Calculus

Problem 16901

Die Funktion f(x)=xf(x)=|x| hat bei x=0x=0 ein Minimum. Erkläre, warum man dieses Minimum nicht mit Extremabedingungen findet.

See Solution

Problem 16902

Evaluate the integral: e1/x2x3dx\int \frac{e^{1 / x^{2}}}{x^{3}} d x.

See Solution

Problem 16903

How much water is left in a tank after 3 minutes if it starts with 70 gallons and leaks at r(t)=10t23r(t)=10-\frac{t^{2}}{3}?

See Solution

Problem 16904

Bestimme die Füllhöhe des Pools nach 10 Minuten mit v(t)=0,1t21t3+1+40v(t)=0,1 t^{2}-\frac{1}{t^{3}+1}+40 und Grundfläche 3,6 m2\mathrm{m}^{2}.

See Solution

Problem 16905

1.) Initial amount of Carbon-14? 2.) Amount after 16294 years? 3.) Half-life of Carbon-14?
Given: A(t)=934e0.00012tA(t)=934 e^{-0.00012 t}

See Solution

Problem 16906

Find the equation of F(x)F(x) if its slope is 6e3x+5ex6 e^{3 x}+5 e^{-x} and it has a yy-intercept of 5.

See Solution

Problem 16907

A rocket launches 300 feet away from Isaac. At 400 feet high, the distance to Isaac increases at 40 ft/s. Find the rocket's speed.

See Solution

Problem 16908

Calculate the integral: (cot2x+sin3xcosx)dx\int\left(\cot^{2} x + \sin^{3} x \sqrt{\cos x}\right) dx

See Solution

Problem 16909

Find the rate of area increase of a circle when the radius is 6 ft6 \text{ ft}.

See Solution

Problem 16910

A circle's area increases at 3ft2sec3 \frac{f t^{2}}{s e c}. Find the radius's increase rate when the radius is 6ft6 f t.

See Solution

Problem 16911

Find the limit as xx approaches infinity of (2+x)1/x(2+x)^{1/x}.

See Solution

Problem 16912

Evaluate the integral: (5xsec(x)tan(x)7x4x+12x29)dxx\int\left(5 x \sec (x) \tan (x)-7 x 4^{x}+\frac{12}{\sqrt{x^{2}-9}}\right) \frac{\mathrm{d} x}{x}.

See Solution

Problem 16913

Find the quantity QQ that maximizes profit given P=1022QP=102-2Q and C=2Q+0.5Q2C=2Q+0.5Q^2. Calculate the max profit.

See Solution

Problem 16914

Given f(a)=g(a)=0f(a)=g(a)=0, f(a)=0.5f'(a)=0.5, and g(a)=1.25g'(a)=1.25, find limxaf(x)g(x)\lim_{x \rightarrow a} \frac{f(x)}{g(x)} rounded to the nearest thousandth.

See Solution

Problem 16915

Find the area between the graph of y=f1(x)y=f^{-1}(x) and the yy-axis for 0y20 \leq y \leq 2 where f(x)=x5+3x+1f(x)=x^{5}+3 x+1.

See Solution

Problem 16916

Find the half-life of a radioactive substance with a decay rate of 9.1%9.1\% per day using the continuous decay model.

See Solution

Problem 16917

Bestimme die Änderungsrate der unzerfallenen Radon 222 Atome mit N(t)N00,834058161tN(t) \approx N_{0} \cdot 0,834058161^{t} für a) t=2t=2 und b) t=4t=4.

See Solution

Problem 16918

Evaluate the integral ln(x7)dx\int \ln \left(x^{7}\right) d x.

See Solution

Problem 16919

Find the integral of the function: 4xe5xdx\int 4 x e^{5 x} d x.

See Solution

Problem 16920

Calculate the limit: limn(1+π2n+1)2n\lim _{n \rightarrow \infty}\left(1+\frac{\pi}{2^{n+1}}\right)^{2^{n}}.

See Solution

Problem 16921

Find intercepts, relative min/max, inflection points, and the asymptote for y=x2x2+27y=\frac{x^{2}}{x^{2}+27}.

See Solution

Problem 16922

Calcular el límite: limx7x24x21x7\lim _{x \rightarrow 7} \frac{x^{2}-4 x-21}{x-7}

See Solution

Problem 16923

Bestimmen Sie die Ableitung und die Steigung von fa(x)f_{a}(x) an x=0x=0. Für welchen Wert von aa ist die Steigung 1?

See Solution

Problem 16924

Calculate the integral: dx(x+1)34x+1\int \frac{d x}{\sqrt[4]{(x+1)^{3}}-\sqrt{x+1}}

See Solution

Problem 16925

Find the derivative of f(x)=xsec(3x)+1f(x)=\frac{x}{\sec(3x)+1}.

See Solution

Problem 16926

Gegeben ist die Funktion f(x)=xexf(x)=x \cdot e^{x}. Finde den Tiefpunkt, die Normale im Ursprung und den Wendepunkt.

See Solution

Problem 16927

Evaluate limits of rational functions as xx \rightarrow \infty or xx \rightarrow -\infty. Find:
b) limx4x32x25x3+30x+2\lim _{x \rightarrow \infty} \frac{4 x^{3}-2 x^{2}}{5 x^{3}+30 x+2}, c) limx6x24x+37x2+5x10\lim _{x \rightarrow -\infty} \frac{6 x^{2}-4 x+3}{7 x^{2}+5 x-10}, d) limx6x24x+37x3+5x10\lim _{x \rightarrow -\infty} \frac{6 x^{2}-4 x+3}{7 x^{3}+5 x-10}, limx2x5x27x3+3x2+5\lim _{x \rightarrow \infty} \frac{2 x^{5}-x^{2}}{7 x^{3}+3 x^{2}+5}.

See Solution

Problem 16928

Find the derivative ddm(x3m3+y5m+z6)\frac{d}{d m}\left(x^{3} m^{3}+y^{5} m+z^{6}\right).

See Solution

Problem 16929

Find the first and second derivatives of y=3x+9y=3x+9: dydx=\frac{dy}{dx}= and d2ydx2=\frac{d^{2}y}{dx^{2}}=.

See Solution

Problem 16930

Gegeben ist die Funktion f(x)=xexf(x)=x \cdot e^{x}. Finde: a) den Tiefpunkt, b) die Normale im Ursprung, c) den Wendepunkt.

See Solution

Problem 16931

Find the first derivative of the function f(t)=(t3+2)8f(t)=(t^{3}+2)^{8}.

See Solution

Problem 16932

Find the average velocity of an object with v=4t3t2v=4t-3t^{2} from t=0t=0 to t=2t=2 seconds. Options: a. 0 b. 2 m/s-2 \mathrm{~m/s} c. 2 m/s2 \mathrm{~m/s} d. -4ri's e. can't calculate without initial position.

See Solution

Problem 16933

Estimate the cost of making 41 bicycles if C(40)=7000C(40)=7000 and C(40)=55C^{\prime}(40)=55.

See Solution

Problem 16934

At what point are the velocity and acceleration vectors of a projectile thrown upward perpendicular? (a) Nowhere (b) highest point (c) launch point

See Solution

Problem 16935

1) Optimize f(x)=3x2/3+2xf(x)=3 x^{2/3}+2 x on [1,8][-1,8]. 2) a. State Rolle's theorem. b. Verify Rolle's theorem for f(x)=(x2)2(x+3)f(x)=(x-2)^2(x+3) on [3,2][-3,2]. c. Find cc values from Rolle's conclusions. 3) For f(x)=x5516xf(x)=\frac{x^5}{5}-16x: a. Find critical points. b. Solve f(x)>0f'(x)>0 and f(x)<0f'(x)<0 for increasing/decreasing intervals. c. Classify critical points using the First Derivative Test. 4) For f(x)=(sinx)(cosx)+2f(x)=(\sin x)(\cos x)+2: a. Find critical points. b. Solve f(x)>0f'(x)>0 and f(x)<0f'(x)<0 for increasing/decreasing intervals. c. Classify critical points using the First Derivative Test. BONUS: Minimize distance from P(10,0)P(10,0) to y=2x9y=\sqrt{2x-9}: a. Set g(x,y)=dist2[(x,y),(10,0)]g(x,y)=\text{dist}^2[(x,y),(10,0)]. b. Substitute y=2x9y=\sqrt{2x-9} to minimize G(x)G(x).

See Solution

Problem 16936

State Rolle's theorem. For f(x)=(x2)2(x+3)f(x)=(x-2)^{\wedge} 2(x+3), verify it on [3,2][-3,2] and find values of cc from the theorem.

See Solution

Problem 16937

Bestimme die Ableitung von ff mit der Produktregel für die gegebenen Funktionen: a) f(x)=(2x3+5)x2f(x)=(2x^{3}+5)x^{2}, b) f(x)=(x25)(2x+1)f(x)=(x^{2}-5)(2x+1), c) f(x)=(x21)(x2+1)f(x)=(x^{2}-1)(x^{2}+1), d) f(x)=(2x33x2+x)(3x+5)f(x)=(2x^{3}-3x^{2}+x)(3x+5), e) f(x)=(x2+3)xf(x)=(x^{2}+3)\sqrt{x}, f) f(x)=3x5(cos(x)+x)f(x)=3x^{5}(\cos(x)+x), g) f(x)=1xsin(x)f(x)=\frac{1}{x}\sin(x), h) f(x)=sin(x)cos(x)f(x)=\sin(x)\cos(x), i) f(x)=1x2xf(x)=\frac{1}{x^{2}}\sqrt{x}, j) f(x)=(sin(x)+1)(cos(x)+1)f(x)=(\sin(x)+1)(\cos(x)+1), k) f(t)=(3t3+t2)t3f(t)=(3t^{3}+t^{2})t^{-3}, l) f(t)=t32(2t+1)+5tf(t)=\frac{t^{3}}{2}(2t+1)+5t.

See Solution

Problem 16938

Bestimme die Ableitung der Funktionen mit der Produktregel: a) f(x)=(2x3+5)x2f(x)=(2 x^{3}+5) \cdot x^{2}, b) f(x)=(x25)(2x+1)f(x)=(x^{2}-5) \cdot(2 x+1), c) f(x)=(x21)(x2+1)f(x)=(x^{2}-1)(x^{2}+1), d) f(x)=(2x33x2+x)(3x+5)f(x)=(2 x^{3}-3 x^{2}+x)(3 x+5), e) f(x)=(x2+3)xf(x)=(x^{2}+3)\sqrt{x}, f) f(x)=3x5(cos(x)+x)f(x)=3 x^{5}(\cos(x)+x), g) f(x)=1xsin(x)f(x)=\frac{1}{x} \sin(x), h) f(x)=sin(x)cos(x)f(x)=\sin(x) \cos(x), i) f(x)=1x2xf(x)=\frac{1}{x^{2}} \sqrt{x}, j) f(x)=(sin(x)+1)(cos(x)+1)f(x)=(\sin(x)+1)(\cos(x)+1), k) f(t)=(3t3+t2)t3f(t)=(3 t^{3}+t^{2}) t^{-3}, l) f(t)=t32(2t+1)+5tf(t)=\frac{t^{3}}{2}(2 t+1)+5 t.

See Solution

Problem 16939

Bestimmen Sie die Ableitung von ff mit der Produktregel für die Funktionen a) bis l).

See Solution

Problem 16940

Check convergence or divergence of the series and identify if it's conditional or absolute: n=1(1)nln(1+1n)\sum_{n=1}^{\infty}(-1)^{n} \ln \left(1+\frac{1}{n}\right)

See Solution

Problem 16941

Find critical points of f(x)=x5516xf(x)=\frac{x^{5}}{5}-16x, determine intervals of increase/decrease, and classify critical points.

See Solution

Problem 16942

Calculate the integral 2xe5tdx\int 2 x e^{-5 t} d x. Choose the correct answer from the options provided.

See Solution

Problem 16943

Calculate the tumour mass change from t=0t=0 to t=2t=2 days given G(t)=89t13G(t)=\frac{8}{9} t^{\frac{1}{3}}. Options: a) 163\sqrt[3]{16}, b) 23163\frac{2}{3} \sqrt[3]{16}, c) 14163\frac{1}{4} \sqrt[3]{16}, d) 34163\frac{3}{4} \sqrt[3]{16}, e) None.

See Solution

Problem 16944

Berechnen Sie die Ableitung von ff an den angegebenen Stellen: a) f(x)=x2,x0=4f(x)=x^{2}, x_{0}=4; b) f(x)=2x2,x0=3f(x)=-2 x^{2}, x_{0}=3; c) f(x)=2x2,x0=3f(x)=2 x^{2}, x_{0}=3; d) f(x)=2x2,x0=4f(x)=2 x^{2}, x_{0}=4; e) f(x)=1x,x0=1f(x)=\frac{1}{x}, x_{0}=-1; f) f(x)=2x2,x0=2f(x)=2 x^{2}, x_{0}=-2; g) f(x)=0,5x2,x0=2f(x)=0,5 x^{2}, x_{0}=2; h) f(x)=x+2,x0=3f(x)=-x+2, x_{0}=3; i) f(x)=4,x0=7f(x)=4, x_{0}=7.

See Solution

Problem 16945

Find the integral of sin(14π)dx\sin \left(\frac{1}{4} \pi\right) dx. What is the result?

See Solution

Problem 16946

Approximate 19(x6)2dx\int_{1}^{9}(x-6)^{2} d x using Riemann sum with left endpoints uiu_{i} for intervals [1,3],[3,5],[5,7],[7,9][1,3],[3,5],[5,7],[7,9]. Options: a) 112 b) 308 c) 72 d) 36 e) None.

See Solution

Problem 16947

Find the integral: 53t13dt=\int \frac{5}{3} t^{\frac{1}{3}} d t= a) 54t43+C\frac{5}{4} t^{\frac{4}{3}}+C b) 158t43+C\frac{15}{8} t^{\frac{4}{3}}+C c) 12t43+C\frac{1}{2} t^{\frac{4}{3}}+C d) t53+Ct^{\frac{5}{3}}+C e) None of the above

See Solution

Problem 16948

Calculate the integral 55(3x)2dx\int_{-5}^{5}(3 x)^{2} d x.

See Solution

Problem 16949

Estimate the integral 19(x5)2dx\int_{1}^{9}(x-5)^{2} dx using Riemann sums with right endpoints for intervals [1,3],[3,5],[5,7],[7,9][1,3],[3,5],[5,7],[7,9]. Choose from a) 40 b) 48 c) 24 d) 34 e) None.

See Solution

Problem 16950

Bestimme die Ableitung und die Steigung von fa(x)f_{a}(x) an x=0x=0 für die Funktionen a) bis c) und finde aa für Steigung 1.

See Solution

Problem 16951

Find critical points of f(x)=(sinx)(cosx)+2f(x)=(\sin x)(\cos x)+2, determine intervals of increase/decrease, and classify critical points.

See Solution

Problem 16952

Find critical points of f(x)=(sinx)(cosx)+2f(x)=(\sin x)(\cos x)+2, analyze f(x)f'(x) for increasing/decreasing intervals, and classify critical points.
BONUS: Minimize distance from point P(10,0)P(10,0) to graph y=(2x9)y=\sqrt{(2x-9)} using g(x,y)=dist2[(x,y),(10,0)]g(x,y)=\operatorname{dist}^{2}[(x,y),(10,0)]. Substitute to find G(x)G(x) and its minimum.

See Solution

Problem 16953

Evaluate the integral: r2r+6dr\int \frac{r^{2}}{r+6} d r using absolute values.

See Solution

Problem 16954

Find dydx\frac{d y}{d x} for cos(xy)=y1\cos (x y)=y-1 at x=π2x=\frac{\pi}{2}, y=1y=1. Options: (A) 22π\frac{-2}{2-\pi}, (B) 22+π\frac{-2}{2+\pi}, (C) 0, (D) 22π\frac{2}{2-\pi}, (E) 22+π\frac{2}{2+\pi}.

See Solution

Problem 16955

Bestimme die Ableitung von f(x)=(x3+x)sin(x)ln(x)f(x)=\frac{(x^{3}+x) \cdot \sin (x)}{\ln (x)}.

See Solution

Problem 16956

Determine convergence/divergence of the series: n=1(1)n+13n+1n+1\sum_{n=1}^{\infty}(-1)^{n+1} \frac{3 \sqrt{n+1}}{\sqrt{n}+1}.

See Solution

Problem 16957

Die Funktion f(t)=14t3114t24t+44f(t)=\frac{1}{4} t^{3}-\frac{11}{4} t^{2}-4 t+44 beschreibt die Wassermenge im Stausee.
a) Bestimme Zeiträume mit Zunahme der Wassermenge. b) Finde den Zeitpunkt mit der geringsten Änderungsrate. c) Erläutere die Bedeutung dieses Zeitpunkts für die Funktion g(t)g(t).

See Solution

Problem 16958

Find the derivative of f(x)=(x+3x2)3f(x)=\left(\frac{x+3}{x-2}\right)^{3}.

See Solution

Problem 16959

Find the derivative of s(t)=(t2t+1)3/2s(t)=\left(\frac{t}{2 t+1}\right)^{3/2}.

See Solution

Problem 16960

Find f(x)f'(x) for the function f(x)=x2(x21)4f(x)=\frac{x^{2}}{(x^{2}-1)^{4}}.

See Solution

Problem 16961

Find the derivative of h(x)=(3x2+1)3(x21)4h(x)=\frac{(3 x^{2}+1)^{3}}{(x^{2}-1)^{4}}.

See Solution

Problem 16962

Ein leerer Pool wird mit v(t)=0,1t21t3+1+40v(t)=0,1 t^{2}-\frac{1}{t^{3}+1}+40 befüllt. Bestimmen Sie die Füllhöhe und das Volumen nach 10 Minuten.

See Solution

Problem 16963

Given that h(x)=h(2x)h(x) = h(2-x) for all xx, which statements are true? I. 02h(x)dx>0\int_{0}^{2} h(x) d x > 0 II. h(1)=0h^{\prime}(1) = 0 III. h(0)=h(2)=1h^{\prime}(0) = h^{\prime}(2) = 1 Choose from: (A) I only, (B) II only, (C) III only, (D) II and III only, (E) I, II, and III.

See Solution

Problem 16964

Find the derivative of f(x)=(2x+1)2f(x)=(2x+1)^{-2}.

See Solution

Problem 16965

Solve the differential equation dy/dx=yy2xdy/dx = \frac{y - y^2}{x} for x0x \neq 0. Find the general solution y=f(x)y = f(x).

See Solution

Problem 16966

Find the derivative of g(t)=t+1t2+1g(t)=\frac{\sqrt{t+1}}{\sqrt{t^{2}+1}}.

See Solution

Problem 16967

Given ff is twice differentiable with f(4)=6f(4)=6, f(4)=5f'(4)=5, and f(4)=8f''(4)=8. Find h(4)h'(4) for h(x)=1+f(x)2h(x)=\sqrt{1+f'(x)^{2}}. Round to three decimal places.

See Solution

Problem 16968

Find the maximum number of extreme values for the function f(x)=x37x6f(x)=x^{3}-7x-6. A. 4 B. 3 C. 1 D. 2

See Solution

Problem 16969

Find dydx\frac{d y}{d x} at (6,2)(6,2) given f(6)=1f(6)=1, f(6)=1.6f^{\prime}(6)=1.6, and f(x)2+y2=6y7f(x)f(x)^{2}+y^{2}=6y-7f(x). Round to three decimal places.

See Solution

Problem 16970

Berechnen Sie die Fläche zwischen dem Graphen von ff und der xx-Achse für die Funktionen a) bis f).

See Solution

Problem 16971

Evaluate the integral: 9(x+a)(x+b)dx\int \frac{9}{(x+a)(x+b)} d x (Assume aba \neq b).

See Solution

Problem 16972

James drops a penny from a skyscraper; it lands in 6.7 seconds. Find the height in feet. Choices: a. 113.9 b. 214.4 c. 107.2 d. 718.24

See Solution

Problem 16973

Find the value of the nested radical 72+72+72+\sqrt{72+\sqrt{72+\sqrt{72+\ldots}}} and its recursive sequence ana_{n}. What is a0a_{0}? Also, find limnan\lim _{n \rightarrow \infty} a_{n} and explain your reasoning for the limit.

See Solution

Problem 16974

Trouvez les abscisses des points critiques de la fonction f(x)=x4(4x+9)f(x)=x^{4}(4 x+9).

See Solution

Problem 16975

Une échelle de 10 m10 \mathrm{~m} glisse contre un mur. Si le bas s'éloigne à 1 m/s1 \mathrm{~m/s}, quelle est la vitesse du sommet quand le bas est à 8 m8 \mathrm{~m} du mur ?

See Solution

Problem 16976

Construire une boîte cylindrique sans couvercle de volume 30 cm330 \mathrm{~cm}^{3}. Trouver rr et hh pour minimiser la surface 2πrh2 \pi r h.

See Solution

Problem 16977

A mass mm on a table connected by springs to points AA and BB (6l0l_0 apart). Find motion equation, equilibrium, frequency, and displacement x(t)x(t).

See Solution

Problem 16978

A substance grows at 19%19\% daily. If it starts at 75 grams, find its mass after 2 days, rounded to the nearest tenth.

See Solution

Problem 16979

Analyze the function f(x)=x2+4x+3f(x) = \frac{x^2+4}{x+3} for asymptotes and extrema. Which option fits its behavior?

See Solution

Problem 16980

Find the intervals where k(x)=32x+4k(x)=\frac{-3}{2 x+4} is increasing or decreasing.

See Solution

Problem 16981

Identify the correct intervals of increase and decrease for h(x)=1x2+10x+25h(x)=\frac{-1}{x^{2}+10 x+25}.

See Solution

Problem 16982

Find the max and min of the function f(x)=2x3x2+4f(x)=\frac{|2 x-3|}{x^{2}+4} on the interval [10,10][-10,10].

See Solution

Problem 16983

Find the derivative of f(x)=sin(θ)cos(θ)+cos(θ)sin(θ)f(x)=\frac{\sin (\theta)}{\cos (\theta)}+\frac{\cos (\theta)}{\sin (\theta)}.

See Solution

Problem 16984

Find the area between the curve 4x24-x^{2} and the xx-axis from x=2x=-2 to x=2x=2 using a Riemann sum with nn subintervals.

See Solution

Problem 16985

Gegeben ist die Funktion gg mit 22g(x)dx=1\int_{-2}^{2} g(x) d x=1.
1. Zeichnen Sie den Graphen von vv.
2. Bestimmen Sie die Position des Aufzugs nach 20 s.
3. Schreiben Sie die Positionsänderung aus Teil 2 in Integralschreibweise.

See Solution

Problem 16986

Find the anti-derivative of f(x)=sin(x)cos(x)+cos(x)sin(x)f(x) = \frac{\sin(x)}{\cos(x)} + \frac{\cos(x)}{\sin(x)}.

See Solution

Problem 16987

Find the anti-derivative of sin(θ)cos(θ)+1+cos(θ)sin(θ)\frac{\sin (\theta)}{\cos (\theta)+1}+\frac{\cos (\theta)}{\sin (\theta)}.

See Solution

Problem 16988

Analyze the behavior of the functions f(x)=1x2f(x)=\frac{1}{x-2} and f(x)=1x24f(x)=\frac{-1}{x^{2}-4} as x2+x \rightarrow 2^{+} and x+x \rightarrow+\infty.

See Solution

Problem 16989

Analyze the behavior of the functions f(x)=1x2f(x)=\frac{1}{x-2} and f(x)=1x24f(x)=\frac{-1}{x^{2}-4} as x2+x \to 2^{+} and x+x \to +\infty.

See Solution

Problem 16990

Zeigen Sie, dass die folgenden Integrale den Wert 0 haben: a) 440,25xdx\int_{-4}^{4} 0,25 x d x, b) ππsin(x)dx\int_{-\pi}^{\pi} \sin (x) d x, c) 0πcos(x)dx\int_{0}^{\pi} \cos (x) d x, d) 13(x2)3dx\int_{1}^{3}(x-2)^{3} d x.

See Solution

Problem 16991

Find dimensions of a rectangular area of 2400 m22400 \mathrm{~m}^{2} to minimize fencing cost: outside \$30/m, inside \$10/m.

See Solution

Problem 16992

Find the absolute max and min of f(x)=2x33x236xf(x)=2x^3-3x^2-36x on the interval 5x5-5 \leq x \leq 5.

See Solution

Problem 16993

Beweisen Sie die folgenden Gleichungen: a) 52x2dx=25x2dx\int_{-5}^{-2} x^{2} d x=\int_{2}^{5} x^{2} d x b) 443x2dx=2043x2dx\int_{-4}^{4} 3 x^{2} d x=2 \cdot \int_{0}^{4} 3 x^{2} d x c) 20(x1)2dx=24(x1)2dx\int_{-2}^{0}(x-1)^{2} d x=\int_{2}^{4}(x-1)^{2} d x

See Solution

Problem 16994

Find the time tt (0 ≤ tt ≤ 1) when the pollutant level P(t)=2t+1162t+1P(t)=\frac{2t+1}{162t+1} is lowest.

See Solution

Problem 16995

Find yy^{\prime} for y=(x2+3)2(x32x)3y=(x^{2}+3)^{2}(x^{3}-2x)^{3}.

See Solution

Problem 16996

Find the value of aa for the function f(x)=3x3+ax2+4a2x+9af(x)=3 x^{3}+a x^{2}+4 a^{2} x+9 a with an inflection point at x=1x=-1.

See Solution

Problem 16997

Find the critical point(s) of the function f(x)=3x29f(x)=-\frac{3}{x^{2}-9}.

See Solution

Problem 16998

Find 34f(z)dz\int_{3}^{4} f(z) d z given 15f(z)dz=6\int_{1}^{5} f(z) dz=6 and 14f(z)dz=9\int_{1}^{4} f(z) dz=9.

See Solution

Problem 16999

Sketch possible graphs of f(x)f'(x) and f(x)f(x) given f(x)f''(x) is decreasing and has a point at (2,0). Explain key features.

See Solution

Problem 17000

Find the derivatives of f(x)=(x+4)3(x3)6f(x)=(x+4)^{3}(x-3)^{6} and y=3x2+2xx2+1y=\frac{3x^{2}+2x}{x^{2}+1}.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord