is G(z)=?G(z)=?

See Solution

Problem 18205

Evaluate the integral: (5x34e+3x2)dx\int\left(\frac{5}{\sqrt[4]{x^{3}}}-e+3 x^{2}\right) d x

See Solution

Problem 18206

Find an antiderivative PP of p(t)=1t45p(t)=\frac{1}{\sqrt[5]{t^{4}}}.

See Solution

Problem 18207

Calculate the integral: (2tt+1t2t)dt\int (2 t \sqrt{t} + \frac{1}{t^{2} \sqrt{t}}) \, dt

See Solution

Problem 18208

Find the formula for the nnth term of partial sums SnS_{n} for the series k=1(k+10k+9)\sum_{k=1}^{\infty}(\sqrt{k+10}-\sqrt{k+9}) and evaluate limnSn\lim_{n \to \infty} S_{n}.

See Solution

Problem 18209

Find the formula for the nnth term of the series k=1(k+5k+4)\sum_{k=1}^{\infty}(\sqrt{k+5}-\sqrt{k+4}).

See Solution

Problem 18210

Find the nnth term of the partial sums SnS_n for the series k=1(k+5k+4)\sum_{k=1}^{\infty}(\sqrt{k+5}-\sqrt{k+4}) and evaluate limnSn\lim_{n \rightarrow \infty} S_n.

See Solution

Problem 18211

A piston moves into a cylinder (radius 4 cm4 \mathrm{~cm}) at 3 cm/s3 \mathrm{~cm/s}. Find the volume change rate when the piston is 4 cm4 \mathrm{~cm} from the base.

See Solution

Problem 18212

Find dy/dx for y=tan12x3y=\tan^{-1} \frac{2x}{3}.

See Solution

Problem 18213

Evaluate the series k=1(65k65k+1)\sum_{k=1}^{\infty}\left(\frac{6}{5^{k}}-\frac{6}{5^{k+1}}\right) using telescoping and geometric series methods.

See Solution

Problem 18214

Find the volume of the solid formed by rotating the area in the first quadrant bounded by y=x6y=x^{6}, y=1y=1, and the yy-axis around the xx-axis. Volume =

See Solution

Problem 18215

Find the derivative of y=tan12x3y=\tan^{-1} \frac{2x}{3}.

See Solution

Problem 18216

Find the function whose derivative is f(x)=e3xf^{\prime}(x)=e^{3 x} and passes through the point P=(0,43)P=(0, \frac{4}{3}).

See Solution

Problem 18217

Find the antiderivative x(t)x(t) such that dxdt=5et6\frac{d x}{d t}=5 e^{t}-6 and x(0)=7x(0)=7.

See Solution

Problem 18218

Find the fluid force on a submerged plate with edges at y=x13y=x^{\frac{1}{3}} and y=x13y=-x^{\frac{1}{3}} in water at 63ft\sqrt[3]{6} \mathrm{ft} depth. Density: 62.5lb/ft362.5 \mathrm{lb} / \mathrm{ft}^{3}. F=lb F=\square \mathrm{lb}

See Solution

Problem 18219

Find the rate of change of unit revenue RR when unit cost CC changes by \15/unitand15/unit and R = \20002000.

See Solution

Problem 18220

Find the derivative of yy with respect to xx for y=2sin1(4x4)y=2 \sin^{-1}(4 x^{4}).

See Solution

Problem 18221

Find the rate of change of the area (dA/dt) for a 7 cm×4 cm7 \mathrm{~cm} \times 4 \mathrm{~cm} image with length change 0.5 cm/s0.5 \mathrm{~cm/s} and width change 0.3 cm/s0.3 \mathrm{~cm/s}.

See Solution

Problem 18222

Calculate the total force on a dam with width w=3540 mw=3540 \mathrm{~m}, height h=85 mh=85 \mathrm{~m}, base width b=2910 mb=2910 \mathrm{~m}, ρ=1000 kg/m3\rho=1000 \mathrm{~kg/m^3}, and g=9.8 m/s2g=9.8 \mathrm{~m/s^2}. Use a definite integral.

See Solution

Problem 18223

Find the derivative of yy where y=tan1(ln(3x))y=\tan^{-1}(\ln(3x)).

See Solution

Problem 18224

Evaluate the series: k=2(13)3k\sum_{k=2}^{\infty}\left(\frac{1}{3}\right)^{3 k}. Does it converge or diverge?

See Solution

Problem 18225

Evaluate the series k=0[2(57)k3(58)k]\sum_{k=0}^{\infty}\left[2\left(\frac{5}{7}\right)^{k}-3\left(\frac{5}{8}\right)^{k}\right] or state if it diverges.

See Solution

Problem 18226

Evaluate the series k=0[6(17)k3(58)k]\sum_{k=0}^{\infty}\left[6\left(\frac{1}{7}\right)^{k}-3\left(\frac{5}{8}\right)^{k}\right] or state if it diverges.

See Solution

Problem 18227

Evaluate the integral: 23(5x+9)dx\int_{2}^{3}(5 x+9) d x using the Fundamental Theorem of Calculus.

See Solution

Problem 18228

Evaluate the integral using the Fundamental Theorem of Calculus: 03(x35+4x)dx\int_{0}^{3}\left(\frac{x^{3}}{5}+4 x\right) d x

See Solution

Problem 18229

Evaluate the integral using the Fundamental Theorem of Calculus: 01(2y2+y4)dy\int_{0}^{1}(2 y^{2}+y^{4}) d y.

See Solution

Problem 18230

Find the derivative of yy where y=sec1(6x+77)y=\sec^{-1}\left(\frac{6x+7}{7}\right).

See Solution

Problem 18231

Evaluate the integral from 3 to 5 of 5x2+4x2\frac{5 x^{2}+4}{x^{2}} dx.

See Solution

Problem 18232

Evaluate the integral from 0 to 1 of x3/4x^{3/4} with respect to xx.

See Solution

Problem 18233

Find the general antiderivative of the function: (y3+6y)dy\int\left(\frac{\sqrt{y}}{3}+\frac{6}{\sqrt{y}}\right) d y

See Solution

Problem 18234

Find the derivative of yy where y=sec1(6x+77)y=\sec^{-1}\left(\frac{6x+7}{7}\right).

See Solution

Problem 18235

Evaluate the integral using the Fundamental Theorem of Calculus: 08t2dt\int_{0}^{8} t^{2} dt.

See Solution

Problem 18236

Evaluate the integral using the Fundamental Theorem of Calculus: 325r3dr\int_{-3}^{-2} \frac{5}{r^{3}} d r.

See Solution

Problem 18237

Evaluate the limit using l'Hôpital's Rule: limx0sin2x6x\lim _{x \rightarrow 0} \frac{\sin 2 x}{6 x}.

See Solution

Problem 18238

Evaluate the integral using the Fundamental Theorem of Calculus: 13e0.6tdt\int_{1}^{3} e^{-0.6 t} dt.

See Solution

Problem 18239

Evaluate the area between the xx-axis and f(x)=15x2+3f(x)=15 x^{2}+3 from x=3x=-3 to x=10x=10 using the Fundamental Theorem of Calculus.

See Solution

Problem 18240

Find the general antiderivative of the function: (1x4x415)dx\int\left(\frac{1}{x^{4}}-x^{4}-\frac{1}{5}\right) d x

See Solution

Problem 18241

Find the derivative of the inverse function at 0: (f1)(0)\left(f^{-1}\right)^{\prime}(0) where f(x)=txdt4+t4f(x)=\int_{t}^{x} \frac{d t}{\sqrt{4+t^{4}}}.

See Solution

Problem 18242

Evaluate the series: k=2(25)3k\sum_{k=2}^{\infty}\left(\frac{2}{5}\right)^{3 k}. Does it converge or diverge?

See Solution

Problem 18243

The company's net worth growth rate is f(t)=285011t2f'(t)=2850-11t^2. How does it change from 1990 to 2000? Choose A, B, C, or D. If worth \$55000 in 1990, what is it in 2000?

See Solution

Problem 18244

Evaluate the integral using the Fundamental Theorem of Calculus: 245xdx\int_{2}^{4} \frac{5}{x} d x.

See Solution

Problem 18245

Find the integral ab28e0.08tdt\int_{a}^{b} 28 e^{0.08 t} \, dt for oil used from 1990 to 1998. What are aa and bb?

See Solution

Problem 18246

Find the derivative of the inverse function at 0: (f1)(0)\left(f^{-1}\right)^{\prime}(0) where f(x)=4xdt4+t4f(x)=\int_{4}^{x} \frac{d t}{\sqrt{4+t^{4}}}.

See Solution

Problem 18247

Find the derivative of the integral: ddx0x2tdtt+5\frac{d}{d x} \int_{0}^{x^{2}} \frac{t d t}{t+5}.

See Solution

Problem 18248

Find the derivative with respect to θ\theta of the integral 1θ3cot(u)du\int_{1}^{\theta} 3 \cot (u) \, du.

See Solution

Problem 18249

Find the derivative of the integral dds7stan(1u2+5)du\frac{d}{d s} \int_{-7}^{s} \tan \left(\frac{1}{u^{2}+5}\right) d u.

See Solution

Problem 18250

Find the total cost for the first 49 units given the marginal cost function mc(x)=13xm c(x)=\frac{13}{\sqrt{x}}.

See Solution

Problem 18251

Find the derivative: ddx11/xcos5(t)dt\frac{d}{d x} \int_{1}^{1 / x} \cos ^{5}(t) d t

See Solution

Problem 18252

Find the tangent line equation for y=4sinxy=-4 \sin x at x=π4x=\frac{\pi}{4}.

See Solution

Problem 18253

Find (f1)(3)\left(f^{-1}\right)^{\prime}(3) for f(x)=x+5x+1f(x)=\frac{x+5}{x+1} where x>1x>-1.

See Solution

Problem 18254

Find (f1)(3)\left(f^{-1}\right)^{\prime}(3) for the function f(x)=x+5x+1f(x) = \frac{x+5}{x+1}, where x>1x > -1.

See Solution

Problem 18255

Find the derivative: ddxxx4tan(3t)dt\frac{d}{d x} \int_{\sqrt{x}}^{x^{4}} \tan (3 t) d t

See Solution

Problem 18256

Compute the integral 22x2+2x3+3x29x27dx\int_{-2}^{2} \frac{x^{2}+2}{x^{3}+3 x^{2}-9 x-27} d x and approximate it to 3 decimal places.

See Solution

Problem 18257

Evaluate the limit using I'Hôpital's Rule: limx5x+78x2+5x8\lim _{x \rightarrow \infty} \frac{5 x+7}{8 x^{2}+5 x-8}.

See Solution

Problem 18258

An object's acceleration is a(t)=7sin(t)a(t)=7 \sin (t) with initial velocity v(0)=12 m/sv(0)=-12 \mathrm{~m/s}.
a) Find v(t)v(t). b) Calculate displacement from t=0t=0 to t=3t=3. c) Determine total distance traveled from t=0t=0 to t=3t=3.

See Solution

Problem 18259

Differentiate the integral u5ux2+2dx\int_{-u}^{5u} \sqrt{x^{2}+2} \, dx with respect to uu.

See Solution

Problem 18260

Find an antiderivative of the function 20x6-\frac{20}{x^{6}}.

See Solution

Problem 18261

Find (f1)(1)\left(f^{-1}\right)^{\prime}(1) for f(x)=cos(2x)f(x)=\cos(2x), where 0xπ/20 \leq x \leq \pi/2.

See Solution

Problem 18262

Find (f1)(63)\left(f^{-1}\right)^{\prime}(63) for the function f(x)=x31f(x) = x^{3} - 1.

See Solution

Problem 18263

Find a tangent line to y=cosxy=-\cos x with slope -1. Is there more than one solution? Explain.

See Solution

Problem 18264

Evaluate the limit using l'Hôpital's Rule: limx1x38x2+7x1\lim _{x \rightarrow 1} \frac{x^{3}-8 x^{2}+7}{x-1}

See Solution

Problem 18265

Find the number of cars passing an intersection from 6 am to 7 am given r(t)=400+1000t150t2r(t)=400+1000 t-150 t^{2}.

See Solution

Problem 18266

Find the limit as xx approaches 0 from the right: limx0+x3/lnx\lim _{x \rightarrow 0^{+}} x^{-3 / \ln x}.

See Solution

Problem 18267

Evaluate the series k=2(38)4k\sum_{k=2}^{\infty}\left(\frac{3}{8}\right)^{4 k} or state if it diverges.

See Solution

Problem 18268

Solve the integral 55x3sin2xx4+2x2+1dx\int_{-5}^{5} \frac{x^{3} \sin ^{2} x}{x^{4}+2 x^{2}+1} d x.

See Solution

Problem 18269

Complete the chart for the equation 1(x5)2\frac{1}{(x-5)^{2}} as xx \to \infty, xx \to -\infty, x5x \to 5^{-}, and x5+x \to 5^{+}.

See Solution

Problem 18270

Find the limit as xx approaches infinity: limx(1+2x4)x\lim _{x \rightarrow \infty}\left(1+\frac{2}{x^{4}}\right)^{x}.

See Solution

Problem 18271

Find the general antiderivative of 6cost-6 \cos t.

See Solution

Problem 18272

Find the limit as n n approaches infinity of the sum for f(x)=x6 f(x)=\sqrt[6]{x} from 1 1 to 18 18 using right endpoints.

See Solution

Problem 18273

Evaluate the limit using l'Hôpital's Rule: limx0cos(5x)1x2\lim _{x \rightarrow 0} \frac{\cos (5 x)-1}{x^{2}}.

See Solution

Problem 18274

Find 26[f(x)4g(x)]dx\int_{2}^{6}[f(x)-4 g(x)] d x given 26f(x)dx=2\int_{2}^{6} f(x) d x=-2 and 26g(x)dx=10\int_{2}^{6} g(x) d x=10.

See Solution

Problem 18275

Estimate the area under f(x)=x2f(x)=x^{2} from x=0x=0 to x=1x=1 using the midpoint sum with 2 equal-width rectangles.

See Solution

Problem 18276

An object is thrown upwards at 1.8 m/s1.8 \mathrm{~m/s} from a 34.5 m34.5 \mathrm{~m} building. Find its impact velocity on the ground.

See Solution

Problem 18277

Find the derivative of y=0xdt2t+5y=\int_{0}^{x} \frac{d t}{2 t+5}.

See Solution

Problem 18278

A rocket launched from 0 m reaches 382 m. What is its velocity when it returns to 0 m? Remember, velocity is a vector.

See Solution

Problem 18279

Find the value of g(3)g^{\prime}(3) for the differentiable function g(x)=f1(x)g(x)=f^{-1}(x) given f(3)=15,f(6)=3,f(3)=8,f(6)=2f(3)=15, f(6)=3, f^{\prime}(3)=-8, f^{\prime}(6)=-2.

See Solution

Problem 18280

Estimate the area under f(x)=25x2f(x)=25-x^{2} from x=5x=-5 to x=5x=5 using the midpoint sum with 2 equal-width rectangles.

See Solution

Problem 18281

A sphere's radius decreases at 2 cm/s. When r=3r=3 cm, find the rate of change of surface area S=4πr2S=4\pi r^2.

See Solution

Problem 18282

Find the acceleration of a particle with velocity v(t)=7(1.01)t2v(t)=7-(1.01)^{-t^{2}} at time t=3t=3.

See Solution

Problem 18283

Find the average rate of change for g(x)=12(4)xg(x)=\frac{1}{2}(4)^{x} from x=1x=1 to x=5x=5.

See Solution

Problem 18284

Calculate (03ezdz)(02π7dθ)\left(\int_{0}^{3} e^{-z} d z\right)\left(\int_{0}^{2 \pi} 7 d \theta\right).

See Solution

Problem 18285

A spacecraft moves away from Earth. Given acceleration a=4×105x2a = \frac{4 \times 10^{5}}{x^{2}}, find: (a) v2v^{2} in terms of xx, (b) vv at x=10000x=10000, (c) terminal velocity. Ans: (a) v2=21+8×105xv^{2}=21+\frac{8 \times 10^{5}}{x}, (b) 10kms110 \mathrm{kms}^{-1}, (c) 4.58kms14.58 \mathrm{kms}^{-1}.

See Solution

Problem 18286

Find g(2)g^{\prime}(2) if f(x)=x3+xf(x)=x^{3}+x and g(x)=f1(x)g(x)=f^{-1}(x) with g(2)=1g(2)=1.

See Solution

Problem 18287

Find g(1)g'(1) if g(x)=f1(x)g(x)=f^{-1}(x) and f(x)=2x+exf(x)=2x+e^x with (0,1)(0,1) on ff.

See Solution

Problem 18288

Find 33f(x)dx\int_{3}^{3} f(x) d x and 42f(x)dx\int_{4}^{2} f(x) d x given that 24f(x)dx=3\int_{2}^{4} f(x) d x=-3.

See Solution

Problem 18289

Calculate the integral from 0 to 9 of 4x4 \sqrt{x} with respect to xx.

See Solution

Problem 18290

Calculate the area between the curve y=3x3y=\frac{3}{x^{3}} and the xx-axis for 1x31 \leq x \leq 3.

See Solution

Problem 18291

An object is thrown upward at 8.9 m/s8.9 \mathrm{~m/s} from a 31.8 m31.8 \mathrm{~m} building. Find its impact velocity on the ground.

See Solution

Problem 18292

Estimate the distance a race car travels in 8 seconds using left endpoint values for 8 intervals of length 1. Use velocities: 0,10,23,19,29,32,34,12,50, 10, 23, 19, 29, 32, 34, 12, 5.

See Solution

Problem 18293

Determine if the sequence an=n2cos(n)6+n2a_{n}=\frac{n^{2} \cos (n)}{6+n^{2}} converges or diverges. Enter DIVERGES if it diverges.

See Solution

Problem 18294

Find the average value of f(x)=1xf(x)=\frac{1}{x} on [7,7e][7,7 e]. What is the value of f=f=\square?

See Solution

Problem 18295

What is the result of integrating population growth rate from t=at=a to t=bt=b where b>ab>a? Choose the correct answer.

See Solution

Problem 18296

Calculate the average value of f(x)=cosxf(x)=-\cos x from π2-\frac{\pi}{2} to π2\frac{\pi}{2}. Answer: \square.

See Solution

Problem 18297

Evaluate the expression: (θ214sin(2θ)θ=0π/2)(cos3(φ)3cos(φ)φ=0π/2)(3ρ5ρ=03)-\left(\frac{\theta}{2}-\frac{1}{4} \sin (2 \theta) \big|_{\theta=0}^{\pi / 2}\right)\left(\frac{\cos ^{3}(\varphi)}{3}-\cos (\varphi) \big|_{\varphi=0}^{\pi / 2}\right)\left(3 \rho^{5} \big|_{\rho=0}^{3}\right).

See Solution

Problem 18298

Given an=2n6n+1a_{n}=\frac{2 n}{6 n+1}, is {an}\{a_{n}\} convergent or divergent? Also, is n=1an\sum_{n=1}^{\infty} a_{n} convergent or divergent?

See Solution

Problem 18299

A pizza pan cools from 450F450^{\circ} \mathrm{F} to 75F75^{\circ} \mathrm{F}. After 5 min it's 300F300^{\circ} \mathrm{F}. Find when it reaches 135F135^{\circ} \mathrm{F} and 240F240^{\circ} \mathrm{F}. What trends do you observe?

See Solution

Problem 18300

Graph the function and find the area to evaluate the integral: 2yxdx\int_{-2}^{y}|x| d x.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord